1
|
Lima DA, Gonçalves LO, Reis-Cunha JL, Guimarães PAS, Ruiz JC, Liarte DB, Murta SMF. Transcriptomic analysis of benznidazole-resistant and susceptible Trypanosoma cruzi populations. Parasit Vectors 2023; 16:167. [PMID: 37217925 DOI: 10.1186/s13071-023-05775-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.
Collapse
Affiliation(s)
- Davi Alvarenga Lima
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil
| | - Leilane Oliveira Gonçalves
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Paul Anderson Souza Guimarães
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Silvane Maria Fonseca Murta
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil.
| |
Collapse
|
2
|
Barnadas-Carceller B, Martinez-Peinado N, Gómez LC, Ros-Lucas A, Gabaldón-Figueira JC, Diaz-Mochon JJ, Gascon J, Molina IJ, Pineda de las Infantas y Villatoro MJ, Alonso-Padilla J. Identification of compounds with activity against Trypanosoma cruzi within a collection of synthetic nucleoside analogs. Front Cell Infect Microbiol 2023; 12:1067461. [PMID: 36710960 PMCID: PMC9880260 DOI: 10.3389/fcimb.2022.1067461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and it is the most important neglected tropical disease in the Americas. Two drugs are available to treat the infection, but their efficacy in the chronic stage of the disease, when most cases are diagnosed, is reduced. Their tolerability is also hindered by common adverse effects, making the development of safer and efficacious alternatives a pressing need. T. cruzi is unable to synthesize purines de novo, relying on a purine salvage pathway to acquire these from its host, making it an attractive target for the development of new drugs. Methods We evaluated the anti-parasitic activity of 23 purine analogs with different substitutions in the complementary chains of their purine rings. We sequentially screened the compounds' capacity to inhibit parasite growth, their toxicity in Vero and HepG2 cells, and their specific capacity to inhibit the development of amastigotes. We then used in-silico docking to identify their likely targets. Results Eight compounds showed specific anti-parasitic activity, with IC50 values ranging from 2.42 to 8.16 μM. Adenine phosphoribosyl transferase, and hypoxanthine-guanine phosphoribosyl transferase, are their most likely targets. Discussion Our results illustrate the potential role of the purine salvage pathway as a target route for the development of alternative treatments against T. cruzi infection, highlithing the apparent importance of specific substitutions, like the presence of benzene groups in the C8 position of the purine ring, consistently associated with a high and specific anti-parasitic activity.
Collapse
Affiliation(s)
- Berta Barnadas-Carceller
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laura Córdoba Gómez
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | | | - Juan J. Diaz-Mochon
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Ignacio J. Molina
- Institute of Biopathology and Regenerative Medicine, Centre for Biomedical Research, University of Granada, Granada, Spain
| | - María José Pineda de las Infantas y Villatoro
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain,*Correspondence: Julio Alonso-Padilla, ; María José Pineda de las Infantas y Villatoro,
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic - University of Barcelona, Barcelona, Spain,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain,*Correspondence: Julio Alonso-Padilla, ; María José Pineda de las Infantas y Villatoro,
| |
Collapse
|
3
|
Santi AMM, Ribeiro JM, Reis-Cunha JL, Burle-Caldas GDA, Santos IFM, Silva PA, Resende DDM, Bartholomeu DC, Teixeira SMR, Murta SMF. Disruption of multiple copies of the Prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi. PLoS Negl Trop Dis 2022; 16:e0010845. [PMID: 36260546 PMCID: PMC9581433 DOI: 10.1371/journal.pntd.0010845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Martins Ribeiro
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Paula Alves Silva
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Silvane Maria Fonseca Murta
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
4
|
Molecular characterization of glyceraldehyde-3-phosphate dehydrogenase from Eimeria tenella. Parasitol Res 2022; 121:1749-1760. [PMID: 35366097 DOI: 10.1007/s00436-022-07508-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
Abstract
Chicken coccidiosis is an extremely common and lethally epidemic disease caused by Eimeria spp. The control measures of coccidiosis depend mainly on drugs. However, the ensuing drug resistance problem has brought considerable economic loss to the poultry industry. In our previous study, comparative transcriptome analyses of a drug-sensitive (DS) strain and two drug-resistant strains (diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains) of Eimeria tenella were carried out by transcriptome sequencing. The expression of glyceraldehyde-3-phosphate dehydrogenase of E. tenella (EtGAPDH) was upregulated in the two resistant strains. In this study, we cloned and characterized EtGAPDH. Indirect immunofluorescence localization was used to observe the distribution of EtGAPDH in E. tenella. The results showed that the protein was distributed mainly on the surface of sporozoites and merozoites, and in the cytoplasm of merozoites. qPCR was performed to detect the transcription level of EtGAPDH in the different developmental stages of the E. tenella DS strain. The transcription level of EtGAPDH was significantly higher in second-generation merozoites than in the other three stages. The transcription level of EtGAPDH in the different drug-resistant strains and DS strain of E. tenella was also analyzed by qPCR. The results showed that the transcription level was significantly higher in the two drug-resistant strains (MRR and DZR) than in the DS strain. As the concentration of diclazuril and maduramicin increased, the transcription levels also increased. Western blot results showed that EtGAPDH protein was upregulated in the DZR and MRR strains. Enzyme activity showed that the enzyme activity of EtGAPDH was higher in the two resistant strains than in the DS strain. These results showed that EtGAPDH possess several roles that separate and distinct from its glycolytic function and maybe involved in the development of E. tenella resistance to anticoccidial drugs.
Collapse
|
5
|
Scalese G, Kostenkova K, Crans DC, Gambino D. Metallomics and other omics approaches in antiparasitic metal-based drug research. Curr Opin Chem Biol 2022; 67:102127. [DOI: 10.1016/j.cbpa.2022.102127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 01/24/2022] [Indexed: 01/08/2023]
|
6
|
Gambino D, Otero L. Facing Diseases Caused by Trypanosomatid Parasites: Rational Design of Pd and Pt Complexes With Bioactive Ligands. Front Chem 2022; 9:816266. [PMID: 35071192 PMCID: PMC8777014 DOI: 10.3389/fchem.2021.816266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Human African Trypanosomiasis (HAT), Chagas disease or American Trypanosomiasis (CD), and leishmaniases are protozoan infections produced by trypanosomatid parasites belonging to the kinetoplastid order and they constitute an urgent global health problem. In fact, there is an urgent need of more efficient and less toxic chemotherapy for these diseases. Medicinal inorganic chemistry currently offers an attractive option for the rational design of new drugs and, in particular, antiparasitic ones. In this sense, one of the main strategies for the design of metal-based antiparasitic compounds has been the coordination of an organic ligand with known or potential biological activity, to a metal centre or an organometallic core. Classical metal coordination complexes or organometallic compounds could be designed as multifunctional agents joining, in a single molecule, different chemical species that could affect different parasitic targets. This review is focused on the rational design of palladium(II) and platinum(II) compounds with bioactive ligands as prospective drugs against trypanosomatid parasites that has been conducted by our group during the last 20 years.
Collapse
Affiliation(s)
- Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Lucía Otero
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Vela A, Coral-Almeida M, Sereno D, Costales JA, Barnabé C, Brenière SF. In vitro susceptibility of Trypanosoma cruzi discrete typing units (DTUs) to benznidazole: A systematic review and meta-analysis. PLoS Negl Trop Dis 2021; 15:e0009269. [PMID: 33750958 PMCID: PMC8016252 DOI: 10.1371/journal.pntd.0009269] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/01/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chagas disease, a neglected tropical disease endemic to Latin America caused by the parasite Trypanosoma cruzi, currently affects 6-7 million people and is responsible for 12,500 deaths each year. No vaccine exists at present and the only two drugs currently approved for the treatment (benznidazole and nifurtimox), possess serious limitations, including long treatment regimes, undesirable side effects, and frequent clinical failures. A link between parasite genetic variability and drug sensibility/efficacy has been suggested, but remains unclear. Therefore, we investigated associations between T. cruzi genetic variability and in vitro benznidazole susceptibility via a systematic article review and meta-analysis. METHODOLOGY/PRINCIPAL FINDINGS In vitro normalized benznidazole susceptibility indices (LC50 and IC50) for epimastigote, trypomastigote and amastigote stages of different T. cruzi strains were recorded from articles in the scientific literature. A total of 60 articles, which include 189 assays, met the selection criteria for the meta-analysis. Mean values for each discrete typing unit (DTU) were estimated using the meta and metaphor packages through R software, and presented in a rainforest plot. Subsequently, a meta-regression analysis was performed to determine differences between estimated mean values by DTU/parasite stage/drug incubation times. For each parasite stage, some DTU mean values were significantly different, e.g. at 24h of drug incubation, a lower sensitivity to benznidazole of TcI vs. TcII trypomastigotes was noteworthy. Nevertheless, funnel plots detected high heterogeneity of the data within each DTU and even for a single strain. CONCLUSIONS/SIGNIFICANCE Several limitations of the study prevent assigning DTUs to different in vitro benznidazole sensitivity groups; however, ignoring the parasite's genetic variability during drug development and evaluation would not be advisable. Our findings highlight the need for establishment of uniform experimental conditions as well as a screening of different DTUs during the optimization of new drug candidates for Chagas disease treatment.
Collapse
Affiliation(s)
- Andrea Vela
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| | - Marco Coral-Almeida
- One Health Research group, Facultad de Ciencias de la salud, Universidad de las Américas-Quito, Calle de los Colimes y Avenida De los Granados, Quito, Ecuador
| | - Denis Sereno
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| | - Christian Barnabé
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
| | - Simone Frédérique Brenière
- Institut de recherche pour le développement (IRD), UMR INTERTRYP IRD-CIRAD, University of Montpellier, Montpellier, France
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
8
|
Molecular characterization and analysis of the ATPase ASNA1 homolog gene of Eimeria tenella in a drug sensitive strain and drug resistant strains. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:115-125. [PMID: 33639573 PMCID: PMC7910411 DOI: 10.1016/j.ijpddr.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/03/2023]
Abstract
The widespread use of drugs has exacerbated the resistance of Eimeria tenalla to anti-coccidial drugs. Using RNA-seq, we previously found the ATPase ASNA1 homolog of E. tenella (EtASNA1) was differentially expressed in resistant strains and drug sensitive (DS) strain. In our study, we used western blotting and quantitative real-time PCR (qRT-PCR) to analyze the translational and transcriptional levels of EtASNA1 in a diclazuril-resistant (DZR) strain, maduramicin-resistant (MRR) strain, salinomycin-resistant (SMR) strain, and DS strain and found EtASNA1 was highly expressed in three drug-resistant strains. The qRT-PCR and western blotting results also showed that the expression levels of EtASNA1 increased with increasing drug concentration, and the transcription levels of the DZR strains isolated from the field were higher than those of the DS strain. In addition, we used in vivo and in vitro tests to analyze the changes of EtASNA1 expression after DZR, MRR, and DS strain infections in chickens, and in vitro inoculation of DF-1 cells in the presence of drugs. The addition of drugs caused expression to be upregulated. The results of qRT-PCR and western blotting also showed that the expression levels of EtASNA1 in second-generation merozoites (SM) and unsporulated oocysts (UO) were significantly higher than those in the other two developmental stages. The immunofluorescence localization of EtASNA1 indicated that the protein was distributed throughout the sporozoites (SZ) and SM, except for the refractile bodies of SZ. In vitro inhibition experiments showed that anti-EtASNA1 antibody incubation significantly inhibited SZ invasion of DF-1 cells. The above results showed that EtASNA1 may be related to host cell invasion of E. tenella and may be involved in the development of E. tenella resistance to some drugs.
Collapse
|
9
|
Sensibilidad in vitro a benznidazol, nifurtimox y posaconazol de cepas de Trypanosoma cruzi de Paraguay. BIOMÉDICA 2020; 40:749-763. [PMID: 33275352 PMCID: PMC7808768 DOI: 10.7705/biomedica.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Trypanosoma cruzi, agente causal de la enfermedad de Chagas, exhibe una sustancial heterogeneidad fenotípica y genotípica que puede influir en las variaciones epidemiológicas y clínicas de la enfermedad, así como en la sensibilidad a los fármacos utilizados en el tratamiento. Objetivo. Evaluar la sensibilidad in vitro al benznidazol, el nifurtimox y el posaconazol de 40 cepas clonadas de T. cruzi de Paraguay, con distintos genotipos, huéspedes y localidades de origen. Materiales y métodos. En su estado epimastigote, los parásitos se incubaron en medio de cultivo LIT (Liver Infusion Tryptose) con diferentes concentraciones de cada fármaco en ensayos por triplicado. El grado de sensibilidad se estimó a partir de las concentraciones inhibitorias del 50 y el 90% (IC50 e IC90) y se obtuvieron los valores promedio y la desviación estándar de cada cepa y fármaco. La significación estadística entre grupos se determinó mediante análisis de varianzas con el test no paramétrico de Wilcoxon/Kruskal-Wallis y valores de p<0,05. Resultados. Se observó un amplio rango de respuesta a los fármacos. Se identificaron dos grupos de parásitos (A y B) con diferencias significativas en la sensibilidad al benznidazol (p<0,0001), y tres grupos (A, B, C) en cuanto a la sensibilidad al nifurtimox y el posaconazol (p<0,0001). Conclusiones. En general, las cepas fueron más sensibles al nifurtimox que al benznidazol y el posaconazol. Estas diferencias evidencian la heterogeneidad de las poblaciones de T cruzi que circulan en Paraguay, lo que debe considerarse en el tratamiento y el seguimiento de las personas afectadas.
Collapse
|
10
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
11
|
Yu Y, Zhao Q, Zhu S, Dong H, Huang B, Liang S, Wang Q, Wang H, Yu S, Han H. Molecular characterization of serine/threonine protein phosphatase of Eimeria tenella. J Eukaryot Microbiol 2020; 67:510-520. [PMID: 32358794 DOI: 10.1111/jeu.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Avian coccidiosis is a widespread and economically significant poultry disease caused by several Eimeria species, including Eimeria tenella. Previously, E. tenella serine/threonine protein phosphatase (EtSTP) was found to be differentially expressed in drug-sensitive (DS) and drug-resistant strains using RNA-seq. In the present study, we found that transcription and translation levels of EtSTP were higher in diclazuril-resistant (DZR) strains and maduramicin-resistant (MRR) strains than in DS strains using quantitative real-time PCR (qPCR) and Western blotting. Enzyme activity results indicated that the catalytic activity of EtSTP was higher in the two drug-resistant strains than in DS strains. Western blot and qPCR analysis also showed that expression levels of EtSTP were higher in unsporulated oocysts (UO) and second-generation merozoites (SM). Indirect immunofluorescence localization showed that EtSTP was located in most areas of the parasite with the exception of refractile bodies, and fluorescence intensity was enhanced during development. In vitro inhibition experiments showed that the ability of sporozoites (SZ) to invade cells was significantly decreased after treatment with anti-rEtSTP antibody. These results indicated that EtSTP acted mainly during the developmental and reproductive stages of the parasite and may be related to the resistance of coccidia to external drug pressure.
Collapse
Affiliation(s)
- Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| |
Collapse
|
12
|
Bellera CL, Alberca LN, Sbaraglini ML, Talevi A. In Silico Drug Repositioning for Chagas Disease. Curr Med Chem 2020; 27:662-675. [PMID: 31622200 DOI: 10.2174/0929867326666191016114839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Chagas disease is an infectious tropical disease included within the group of neglected tropical diseases. Though historically endemic to Latin America, it has lately spread to high-income countries due to human migration. At present, there are only two available drugs, nifurtimox and benznidazole, approved for this treatment, both with considerable side-effects (which often result in treatment interruption) and limited efficacy in the chronic stage of the disease in adults. Drug repositioning involves finding novel therapeutic indications for known drugs, including approved, withdrawn, abandoned and investigational drugs. It is today a broadly applied approach to develop innovative medications, since indication shifts are built on existing safety, ADME and manufacturing information, thus greatly shortening development timeframes. Drug repositioning has been signaled as a particularly interesting strategy to search for new therapeutic solutions for neglected and rare conditions, which traditionally present limited commercial interest and are mostly covered by the public sector and not-for-profit initiatives and organizations. Here, we review the applications of computer-aided technologies as systematic approaches to drug repositioning in the field of Chagas disease. In silico screening represents the most explored approach, whereas other rational methods such as network-based and signature-based approximations have still not been applied.
Collapse
Affiliation(s)
- Carolina L Bellera
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Lucas N Alberca
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - María L Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
13
|
Ma X, Zhang L, Zhang L, Wang C, Guo X, Yang Y, Wang L, Li X, Ma N. Validation and identification of reference genes in Chinese hamster ovary cells for Fc-fusion protein production. Exp Biol Med (Maywood) 2020; 245:690-702. [PMID: 32216463 DOI: 10.1177/1535370220914058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IMPACT STATEMENT In order to reveal potential genotype-phenotype relationship, RT-qPCR reactions are frequently applied which require validated and reliable reference genes. With the investigation on long-term passage and fed-batch cultivation of CHO cells producing an Fc-fusion protein, four new reference genes-Akr1a1, Gpx1, Aprt, and Rps16, were identified from 20 candidates with the aid of geNorm, NormFinder, BestKeeper, and ΔCt programs and methods. This article provided more verified options in reference gene selection in related research on CHO cells.
Collapse
Affiliation(s)
- Xiaonan Ma
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ling Zhang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Luming Zhang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chenglong Wang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaorui Guo
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Yang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lin Wang
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangru Li
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ningning Ma
- Wuya college of Innovation; College of life science and biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
14
|
Mosquillo MF, Smircich P, Ciganda M, Lima A, Gambino D, Garat B, Pérez-Díaz L. Comparative high-throughput analysis of the Trypanosoma cruzi response to organometallic compounds. Metallomics 2020; 12:813-828. [DOI: 10.1039/d0mt00030b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An in-depth, comparative look at the effects of two structurally related organometallic Pd and Pt compounds on the global gene expression pattern of T. cruzi epimastigotes. This parasite is the causative agent of Chagas disease.
Collapse
Affiliation(s)
- M. Florencia Mosquillo
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | | | - Analía Lima
- Instituto de Investigaciones Biológicas Clemente Estable
- Montevideo
- Uruguay
- Unidad de Bioquímica y Proteómica Analíticas
- Institut Pasteur de Montevideo
| | - Dinorah Gambino
- Área Química Inorgánica
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| |
Collapse
|
15
|
Talevi A, Carrillo C, Comini M. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr Med Chem 2019; 26:6614-6635. [PMID: 30259812 DOI: 10.2174/0929867325666180926151059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Chagas´ disease continues to be a challenging and neglected public health problem in many American countries. The etiologic agent, Trypanosoma cruzi, develops intracellularly in the mammalian host, which hinders treatment efficacy. Progress in the knowledge of parasite biology and host-pathogen interaction has not been paralleled by the development of novel, safe and effective therapeutic options. It is then urgent to seek for novel therapeutic candidates and to implement drug discovery strategies that may accelerate the discovery process. The most appealing targets for pharmacological intervention are those essential for the pathogen and, whenever possible, absent or significantly different from the host homolog. The thiol-polyamine metabolism of T. cruzi offers interesting candidates for a rational design of selective drugs. In this respect, here we critically review the state of the art of the thiolpolyamine metabolism of T. cruzi and the pharmacological potential of its components. On the other hand, drug repurposing emerged as a valid strategy to identify new biological activities for drugs in clinical use, while significantly shortening the long time and high cost associated with de novo drug discovery approaches. Thus, we also discuss the different drug repurposing strategies available with a special emphasis in their applications to the identification of drug candidates targeting essential components of the thiol-polyamine metabolism of T. cruzi.
Collapse
Affiliation(s)
- Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata, La Plata, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein) - CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Comini
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
16
|
Greif G, Berná L, Díaz-Viraqué F, Robello C. Transcriptome Studies in Trypanosoma cruzi Using RNA-seq. Methods Mol Biol 2019; 1955:35-45. [PMID: 30868517 DOI: 10.1007/978-1-4939-9148-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
RNA-seq is a powerful method to study in detail transcriptome changes in defined conditions, providing enormous amount of information on RNA stability and gene regulation. In this chapter, we describe a directional and a nondirectional library preparation protocol for RNA-seq in Trypanosoma cruzi, as well as a pipeline for bioinformatic analysis, which includes read trimming, alignment to a reference genome, and differential expression.
Collapse
Affiliation(s)
- Gonzalo Greif
- Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Luisa Berná
- Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Díaz-Viraqué
- Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratory of Host Pathogen Interactions-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Departamento de Bioquímica, Facultad de Medicina-UDELAR, Montevideo, Uruguay.
| |
Collapse
|
17
|
Proteome-Wide Analysis of Trypanosoma cruzi Exponential and Stationary Growth Phases Reveals a Subcellular Compartment-Specific Regulation. Genes (Basel) 2018; 9:genes9080413. [PMID: 30111733 PMCID: PMC6115888 DOI: 10.3390/genes9080413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/04/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022] Open
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, cycles through different life stages characterized by defined molecular traits associated with the proliferative or differentiation state. In particular, T. cruzi epimastigotes are the replicative forms that colonize the intestine of the Triatomine insect vector before entering the stationary phase that is crucial for differentiation into metacyclic trypomastigotes, which are the infective forms of mammalian hosts. The transition from proliferative exponential phase to quiescent stationary phase represents an important step that recapitulates the early molecular events of metacyclogenesis, opening new possibilities for understanding this process. In this study, we report a quantitative shotgun proteomic analysis of the T. cruzi epimastigote in the exponential and stationary growth phases. More than 3000 proteins were detected and quantified, highlighting the regulation of proteins involved in different subcellular compartments. Ribosomal proteins were upregulated in the exponential phase, supporting the higher replication rate of this growth phase. Autophagy-related proteins were upregulated in the stationary growth phase, indicating the onset of the metacyclogenesis process. Moreover, this study reports the regulation of N-terminally acetylated proteins during growth phase transitioning, adding a new layer of regulation to this process. Taken together, this study reports a proteome-wide rewiring during T. cruzi transit from the replicative exponential phase to the stationary growth phase, which is the preparatory phase for differentiation.
Collapse
|
18
|
Molecular characterization and functional analysis of Eimeria tenella malate dehydrogenase. Parasitol Res 2018; 117:2053-2063. [PMID: 29740696 DOI: 10.1007/s00436-018-5875-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
Eimeria tenella is a serious intracellular parasite that actively invades cecal epithelial cells of chickens. The widespread use of drugs causes severe resistance to Eimeria tenella. We detected that malate dehydrogenase (MDH), one of the differentially expressed genes, was upregulated in diclazuril-resistant and maduramicin-resistant strains through transcriptome sequencing. In this study, we cloned and expressed MDH of E. tenella (EtMDH). Quantitative real-time polymerase chain reactions (qPCR) and Western blots were used to analyze the expression of EtMDH in resistant and sensitive strains, indicating EtMDH was upregulated in two resistant strains at the messenger RNA and protein levels. Enzyme activity was tested through absorbance measurement and the EtMDH activity increased in two resistant strains. Expression levels of EtMDH in four developmental stages of E. tenella were tested through qPCR and Western blot. Invasion inhibition assays explored if EtMDH was involved in invasion of DF-1 cells by E. tenella sporozoites. Indirect immunofluorescence assays investigated EtMDH distribution during parasite development in DF-1 cells invaded by E. tenella sporozoites. Experimental results showed that EtMDH may be related to drug resistance of E. tenella during its development and invasion. EtMDH may be an effective molecular marker for detection of E. tenella drug resistance.
Collapse
|
19
|
Radio S, Fontenla S, Solana V, Matos Salim AC, Araújo FMG, Ortiz P, Hoban C, Miranda E, Gayo V, Pais FSM, Solana H, Oliveira G, Smircich P, Tort JF. Pleiotropic alterations in gene expression in Latin American Fasciola hepatica isolates with different susceptibility to drugs. Parasit Vectors 2018; 11:56. [PMID: 29368659 PMCID: PMC5781333 DOI: 10.1186/s13071-017-2553-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/26/2017] [Indexed: 01/22/2023] Open
Abstract
Background Fasciola hepatica is the main agent of fasciolosis, a zoonotic disease affecting livestock worldwide, and an emerging food-borne disease in humans. Even when effective treatments are available, drugs are costly and can result in tolerance, liver damage and normally they do not prevent reinfection. Drug-resistant strains in livestock have been reported in various countries and, more worryingly, drug resistance in human cases has emerged in South America. The present study aims to characterize the transcriptome of two South American resistant isolates, the Cajamarca isolate from Peru, resistant to both triclabendazole and albendazole (TCBZR/ABZR) and the Rubino isolate from Uruguay, resistant to ABZ (TCBZS/ABZR), and compare them to a sensitive strain (Cenapa, Mexico, TCBZS/ABZS) to reveal putative molecular mechanisms leading to drug resistance. Results We observed a major reduction in transcription in the Cajamarca TCBZR/ABZR isolate in comparison to the other isolates. While most of the differentially expressed genes are still unannotated, several trends could be detected. Specific reduction in the expression levels of cytoskeleton proteins was consistent with a role of tubulins as putative targets of triclabendazole (TCBZ). A marked reduction of adenylate cyclase might be underlying pleiotropic effects on diverse metabolic pathways of the parasite. Upregulation of GST mu isoforms suggests this detoxifying mechanism as one of the strategies associated with resistance. Conclusions Our results stress the value of transcriptomic approaches as a means of providing novel insights to advance the understanding of drug mode of action and drug resistance. The results provide evidence for pleiotropic variations in drug-resistant isolates consistent with early observations of TCBZ and ABZ effects and recent proteomic findings. Electronic supplementary material The online version of this article (10.1186/s13071-017-2553-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santiago Radio
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay.,Present address: Instituto de Investigaciones Biológicas Clemente 28 Estable. MEC, Montevideo 29, Uruguay
| | - Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay
| | - Victoria Solana
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Anna C Matos Salim
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Pedro Ortiz
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Cristian Hoban
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Estefan Miranda
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Morelos, Mexico
| | - Valeria Gayo
- Departamento de Parasitología, División de Laboratorios Veterinarios (DILAVE), "Miguel C. Rubino", Ministerio de Ganadería, Agricultura y Pesca (MGAP), Montevideo, Uruguay
| | | | - Hugo Solana
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Guilherme Oliveira
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Present address: Instituto Tecnológico Vale, Belém, Brazil
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay. .,Present address: Instituto de Investigaciones Biológicas Clemente 28 Estable. MEC, Montevideo 29, Uruguay. .,Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, UDELAR, Montevideo, Uruguay.
| | - José F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la Republica, UDELAR, Montevideo, Uruguay.
| |
Collapse
|
20
|
García-Huertas P, Mejía-Jaramillo AM, Machado CR, Guimarães AC, Triana-Chávez O. Prostaglandin F2α synthase in Trypanosoma cruzi plays critical roles in oxidative stress and susceptibility to benznidazole. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170773. [PMID: 28989779 PMCID: PMC5627119 DOI: 10.1098/rsos.170773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 05/17/2023]
Abstract
Nifurtimox (Nfx) and benznidazole (Bz) are the current drugs used for the treatment of Chagas disease. The mechanisms of action and resistance to these drugs in this parasite are poorly known. Prostaglandin F2α synthase or old yellow enzyme (OYE), an NAD(P)H flavin oxidoreductase, has been involved in the activation pathway of other trypanocidal drugs such as Nfx; however, its role in the mechanism of action of Bz is uncertain. In this paper, we performed some experiments of functional genomics in the parasite Trypanosoma cruzi with the aim to test the role of this gene in the resistance to Bz. For this, we overexpressed this gene in sensitive parasites and evaluated the resistance level to the drug and other chemical compounds such as hydrogen peroxide, methyl methanesulfonate and gamma radiation. Interestingly, parasites overexpressing OYE showed alteration of enzymes associated with oxidative stress protection such as superoxide dismutase A and trypanothione reductase. Furthermore, transfected parasites were more sensitive to drugs, genetic damage and oxidative stress. Additionally, transfected parasites were less infective than wild-type parasites and they showed higher alteration in mitochondrial membrane potential and cell cycle after treatment with Bz. These results supply essential information to help further the understanding of the mechanism of action of Bz in T. cruzi.
Collapse
Affiliation(s)
- Paola García-Huertas
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
| | - Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
| | - Carlos Renato Machado
- Departamento de Bioquímica e Inmunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Cláudia Guimarães
- Departamento de Bioquímica e Inmunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
- Author for correspondence: Omar Triana-Chávez e-mail:
| |
Collapse
|