1
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2024:10.1007/s12035-024-04246-w. [PMID: 38816676 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
2
|
Vassal M, Pereira CD, Martins F, Silva VLM, Silva AMS, Senos AMR, Costa MEV, Pereira MDL, Rebelo S. Different Strategies to Attenuate the Toxic Effects of Zinc Oxide Nanoparticles on Spermatogonia Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3561. [PMID: 36296751 PMCID: PMC9607034 DOI: 10.3390/nano12203561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most used nanoparticles due to their unique physicochemical and biological properties. There is, however, a growing concern about their negative impact on male reproductive health. Therefore, in the present study, two different strategies were used to evaluate the recovery ability of spermatogonia cells from the first stage of spermatogenesis (GC-1 spg cell line) after being exposed to a cytotoxic concentration of ZnO NPs (20 µg/mL) for two different short time periods, 6 and 12 h. The first strategy was to let the GC-1 cells recover after ZnO NPs exposure in a ZnO NPs-free medium for 4 days. At this phase, cell viability assays were performed to evaluate whether this period was long enough to allow for cell recovery. Exposure to ZnO NPs for 6 h and 12 h induced a decrease in viability of 25% and 41%, respectively. However, the recovery period allowed for an increase in cell viability from 16% to 25% to values as high as 91% and 84%. These results strongly suggest that GC-1 cells recover, but not completely, given that the cell viability does not reach 100%. Additionally, the impact of a synthetic chalcone (E)-3-(2,6-dichlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) to counteract the reproductive toxicity of ZnO NPs was investigated. Different concentrations of chalcone 1 (0-12.5 µM) were used before and during exposure of GC-1 cells to ZnO NPs to mitigate the damage induced by NPs. The protective ability of this compound was evaluated through viability assays, levels of DNA damage, and cytoskeleton dynamics (evaluating the acetylated α-tubulin and β-actin protein levels). The results indicated that the tested concentrations of chalcone 1 can attenuate the genotoxicity induced by ZnO NPs for shorter exposure periods (6 h). Chalcone 1 supplementation also increased cell viability and stabilized the microtubules. However, the antioxidant potential of this compound remains to be elucidated. In conclusion, this work addressed the main cytotoxic effects of ZnO NPs on a spermatogonia cell line and analyzed two different strategies to mitigate this damage, which represent a significant contribution to the field of male fertility.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia D. Pereira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Martins
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L. M. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana M. R. Senos
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Elisabete V. Costa
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking. CRYSTALS 2022. [DOI: 10.3390/cryst12020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myelin basic protein (MBP) is one of the key proteins in the development of multiple sclerosis (MS). However, very few intracellular MBP partners have been identified up to now. In order to find proteins interacting with MBP in the brain, an expression library from the human brain was screened using a yeast two-hybrid system. Here we showed that MBP interacts with the C-terminal 24-residue peptide of Integral transmembrane protein II associated with familial British and Danish dementia (ITM2B/Bri2 or Bri2). This peptide (Bri23R) was one residue longer than the known Bri23 peptide, which is cleaved from the C-terminus of Bri2 during its maturation in the Golgi and has physiological activity as a modulator of amyloid precursor protein processing. Since the spatial structures for both MBP and Bri2 were not known, we used computational methods of structural biology including an artificial intelligence system AlphaFold2 and high ambiguity driven protein-protein docking (HADDOCK 2.1) to gain a mechanistic explanation of the found protein-protein interaction and elucidate a possible structure of the complex of MBP with Bri23R peptide. As expected, MBP was mostly unstructured, although it has well-defined α-helical regions, while Bri23R forms a stable β-hairpin. Simulation of the interaction between MBP and Bri23R in two different environments, as parts of the two-hybrid system fusion proteins and in the form of single polypeptides, showed that MBP twists around Bri23R. The observed interaction results in the adjustment of the size of the internal space between MBP α-helices to the size of the β-hairpin of Bri23R. Since Bri23 is known to inhibit aggregation of amyloid oligomers, and the association of MBP to the inner leaflet of the membrane bilayer shares features with amyloid fibril formation, Bri23 may serve as a peptide chaperon for MBP, thus participating in myelin membrane assembly.
Collapse
|
4
|
Martins F, Santos I, da Cruz E Silva OAB, Tambaro S, Rebelo S. The role of the integral type II transmembrane protein BRI2 in health and disease. Cell Mol Life Sci 2021; 78:6807-6822. [PMID: 34480585 PMCID: PMC11072861 DOI: 10.1007/s00018-021-03932-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BRI2 is a type II transmembrane protein ubiquitously expressed whose physiological function remains poorly understood. Although several recent important advances have substantially impacted on our understanding of BRI2 biology and function, providing valuable information for further studies on BRI2. These findings have contributed to a better understanding of BRI2 biology and the underlying signaling pathways involved. In turn, these might provide novel insights with respect to neurodegeneration processes inherent to BRI2-related pathologies, namely Familial British and Danish dementias, Alzheimer's disease, ITM2B-related retinal dystrophy, and multiple sclerosis. In this review, we provided a state-of-the-art outline of BRI2 biology, both in physiological and pathological conditions, and discuss the proposed molecular underlying mechanisms. Overall, the BRI2 knowledge here reviewed is of extreme importance and may contribute to propose BRI2 and/or BRI2 proteolytic fragments as novel therapeutic targets for neurodegenerative diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabela Santos
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Mateus T, Almeida I, Costa A, Viegas D, Magalhães S, Martins F, Herdeiro MT, da Cruz e Silva OAB, Fraga C, Alves I, Nunes A, Rebelo S. Fourier-Transform Infrared Spectroscopy as a Discriminatory Tool for Myotonic Dystrophy Type 1 Metabolism: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073800. [PMID: 33917301 PMCID: PMC8038712 DOI: 10.3390/ijerph18073800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a hereditary disease characterized by progressive distal muscle weakness and myotonia. Patients with DM1 have abnormal lipid metabolism and a high propensity to develop a metabolic syndrome in comparison to the general population. It follows that metabolome evaluation in these patients is crucial and may contribute to a better characterization and discrimination between DM1 disease phenotypes and severities. Several experimental approaches are possible to carry out such an analysis; among them is Fourier-transform infrared spectroscopy (FTIR) which evaluates metabolic profiles by categorizing samples through their biochemical composition. In this study, FTIR spectra were acquired and analyzed using multivariate analysis (Principal Component Analysis) using skin DM1 patient-derived fibroblasts and controls. The results obtained showed a clear discrimination between both DM1-derived fibroblasts with different CTG repeat length and with the age of disease onset; this was evident given the distinct metabolic profiles obtained for the two groups. Discrimination could be attributed mainly to the altered lipid metabolism and proteins in the 1800–1500 cm−1 region. These results suggest that FTIR spectroscopy is a valuable tool to discriminate both DM1-derived fibroblasts with different CTG length and age of onset and to study the metabolomic profile of patients with DM1.
Collapse
Affiliation(s)
- Tiago Mateus
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Idália Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Adriana Costa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Diana Viegas
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Sandra Magalhães
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Odete A. B. da Cruz e Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Carla Fraga
- Neurology Department, Centro Hospitalar Tâmega e Sousa (CHTS), 4564-007 Penafiel, Portugal; (C.F.); (I.A.)
| | - Ivânia Alves
- Neurology Department, Centro Hospitalar Tâmega e Sousa (CHTS), 4564-007 Penafiel, Portugal; (C.F.); (I.A.)
| | - Alexandra Nunes
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (I.A.); (A.C.); (D.V.); (S.M.); (F.M.); (M.T.H.); (O.A.B.d.C.eS.); (A.N.)
- Correspondence: ; Tel.: +351-924-406-306; Fax: +351-234-372-587
| |
Collapse
|
6
|
Chaplot K, Jarvela TS, Lindberg I. Secreted Chaperones in Neurodegeneration. Front Aging Neurosci 2020; 12:268. [PMID: 33192447 PMCID: PMC7481362 DOI: 10.3389/fnagi.2020.00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, is a combination of cellular processes that govern protein quality control, namely, protein translation, folding, processing, and degradation. Disruptions in these processes can lead to protein misfolding and aggregation. Proteostatic disruption can lead to cellular changes such as endoplasmic reticulum or oxidative stress; organelle dysfunction; and, if continued, to cell death. A majority of neurodegenerative diseases involve the pathologic aggregation of proteins that subverts normal neuronal function. While prior reviews of neuronal proteostasis in neurodegenerative processes have focused on cytoplasmic chaperones, there is increasing evidence that chaperones secreted both by neurons and other brain cells in the extracellular - including transsynaptic - space play important roles in neuronal proteostasis. In this review, we will introduce various secreted chaperones involved in neurodegeneration. We begin with clusterin and discuss its identification in various protein aggregates, and the use of increased cerebrospinal fluid (CSF) clusterin as a potential biomarker and as a potential therapeutic. Our next secreted chaperone is progranulin; polymorphisms in this gene represent a known genetic risk factor for frontotemporal lobar degeneration, and progranulin overexpression has been found to be effective in reducing Alzheimer's- and Parkinson's-like neurodegenerative phenotypes in mouse models. We move on to BRICHOS domain-containing proteins, a family of proteins containing highly potent anti-amyloidogenic activity; we summarize studies describing the biochemical mechanisms by which recombinant BRICHOS protein might serve as a therapeutic agent. The next section of the review is devoted to the secreted chaperones 7B2 and proSAAS, small neuronal proteins which are packaged together with neuropeptides and released during synaptic activity. Since proteins can be secreted by both classical secretory and non-classical mechanisms, we also review the small heat shock proteins (sHsps) that can be secreted from the cytoplasm to the extracellular environment and provide evidence for their involvement in extracellular proteostasis and neuroprotection. Our goal in this review focusing on extracellular chaperones in neurodegenerative disease is to summarize the most recent literature relating to neurodegeneration for each secreted chaperone; to identify any common mechanisms; and to point out areas of similarity as well as differences between the secreted chaperones identified to date.
Collapse
Affiliation(s)
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
7
|
Pereira CD, Martins F, Santos M, Müeller T, da Cruz e Silva OAB, Rebelo S. Nuclear Accumulation of LAP1:TRF2 Complex during DNA Damage Response Uncovers a Novel Role for LAP1. Cells 2020; 9:E1804. [PMID: 32751253 PMCID: PMC7465990 DOI: 10.3390/cells9081804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Lamina-associated polypeptide 1 (LAP1) is a nuclear envelope (NE) protein whose function remains poorly characterized. In a recent LAP1 protein interactome study, a putative regulatory role in the DNA damage response (DDR) has emerged and telomeric repeat-binding factor 2 (TRF2), a protein intimately associated with this signaling pathway, was among the list of LAP1 interactors. To gain insights into LAP1's physiological properties, the interaction with TRF2 in human cells exposed to DNA-damaging agents was investigated. The direct LAP1:TRF2 binding was validated in vitro by blot overlay and in vivo by co-immunoprecipitation after hydrogen peroxide and bleomycin treatments. The regulation of this protein interaction by LAP1 phosphorylation was demonstrated by co-immunoprecipitation and mass spectrometry following okadaic acid exposure. The involvement of LAP1 and TRF2 in the DDR was confirmed by their increased nuclear protein levels after bleomycin treatment, evaluated by immunoblotting, as well as by their co-localization with DDR factors at the NE and within the nucleoplasm, assessed by immunocytochemistry. Effectively, we showed that the LAP1:TRF2 complex is established during a cellular response against DNA damage. This work proposes a novel functional role for LAP1 in the DDR, revealing a potential biological mechanism that may be disrupted in LAP1-associated pathologies.
Collapse
Affiliation(s)
- Cátia D. Pereira
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Filipa Martins
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Mariana Santos
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Thorsten Müeller
- Cell Signaling in Neurodegeneration (CSIN), Medical Proteome-Center, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Odete A. B. da Cruz e Silva
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (C.D.P.); (F.M.); (M.S.); (O.A.B.d.C.eS.)
| |
Collapse
|
8
|
In Vitro Cytotoxicity Effects of Zinc Oxide Nanoparticles on Spermatogonia Cells. Cells 2020; 9:cells9051081. [PMID: 32357578 PMCID: PMC7290761 DOI: 10.3390/cells9051081] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc Oxide Nanoparticles (ZnO NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Several studies have focused on the biosafety of ZnO NPs, since their size and surface area favor entrance and accumulation in the body, which can induce toxic effects. In previous studies, ZnO NPs have been identified as a dose- and time-dependent cytotoxic inducer in testis and male germ cells. However, the consequences for the first cell stage of spermatogenesis, spermatogonia, have never been evaluated. Therefore, the aim of the present work is to evaluate in vitro the cytotoxic effects of ZnO NPs in spermatogonia cells, focusing on changes in cytoskeleton and nucleoskeleton. For that purpose, GC-1 cell line derived from mouse testes was selected as a model of spermatogenesis. These cells were treated with different doses of ZnO NPs for 6 h and 12 h. The impact of GC-1 cells exposure to ZnO NPs on cell viability, cell damage, and cytoskeleton and nucleoskeleton dynamics was assessed. Our results clearly indicate that higher concentrations of ZnO NPs have a cytotoxic effect in GC-1 cells, leading to an increase of intracellular Reactive Oxygen Species (ROS) levels, DNA damage, cytoskeleton and nucleoskeleton dynamics alterations, and consequently cell death. In conclusion, it is here reported for the first time that ZnO NPs induce cytotoxic effects, including changes in cytoskeleton and nucleoskeleton in mouse spermatogonia cells, which may compromise the progression of spermatogenesis in a time- and dose-dependent manner.
Collapse
|
9
|
Brummer T, Müller SA, Pan-Montojo F, Yoshida F, Fellgiebel A, Tomita T, Endres K, Lichtenthaler SF. NrCAM is a marker for substrate-selective activation of ADAM10 in Alzheimer's disease. EMBO Mol Med 2020; 11:emmm.201809695. [PMID: 30833305 PMCID: PMC6460357 DOI: 10.15252/emmm.201809695] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The metalloprotease ADAM10 is a drug target in Alzheimer's disease, where it cleaves the amyloid precursor protein (APP) and lowers amyloid‐beta. Yet, ADAM10 has additional substrates, which may cause mechanism‐based side effects upon therapeutic ADAM10 activation. However, they may also serve—in addition to APP—as biomarkers to monitor ADAM10 activity in patients and to develop APP‐selective ADAM10 activators. Our study demonstrates that one such substrate is the neuronal cell adhesion protein NrCAM. ADAM10 controlled NrCAM surface levels and regulated neurite outgrowth in vitro in an NrCAM‐dependent manner. However, ADAM10 cleavage of NrCAM, in contrast to APP, was not stimulated by the ADAM10 activator acitretin, suggesting that substrate‐selective ADAM10 activation may be feasible. Indeed, a whole proteome analysis of human CSF from a phase II clinical trial showed that acitretin, which enhanced APP cleavage by ADAM10, spared most other ADAM10 substrates in brain, including NrCAM. Taken together, this study demonstrates an NrCAM‐dependent function for ADAM10 in neurite outgrowth and reveals that a substrate‐selective, therapeutic ADAM10 activation is possible and may be monitored with NrCAM.
Collapse
Affiliation(s)
- Tobias Brummer
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan A Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany
| | - Francisco Pan-Montojo
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fumiaki Yoshida
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center JGU, Mainz, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
10
|
Martins F, Marafona AM, Pereira CD, Müller T, Loosse C, Kolbe K, da Cruz E Silva OAB, Rebelo S. Identification and characterization of the BRI2 interactome in the brain. Sci Rep 2018; 8:3548. [PMID: 29476059 PMCID: PMC5824958 DOI: 10.1038/s41598-018-21453-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/05/2018] [Indexed: 01/16/2023] Open
Abstract
BRI family proteins are ubiquitous type II transmembrane proteins but BRI2 is highly expressed in some neuronal tissues. Possible BRI2 functions include neuronal maturation and differentiation. Protein complexes appear to be important in mediating its functions. Previously described BRI2 interactors include the Alzheimer's amyloid precursor protein and protein phosphatase 1, but clearly the identification of novel interactors provides an important tool to understand the role and function of BRI2. To this end three rat brain regions (cerebellum, hippocampus, and cerebral cortex) were processed by BRI2 immunoprecipitation; co-precipitating proteins were identified by Nano-HPLC-MS/MS. The pool of the brain regions resulted in 511 BRI2 interacting proteins (BRI2 brain interactome) of which 120 were brain specific and 49 involved in neuronal differentiation. Brain region-specific analyses were also carried out for cerebellum, hippocampus, and cerebral cortex. Several novel BRI2 interactors were identified among them DLG4/PSD-95, which is singularly important as it places BRI2 in the postsynaptic compartment. This interaction was validated as well as the interaction with GAP-43 and synaptophysin. In essence, the resulting BRI2 brain interactome, associates this protein with neurite outgrowth and neuronal differentiation, as well as synaptic signalling and plasticity. It follows that further studies should address BRI2 particularly given its relevance to neuropathological conditions.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana M Marafona
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Cátia D Pereira
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Thorsten Müller
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
- Cell Signaling, Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Institute of Psychiatric Phenomics and Genomics, Clinical Center of the University of Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Christina Loosse
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
| | - Katharina Kolbe
- Leibniz-Institut für Analytische Wissenschaften -ISAS- e. V., Dortmund, Germany
- Cell Signaling, Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
- Institute of Psychiatric Phenomics and Genomics, Clinical Center of the University of Munich, Nussbaumstr. 7, 80336, Munich, Germany
| | - Odete A B da Cruz E Silva
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Sandra Rebelo
- Neuroscience and Signalling Laboratory, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|