1
|
Xiong G, Chen Q, Wang Q, Wang X, Xiao Y, Jin L, Yan K, Zhang X, Hu F. Multifaceted role of nanocomposite hydrogels in diabetic wound healing: enhanced biomedical applications and detailed molecular mechanisms. Biomater Sci 2024; 12:6196-6223. [PMID: 39494707 DOI: 10.1039/d4bm01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The complex microenvironment of diabetic wounds, which is characterized by persistent hyperglycemia, excessive inflammatory responses, and hypoxic conditions, significantly impedes the efficacy of traditional hydrogels. Nanocomposite hydrogels, which combine the high-water content and biocompatibility of hydrogels with the unique functionalities of nanomaterials, offer a promising solution. These hydrogels exhibit enhanced antibacterial, antioxidant, and drug-release properties. Incorporating nanomaterials increases the mechanical strength and bioactivity of hydrogels, allowing for dynamic regulation of the wound microenvironment and promoting cell migration, proliferation, and angiogenesis, thereby accelerating wound healing. This review provides a comprehensive overview of the latest advances in nanocomposite hydrogels for diabetic wound treatment and discusses their advantages and molecular mechanisms at various healing stages. The study aims to provide a theoretical foundation and practical guidance for future research and clinical applications. Furthermore, it highlights the challenges related to the mechanical durability, antimicrobial performance, resistance issues, and interactions with the cellular environments of these hydrogels. Future directions include optimizing smart drug delivery systems and personalized medical approaches to enhance the clinical applicability of nanocomposite hydrogels.
Collapse
Affiliation(s)
- Gege Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Qiwei Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Qiuyu Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Xiaoxue Wang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, PR China.
| | - Yaomu Xiao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Liuli Jin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Kaichong Yan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| | - Xueyang Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan 528000, PR China.
| | - Fei Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, PR China.
| |
Collapse
|
2
|
Zhou Y, Bennett TM, Ruzycki PA, Guo Z, Cao YQ, Shahidullah M, Delamere NA, Shiels A. A Cataract-Causing Mutation in the TRPM3 Cation Channel Disrupts Calcium Dynamics in the Lens. Cells 2024; 13:257. [PMID: 38334649 PMCID: PMC10854584 DOI: 10.3390/cells13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
TRPM3 belongs to the melastatin sub-family of transient receptor potential (TRPM) cation channels and has been shown to function as a steroid-activated, heat-sensitive calcium ion (Ca2+) channel. A missense substitution (p.I65M) in the TRPM3 gene of humans (TRPM3) and mice (Trpm3) has been shown to underlie an inherited form of early-onset, progressive cataract. Here, we model the pathogenetic effects of this cataract-causing mutation using 'knock-in' mutant mice and human cell lines. Trpm3 and its intron-hosted micro-RNA gene (Mir204) were strongly co-expressed in the lens epithelium and other non-pigmented and pigmented ocular epithelia. Homozygous Trpm3-mutant lenses displayed elevated cytosolic Ca2+ levels and an imbalance of sodium (Na+) and potassium (K+) ions coupled with increased water content. Homozygous TRPM3-mutant human lens epithelial (HLE-B3) cell lines and Trpm3-mutant lenses exhibited increased levels of phosphorylated mitogen-activated protein kinase 1/extracellular signal-regulated kinase 2 (MAPK1/ERK2/p42) and MAPK3/ERK1/p44. Mutant TRPM3-M65 channels displayed an increased sensitivity to external Ca2+ concentration and an altered dose response to pregnenolone sulfate (PS) activation. Trpm3-mutant lenses shared the downregulation of genes involved in insulin/peptide secretion and the upregulation of genes involved in Ca2+ dynamics. By contrast, Trpm3-deficient lenses did not replicate the pathophysiological changes observed in Trpm3-mutant lenses. Collectively, our data suggest that a cataract-causing substitution in the TRPM3 cation channel elicits a deleterious gain-of-function rather than a loss-of-function mechanism in the lens.
Collapse
Affiliation(s)
- Yuefang Zhou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas M. Bennett
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaohua Guo
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mohammad Shahidullah
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Nicholas A. Delamere
- Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Alan Shiels
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Thiel G, Rössler OG. Calmodulin Regulates Transient Receptor Potential TRPM3 and TRPM8-Induced Gene Transcription. Int J Mol Sci 2023; 24:ijms24097902. [PMID: 37175607 PMCID: PMC10178570 DOI: 10.3390/ijms24097902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Calmodulin is a small protein that binds Ca2+ ions via four EF-hand motifs. The Ca2+/calmodulin complex as well as Ca2+-free calmodulin regulate the activities of numerous enzymes and ion channels. Here, we used genetic and pharmacological tools to study the functional role of calmodulin in regulating signal transduction of TRPM3 and TRPM8 channels. Both TRPM3 and TRPM8 are important regulators of thermosensation. Gene transcription triggered by stimulation of TRPM3 or TRPM8 channels was significantly impaired in cells expressing a calmodulin mutant with mutations in all four EF-hand Ca2+ binding motifs. Similarly, incubation of cells with the calmodulin inhibitor ophiobolin A reduced TRPM3 and TRPM8-induced signaling. The Ca2+/calmodulin-dependent protein phosphatase calcineurin was shown to negatively regulate TRPM3-induced gene transcription. Here, we show that TRPM8-induced transcription is also regulated by calcineurin. We propose that calmodulin plays a dual role in regulating TRPM3 and TRPM8 functions. Calmodulin is required for the activation of TRPM3 and TRPM8-induced intracellular signaling, most likely through a direct interaction with the channels. Ca2+ influx through TRPM3 and TRPM8 feeds back to TRPM3 and TRPM8-induced signaling by activation of the calmodulin-regulated enzyme calcineurin, which acts as a negative feedback loop for both TRPM3 and TRPM8 channel signaling.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany
| |
Collapse
|
4
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
5
|
Eriksson H, Rössler OG, Thiel G. Tyrosine hydroxylase gene promoter activity is upregulated in female catecholaminergic neuroblastoma cells following activation of a Gαq-coupled designer receptor. Neurochem Int 2022; 160:105407. [PMID: 35995267 DOI: 10.1016/j.neuint.2022.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 10/31/2022]
Abstract
Tyrosine hydroxylase is the rate-limiting enzyme of catecholamine biosynthesis that catalyzes the conversion of L-tyrosine to L-3,4-dihydroxyphenylalanine. The tyrosine hydroxylase gene is regulated by extracellular signaling molecules such as epidermal growth factor, nerve growth factor and steroids. Here, we investigated whether the activity of the tyrosine hydroxylase gene promoter is upregulated by activation of G protein-coupled receptors, the largest group of plasma membrane receptors. We used catecholaminergic neuroblastoma cells as a cellular model and chromatin-integrated tyrosine hydroxylase promoter-luciferase reporter genes. The results show that stimulation of Rαq, a Gαq-coupled designer receptor, triggered transcription of a reporter gene driven by the tyrosine hydroxylase promoter. Transcription was attenuated by overexpression of regulator of G-protein signaling-2, which activates the GTPase activity of the G protein α-subunit, and by a truncated, dominant-negative mutant of phospholipase Cβ3. Extracellular signal-regulated protein kinase was identified as the signal transducer. At the transcriptional level, tyrosine hydroxylase promoter activity was found to be controlled by the transcription factor CREB. Expression experiments with the adenoviral regulator protein E1A, an inhibitor of CBP/p300 histone acetyltransferases, showed that transcription of the reporter gene controlled by the tyrosine hydroxylase is under epigenetic control. We identified the protein phosphatases MAP kinase phosphatase-1 and calcineurin as part of a shutdown device of the signaling cascade linking Rαq designer receptor activation to tyrosine hydroxylase gene transcription. We conclude that tyrosine hydroxylase promoter activity is controlled by Gαq-coupled receptors.
Collapse
Affiliation(s)
- Helen Eriksson
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421, Homburg, Germany.
| |
Collapse
|
6
|
Dalhäusser AK, Rössler OG, Thiel G. Regulation of c-Fos gene transcription by stimulus-responsive protein kinases. Gene 2022; 821:146284. [PMID: 35143939 DOI: 10.1016/j.gene.2022.146284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The basic region leucin zipper (bZIP) protein c-Fos constitutes together with other bZIP proteins the AP-1 transcription factor complex. Expression of the c-Fos gene is regulated by numerous extracellular signaling molecules including mitogens, metabolites, and ligands for receptor tyrosine kinases, G protein-coupled receptors, and cytokine receptors. Here, we analyzed the effects of the stimulus-responsive MAP kinases ERK1/2 (extracellular signal-regulated protein kinase), JNK (c-Jun N-terminal protein kinase) and p38 protein kinase on transcription of the c-Fos gene. We used chromatin-integrated c-Fos promoter-luciferase reporter genes containing inactivating point mutations of DNA binding sites for distinct transcription factors. ERK1/2, JNK, and p38 protein kinases were specifically activated following expression of either a mutant of B-Raf, a truncated version of mitogen-activated/extracellular signal responsive kinase kinase kinase-1 (MEKK1), or a mutant of MAP kinase kinase-6 (MKK6), respectively. The results show that the DNA binding sites for serum response factor (SRF) and for the ternary complex factor (TCF) are of major importance for stimulating c-Fos promoter activity by MAP kinases. ERK1/2 and p38-induced stimulation of the c-Fos promoter additionally required the DNA binding site for the transcription factor AP-1. Mutation of the DNA binding site for STAT had no or only a small effect on c-Fos promoter activity. We conclude that MAP kinases do not activate distinct transcription factors involving distinct genetic elements. Rather, these kinases mainly target SRF and TCF proteins, leading to an activation of transcription of the c-Fos gene via the serum response element.
Collapse
Affiliation(s)
- Alisia K Dalhäusser
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| |
Collapse
|
7
|
Backes TM, Langfermann DS, Lesch A, Rössler OG, Laschke MW, Vinson C, Thiel G. Regulation and function of AP-1 in insulinoma cells and pancreatic β-cells. Biochem Pharmacol 2021; 193:114748. [PMID: 34461116 DOI: 10.1016/j.bcp.2021.114748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Cav1.2 L-type voltage-gated Ca2+ channels play a central role in pancreatic β-cells by integrating extracellular signals with intracellular signaling events leading to insulin secretion and altered gene transcription. Here, we investigated the intracellular signaling pathway following stimulation of Cav1.2 Ca2+ channels and addressed the function of the transcription factor activator protein-1 (AP-1) in pancreatic β-cells of transgenic mice. Stimulation of Cav1.2 Ca2+ channels activates AP-1 in insulinoma cells. Pharmacological and genetic experiments identified c-Jun N-terminal protein kinase as a signal transducer connecting Cav1.2 Ca2+ channel activation with gene transcription. Moreover, the basic region-leucine zipper proteins ATF2 and c-Jun or c-Jun-related proteins were involved in stimulus-transcription coupling. We addressed the functions of AP-1 in pancreatic β-cells analyzing a newly generated transgenic mouse model. These transgenic mice expressed A-Fos, a mutant of c-Fos that attenuates DNA binding of c-Fos dimerization partners. In insulinoma cells, A-Fos completely blocked AP-1 activation following stimulation of Cav1.2 Ca2+ channels. The analysis of transgenic A-Fos-expressing mice revealed that the animals displayed impaired glucose tolerance. Thus, we show here for the first time that AP-1 controls an important function of pancreatic β-cells in vivo, the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Tobias M Backes
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Daniel S Langfermann
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Andrea Lesch
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Matthias W Laschke
- Saarland University Medical Faculty, Institute for Clinical and Experimental Surgery, D-66421 Homburg, Germany
| | | | - Gerald Thiel
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany.
| |
Collapse
|
8
|
Thiel G, Backes TM, Guethlein LA, Rössler OG. Chromatin-embedded reporter genes: Quantification of stimulus-induced gene transcription. Gene 2021; 787:145645. [PMID: 33848575 DOI: 10.1016/j.gene.2021.145645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Receptors and ion channels expressed on the cell surface ensure proper communication between the cells and the environment. In multicellular organism, stimulus-regulated gene transcription is the basis for communication with the environment allowing individual cells to respond to stimuli such as nutrients, chemical stressors and signaling molecules released by other cells of the organism. Hormones, cytokines, and mitogens bind to receptors and ion channels and induce intracellular signaling cascades involving second messengers, kinases, phosphatases, and changes in the concentration of particular ions. Ultimately, the signaling cascades reach the nucleus. Transcription factors are activated that respond to cellular stimulation and induce changes in gene transcription. Investigating stimulus-transcription coupling combines cell biology with genetics. In this review, we discuss the molecular biology of stimulus-induced transcriptional activators and their responsiveness to extracellular and intracellular signaling molecules and to epigenetic regulators. Stimulus-induced gene expression is measured by several methods, including detection of nuclear translocation of transcription factors, phosphorylation or DNA binding. In this article, we emphasize that the most reliable method to directly measure transcriptional activation involves the use of chromatin-embedded reporter genes.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
9
|
Thiel G, Schmidt T, Rössler OG. Ca 2+ Microdomains, Calcineurin and the Regulation of Gene Transcription. Cells 2021; 10:cells10040875. [PMID: 33921430 PMCID: PMC8068893 DOI: 10.3390/cells10040875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ca2+ ions function as second messengers regulating many intracellular events, including neurotransmitter release, exocytosis, muscle contraction, metabolism and gene transcription. Cells of a multicellular organism express a variety of cell-surface receptors and channels that trigger an increase of the intracellular Ca2+ concentration upon stimulation. The elevated Ca2+ concentration is not uniformly distributed within the cytoplasm but is organized in subcellular microdomains with high and low concentrations of Ca2+ at different locations in the cell. Ca2+ ions are stored and released by intracellular organelles that change the concentration and distribution of Ca2+ ions. A major function of the rise in intracellular Ca2+ is the change of the genetic expression pattern of the cell via the activation of Ca2+-responsive transcription factors. It has been proposed that Ca2+-responsive transcription factors are differently affected by a rise in cytoplasmic versus nuclear Ca2+. Moreover, it has been suggested that the mode of entry determines whether an influx of Ca2+ leads to the stimulation of gene transcription. A rise in cytoplasmic Ca2+ induces an intracellular signaling cascade, involving the activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin and various protein kinases (protein kinase C, extracellular signal-regulated protein kinase, Ca2+/calmodulin-dependent protein kinases). In this review article, we discuss the concept of gene regulation via elevated Ca2+ concentration in the cytoplasm and the nucleus, the role of Ca2+ entry and the role of enzymes as signal transducers. We give particular emphasis to the regulation of gene transcription by calcineurin, linking protein dephosphorylation with Ca2+ signaling and gene expression.
Collapse
|
10
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
11
|
Pharmacological and genetic inhibition of TRPC6-induced gene transcription. Eur J Pharmacol 2020; 886:173357. [PMID: 32758574 DOI: 10.1016/j.ejphar.2020.173357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022]
Abstract
Transient receptor potential canonical-6 (TRPC6) channels are non-selective cation channels that can be activated by hyperforin, a constituent of Hypericum perforatum. TRPC6 activation has been linked to a variety of biological functions and pathologies, including focal segmental glomerulosclerosis and the development of various tumor entities. Thus, TRPC6 is an interesting drug target, and a specific pharmacological inhibitor would be very valuable for both basic research and therapy of TRPC6-mediated human pathologies. Here, we assessed the biological activity of various TRP channel inhibitors on hyperforin-stimulated TRPC6 channel signaling. Hyperforin stimulates the activity of the transcription factor AP-1 via TRPC6. Expression experiments involving a TRPC6-specific small hairpin RNA confirmed that hyperforin-induced gene transcription requires TRPC6. Cellular AP-1 activity was measured to assess which compound interrupted the TRPC6-induced intracellular signaling cascade. The results show that the compounds 2-APB, clotrimazole, BCTC, TC-I 2014, SAR 7334, and larixyl acetate blocked TRPC6-mediated activation of AP-1. In contrast, the TRPM8-specific inhibitor RQ-00203078 did not inhibit TRPC6-mediated signaling. 2-APB, clotrimazole, BCTC, and TC-I 2014 are broad-spectrum Ca2+ channel inhibitors, while SAR 7334 and larixyl acetate have been proposed to function as rather TRPC6-specific inhibitors. In this study it is shown that both compounds, in addition to inhibiting TRPC6-induced signaling, completely abolished pregnenolone sulfate-mediated signaling via TRPM3 channels. Thus, SAR 7334 and larixyl acetate are not TRPC6-specific inhibitors.
Collapse
|
12
|
Li W, Yang FQ, Sun CM, Huang JH, Zhang HM, Li X, Wang GC, Zhang N, Che JP, Zhang WT, Yan Y, Yao XD, Peng B, Zheng JH, Liu M. circPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma. Am J Cancer Res 2020; 10:4395-4409. [PMID: 32292503 PMCID: PMC7150475 DOI: 10.7150/thno.43239] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Circular RNAs (circRNAs) have been identified as essential regulators in a plethora of cancers. Nonetheless, the mechanistic functions of circRNAs in Renal Cell Carcinoma (RCC) remain largely unknown. Methods: In this study, we aimed to identify novel circRNAs that regulate RCC epithelial-mesenchymal transition (EMT), and to subsequently determine their regulatory mechanisms and clinical significance. Results: circPRRC2A was identified by circRNA microarray and validated by qRT-PCR. The role of circPRRC2A in RCC metastasis was evaluated both in vitro and in vivo. We found that increased expression of circPRRC2A is positively associated with advanced clinical stage and worse survivorship in RCC patients. Mechanistically, our results indicate that circPRRC2A prevents the degradation of TRPM3, a tissue-specific oncogene, mRNA by sponging miR-514a-5p and miR-6776-5p. Moreover, circPRRC2A promotes tumor EMT and aggressiveness in patients with RCC. Conclusions: These findings infer the exciting possibility that circPRRC2A may be exploited as a therapeutic and prognostic target for RCC patients.
Collapse
|
13
|
Shiels A. TRPM3_miR-204: a complex locus for eye development and disease. Hum Genomics 2020; 14:7. [PMID: 32070426 PMCID: PMC7027284 DOI: 10.1186/s40246-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
First discovered in a light-sensitive retinal mutant of Drosophila, the transient receptor potential (TRP) superfamily of non-selective cation channels serve as polymodal cellular sensors that participate in diverse physiological processes across the animal kingdom including the perception of light, temperature, pressure, and pain. TRPM3 belongs to the melastatin sub-family of TRP channels and has been shown to function as a spontaneous calcium channel, with permeability to other cations influenced by alternative splicing and/or non-canonical channel activity. Activators of TRPM3 channels include the neurosteroid pregnenolone sulfate, calmodulin, phosphoinositides, and heat, whereas inhibitors include certain drugs, plant-derived metabolites, and G-protein subunits. Activation of TRPM3 channels at the cell membrane elicits a signal transduction cascade of mitogen-activated kinases and stimulus response transcription factors. The mammalian TRPM3 gene hosts a non-coding microRNA gene specifying miR-204 that serves as both a tumor suppressor and a negative regulator of post-transcriptional gene expression during eye development in vertebrates. Ocular co-expression of TRPM3 and miR-204 is upregulated by the paired box 6 transcription factor (PAX6) and mutations in all three corresponding genes underlie inherited forms of eye disease in humans including early-onset cataract, retinal dystrophy, and coloboma. This review outlines the genomic and functional complexity of the TRPM3_miR-204 locus in mammalian eye development and disease.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., Box 8096, St. Louis, MO, 63110, USA.
| |
Collapse
|
14
|
Thiel G, Backes TM, Welck J, Steinhausen S, Fischer AL, Langfermann DS, Ulrich M, Wissenbach U, Rössler OG. Pharmacological inhibition of TRPM8-induced gene transcription. Biochem Pharmacol 2019; 170:113678. [PMID: 31654626 DOI: 10.1016/j.bcp.2019.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Transient receptor potential melastatin-8 (TRPM8) channels are activated by cold temperature, menthol and icilin, leading to cold sensation. TRPM8 activation is connected with various diseases, indicating that a specific pharmacological antagonist, allowing nongenetic channel suppression, would be a valuable tool for therapy and basic research. Here, we assessed the biological activity and specificity of various TRPM8 inhibitors following stimulation of TRPM8 channels with either icilin or menthol. Recently, we showed that icilin strikingly upregulates the transcriptional activity of AP-1. By measuring AP-1 activity, we assessed which compound interrupted the TRPM8-induced intracellular signaling cascade from the plasma membrane to the nucleus. We tested the specificity of various TRPM8 inhibitors by analyzing AP-1 activation following stimulation of TRPM3 and TRPV1 channels, L-type voltage-gated Ca2+ channels, and Gαq-coupled receptors, either in the presence or absence of a particular TRPM8 inhibitor. The results show that the TRPM8 inhibitors BCTC, RQ-00203078, TC-1 2014, 2-APB, and clotrimazole blocked TRPM8-mediated activation of AP-1. However, only the compound RQ-00203078 showed TRPM8-specificity, while the other compounds function as broad-spectrum Ca2+ channel inhibitors. In addition, we show that progesterone interfered with TRPM8-induced activation of AP-1, as previously shown for TRPM3 and TRPC6 channels. TRPM8-induced transcriptional activation of AP-1 was additionally blocked by the compound PD98059, indicating that extracellular signal-regulated protein kinase-1/2 is essential to couple TRPM8 stimulation with transcriptional activation of AP-1. Moreover, an influx of Ca2+-ions is essential to induce the intracellular signaling cascade leading to the activation of AP-1.
Collapse
Key Words
- 2-APB, PubChem CID: 1598
- BCTC, PubChem CID: 9929425
- Capsaicin, PubChem CID: 1548943
- Clotrimazole, PubChem CID: 2812
- Clozapine N-oxide, PubChem CID: 135445691
- Designer receptor
- ERK1/2
- FPL 64176, PubChem CID: 3423
- Icilin, PubChem CID: 161930
- KCl, PubChem CID: 4873
- Menthol, PubChem CID: 1254
- PD98059, PubChem CID: 4713
- Pregnenolone sulfate, PubChem CID: 105074
- Progesterone, PubChem CID: 5994
- RQ-00203078, PubChem CID: 49783953
- TC-1 2014, PubChem CID: 10040286
- TRPM3
- TRPM8
- TRPV1
- Voltage-gated calcium channel
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany.
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Jennifer Welck
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | | | - Anna-Lena Fischer
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Daniel S Langfermann
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Myriam Ulrich
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| |
Collapse
|
15
|
Calcineurin controls gene transcription following stimulation of a Gαq-coupled designer receptor. Exp Cell Res 2019; 383:111553. [DOI: 10.1016/j.yexcr.2019.111553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 01/07/2023]
|
16
|
Xu M, Li K, Wang Y, Wang J, Bai M, Kang G. Effect of ERK inhibitor on corneal neovascularization induced by alkali burn in mice and its mechanism. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219856762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The objective of this study is to explore the effect of extracellular signal–regulated kinase (ERK) inhibitors on corneal neovascularization induced by alkali burn in mice and its mechanism. A total of 30 standard diet (SD) healthy mice were divided into normal group, alkali burn group, and inhibitor group. Normal group was not treated. Alkali burn group and inhibitor group were used to establish corneal neovascularization model induced by alkali burn. After successful modeling, ERK inhibitor was used to intervene in inhibitor group, and saline of equal volume was used in normal group and alkali burn group. The area of corneal neovascularization was calculated and the expression of vascular endothelial growth factor (VEGF), c-Fos, c-Jun, ERK1/2, and p-ERK1/2 protein in cornea tissue of three groups of mice was detected. The relative expression of vascular area, length, VEGF, c-Fos, c-Jun, ERK1/2, and p-ERK1/2 protein in cornea tissue of mice in alkali burn group was significantly higher than that in normal group and inhibitor group. The relative expression of vascular area, length, VEGF, c-Fos, c-Jun, ERK1/2, and p-ERK1/2 protein in cornea tissue of mice in inhibitor group was higher than that in normal group, and the expression level of PEDF was lower than that in normal group ( P < 0.05). ERK inhibitors inhibit the formation of corneal neovascularization by inhibiting the expression of VEGF, c-Fos, and c-Jun proteins through the action of ERK signaling pathway.
Collapse
Affiliation(s)
- Manhua Xu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kaiming Li
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yanxi Wang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Wang
- Department of Ophthalmology, Ziyang No. 4 People’s Hospital, Ziyang, China
| | - Mengtian Bai
- Department of Ophthalmology, Second People’s Hospital of Yunnan Province, Kunming, China
| | - Gangjing Kang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Rubil S, Thiel G. Stimulation of TRPM3 channels increases the transcriptional activation potential of Elk-1 involving cytosolic Ca 2+, extracellular signal-regulated protein kinase, and calcineurin. Eur J Pharmacol 2018; 844:225-230. [PMID: 30552902 DOI: 10.1016/j.ejphar.2018.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Stimulation of transient receptor potential M3 (TRPM3) channels with the steroid pregnenolone sulfate increases the transcriptional activation potential of Elk-1, a transcription factor that regulates serum response element-mediated transcription. Here, we show that an influx of Ca2+ ions into the cells is essential for the activation of Elk-1 following stimulation of TRPM3. Using genetically encoded Ca2+ buffers, we show that a rise in cytoplasmic Ca2+ is required for the upregulation of the transcriptional activation potential of Elk-1, while buffering of Ca2+ in the nucleus had no inhibitory effect on the transcriptional activity of Elk-1. Pharmacological and genetic experiments showed that extracellular signal-regulated protein kinase (ERK1/2) functions as signal transducer connecting TRPM3 channels with the Elk-1 transcription factor. Accordingly, dephosphorylation of ERK1/2 in the nucleus by MAP kinase phosphatase attenuated TRPM3-mediated Elk-1 activation. Moreover, we show that the Ca2+/calmodulin-dependent protein phosphatase calcineurin is part of a shut-off-device for the signaling cascade connecting TRPM3 channels with the activation of Elk-1. The fact that TRPM3 channel stimulation activates Elk-1 connects TRPM3 with the biological functions of Elk-1, including the regulation of proliferation, differentiation, survival, transcription, and cell migration.
Collapse
Affiliation(s)
- Sandra Rubil
- Department of Medical Biochemistry and Molecular Biology Saarland University Medical Faculty, Building 44, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology Saarland University Medical Faculty, Building 44, D-66421 Homburg, Germany.
| |
Collapse
|
18
|
Langfermann DS, Rössler OG, Thiel G. Stimulation of B-Raf increases c-Jun and c-Fos expression and upregulates AP-1-regulated gene transcription in insulinoma cells. Mol Cell Endocrinol 2018; 472:126-139. [PMID: 29225069 DOI: 10.1016/j.mce.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 01/15/2023]
Abstract
Stimulation of pancreatic β-cells with glucose activates the protein kinases B-Raf and extracellular signal-regulated protein kinase that participate in glucose sensing. Inhibition of both kinases results in impairment of glucose-regulated gene transcription. To analyze the signaling pathway controlled by B-Raf, we expressed a conditionally active form of B-Raf in INS-1 insulinoma cells. Here, we show that stimulation of B-Raf strongly activated the transcription factor AP-1 which is accompanied by increased c-Jun and c-Fos promoter activities, an upregulation of c-Jun and c-Fos biosynthesis, and elevated transcriptional activation potentials of c-Jun and c-Fos. Mutational analysis identified the AP-1 sites within the c-Jun promoter and the serum response element (SRE) within the c-Fos promoter as the essential genetic elements connecting B-Raf stimulation with AP-1 activation. In line with this, the transcriptional activation potential of the SRE-binding protein Elk-1 was increased following B-Raf activation. The signal pathway from B-Raf to AP-1 required the activation of c-Jun. We identified the cyclin D1 gene as a delayed response gene for AP-1 following stimulation of B-Raf in insulinoma cells. Moreover, MAP kinase phosphatase-1 and the Ca2+/calmodulin-dependent protein phosphatase calcineurin were identified to function as shut-off-devices for the signaling cascade connecting B-Raf stimulation with the activation of AP-1. The fact that stimulation with glucose, activation of L-type voltage-gated Ca2+ channels, and stimulation of B-Raf all trigger an activation of AP-1 indicates that AP-1 is a point of convergence of signaling pathways in β-cell.
Collapse
Affiliation(s)
- Daniel S Langfermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| |
Collapse
|
19
|
Backes TM, Rössler OG, Hui X, Grötzinger C, Lipp P, Thiel G. Stimulation of TRPV1 channels activates the AP-1 transcription factor. Biochem Pharmacol 2018; 150:160-169. [PMID: 29452097 DOI: 10.1016/j.bcp.2018.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/08/2018] [Indexed: 02/09/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels were originally described as the receptors of capsaicin, the main constituent of hot chili pepper. The biological functions of TRPV1 channels include pain sensation and inflammatory thermal hyperalgesia. Here, we show that stimulation of HEK293 cells expressing TRPV1 channels (H2C1 cells) with capsaicin or the TRPV1 ligand resiniferatoxin activated transcription mediated by the transcription factor AP-1. No cell death was occurring under these experimental conditions. The AP-1 activity was not altered in capsaicin or resiniferatoxin-stimulated HEK293 cells lacking TRPV1. We identified the AP-1 DNA binding site as the capsaicin/resiniferatoxin-responsive element. Stimulation with the TRPV1 ligand N-arachidonoyldopamine increased AP-1 activity in a TRPV1-dependent and TRPV1-independent manner. Stimulation of TRPV1 channels induced an influx of Ca2+ into the cells and this rise in intracellular Ca2+ was essential for activating AP-1 in capsaicin or resiniferatoxin-stimulated cells. N-arachidonoyldopamine stimulation induced a rise in intracellular Ca2+ in a TRPV-1 dependent and independent manner. AP-1 is a dimeric transcription factor, composed of proteins of the c-Jun, c-Fos and ATF families. Stimulation of TRPV1 channels with capsaicin increased c-Jun and c-Fos biosynthesis in H2C1 cells. The signal transduction of capsaicin, leading to enhanced AP-1-mediated transcription, required extracellular signal-regulated protein kinase ERK1/2 as a signal transducer and the activation of the transcription factors c-Jun and ternary complex factor. Together, these data suggest that the intracellular functions of TRPV1 stimulation may rely on the activation of a stimulus-regulated protein kinase and stimulus-responsive transcription factors.
Collapse
Affiliation(s)
- Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Xin Hui
- Anatomy and Cell Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Carsten Grötzinger
- Department of Internal Medicine, Division of Hepatology and Gastroenterology, Charité, D-13353 Berlin, Germany
| | - Peter Lipp
- Anatomy and Cell Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| |
Collapse
|
20
|
Stimulation of transient receptor potential M3 (TRPM3) channels increases interleukin-8 gene promoter activity involving AP-1 and extracellular signal-regulated protein kinase. Cytokine 2017; 103:133-141. [PMID: 28982580 DOI: 10.1016/j.cyto.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Stimulation of Ca2+ permeable TRPM3 (transient receptor potential melastatin-3) channels with the steroid ligand pregnenolone sulfate activates stimulus-responsive transcription factors, including the transcription factor AP-1 (activator protein-1). As part of a search for AP-1-regulated target genes we analyzed the gene encoding interleukin-8 (IL-8) in HEK293 cells expressing TRPM3 channels. Here, we show that stimulation of TRPM3 channels activated transcription of an IL-8 promoter-controlled reporter gene that was embedded into the chromatin of the cells. Mutational analysis of the IL-8 promoter revealed that the AP-1 binding site of the IL-8 promoter was essential to connect TRPM3 stimulation with the transcription of the IL-8 gene. Genetic experiments revealed that the basic region leucine zipper proteins c-Jun and ATF2 and the ternary complex factor Elk-1 are essential to couple TRPM3 channel stimulation with the IL-8 gene. Moreover, we identified extracellular signal-regulated protein kinase (ERK1/2) as signal transducer connecting TRPM3 stimulation with enhanced transcription of the IL-8 gene. Furthermore, we show that stimulation of TRPC6 (transient receptor potential canonical-6) channels with its ligand hyperforin also increased IL-8 promoter activity, involving the AP-1 binding site within the IL-8 gene, suggesting that activation of IL-8 gene transcription may be a common theme following TRP channel stimulation.
Collapse
|
21
|
Thiel G, Rubil S, Lesch A, Guethlein LA, Rössler OG. Transient receptor potential TRPM3 channels: Pharmacology, signaling, and biological functions. Pharmacol Res 2017; 124:92-99. [DOI: 10.1016/j.phrs.2017.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
|
22
|
Thiel G, Lesch A, Rubil S, Backes TM, Rössler OG. Regulation of Gene Transcription Following Stimulation of Transient Receptor Potential (TRP) Channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:167-189. [PMID: 29305012 DOI: 10.1016/bs.ircmb.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transient receptor potential (TRP) channels belong to a heterogeneous superfamily of cation channels that are involved in the regulation of numerous biological functions, including regulation of Ca2+ and glucose homeostasis, tumorigenesis, temperature, and pain sensation. To understand the functions of TRP channels, their associated intracellular signaling pathways and molecular targets have to be identified on the cellular level. Stimulation of TRP channels frequently induces an influx of Ca2+ ions into the cells and the subsequent activation of protein kinases. These intracellular signal transduction pathways ultimately induce changes in the gene expression pattern of the cells. Here, we review the effects of TRPC6, TRPM3, and TRPV1 channel stimulation on the activation of the stimulus-responsive transcription factors AP-1, CREB, Egr-1, Elk-1, and NFAT. Following activation, these transcription factors induce the transcription of delayed response genes. We propose that many biological functions of TRP channels can be explained by the activation of stimulus-responsive transcription factors and their delayed response genes. The proteins encoded by those delayed response genes may be responsible for the biochemical and physiological changes following TRP channel activation.
Collapse
Affiliation(s)
- Gerald Thiel
- Saarland University Medical Faculty, Homburg, Germany.
| | - Andrea Lesch
- Saarland University Medical Faculty, Homburg, Germany
| | - Sandra Rubil
- Saarland University Medical Faculty, Homburg, Germany
| | | | | |
Collapse
|