1
|
Bhattacharya I, Sharma SS, Majumdar SS. Etiology of Male Infertility: an Update. Reprod Sci 2024; 31:942-965. [PMID: 38036863 DOI: 10.1007/s43032-023-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Spermatogenesis is a complex process of germ cell division and differentiation that involves extensive cross-talk between the developing germ cells and the somatic testicular cells. Defective endocrine signaling and/or intrinsic defects within the testes can adversely affect spermatogenic progression, leading to subfertility/infertility. In recent years, male infertility has been recognized as a global public health concern, and research over the last few decades has elucidated the complex etiology of male infertility. Congenital reproductive abnormalities, genetic mutations, and endocrine/metabolic dysfunction have been demonstrated to be involved in infertility/subfertility in males. Furthermore, acquired factors like exposure to environmental toxicants and lifestyle-related disorders such as illicit use of psychoactive drugs have been shown to adversely affect spermatogenesis. Despite the large body of available scientific literature on the etiology of male infertility, a substantial proportion of infertility cases are idiopathic in nature, with no known cause. The inability to treat such idiopathic cases stems from poor knowledge about the complex regulation of spermatogenesis. Emerging scientific evidence indicates that defective functioning of testicular Sertoli cells (Sc) may be an underlying cause of infertility/subfertility in males. Sc plays an indispensable role in regulating spermatogenesis, and impaired functional maturation of Sc has been shown to affect fertility in animal models as well as humans, suggesting abnormal Sc as a potential underlying cause of reproductive insufficiency/failure in such cases of unexplained infertility. This review summarizes the major causes of infertility/subfertility in males, with an emphasis on infertility due to dysregulated Sc function.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of Zoology, Central University of Kerala, Periye Campus, Kasaragod, 671320, Kerala, India.
| | - Souvik Sen Sharma
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, 500 032, Telangana, India.
- Gujarat Biotechnology University, Gandhinagar, GIFT City, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
2
|
Das A, Koner S, Majumdar SS, Ganguli N. Isolation and characterisation of promoters from mouse genome to drive post-meiotic germ cell-specific robust gene expression for functional genomics studies. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:194994. [PMID: 37956710 DOI: 10.1016/j.bbagrm.2023.194994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
The generation of spermatozoa from developing germ cells through mitotic and meiotic divisions is a highly regulated and complex process. Any defect in this process, may lead to subfertility/infertility. The role of different transcripts (mRNA/miRNA/lncRNA) in regulation of the pre-meiotic, meiotic, and post-meiotic stages of spermatogenesis are being proposed based on various multiomics based approaches. Such differential gene-expression is regulated by promoter elements that are activated in a stage specific manner. To determine the role of these differentially expressed transcripts in the process of meiosis, a robust post-meiotic germ cell specific promoter is required. In the present study, we have isolated and characterized the expression of the mouse Proacrosin, SP10, and ELP promoters for driving post-meiotic germ cell specific gene-expression. Promoter regions of all these 3 genes were isolated and cloned to generate mammalian expression vector. The transgene expression in post-meiotic germ cells was assessed in mice using the testicular electroporation method in vitro as well as in vivo, using above promoters. It was also validated in goat seminiferous tubules, in vitro. We have also carried out a comparative analysis of the strength of these promoters to confirm their robustness that indicated Proacrosin to be the most robust promoter that can be useful for diving post-meiotic germ cells specific gene-expression. These promoters can be used to alter gene-expression specifically in post-meiotic germ cells for deciphering the role(s) of germ cell genes in spermatogenic progression or for expressing various genome editing tools for engineering the germ cell genome to understand basis of subfertility/infertility.
Collapse
Affiliation(s)
- Abhishek Das
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Srimoyee Koner
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Subeer S Majumdar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India.
| | - Nirmalya Ganguli
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India; Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
3
|
Wang B, He Y, Zhang P, Huang Y, Xiang H. The function of nuclear hormone receptor 4A signaling in the human reproductive system: A review. J Obstet Gynaecol Res 2022; 48:1501-1512. [PMID: 35445497 DOI: 10.1111/jog.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/29/2022]
Abstract
AIM This review aims to summarize the research focused upon the functions of nuclear hormone receptor 4A (NR4A) in the human reproductive system. The research questions addressed are to decipher what role the NR4A subfamily plays in the regulation of the human reproductive system and effects upon fertility issues through regulation of the expression of the NR4A subfamily. METHODS The electronic database PubMed was searched for studies published before November 2021. Keywords included "NR4A," "trophoblast," "decidualization," "folliculogenesis," "estrogen," "pregnancy," "Leydig cells," "fertility," and "reproductive." Relevant references from retrieved manuscripts and review articles were also searched manually. RESULTS NR4A subfamily are involved in trophoblast differentiation, endometrial decidualization, embryo adhesion, secretion of related hormones, and regulation of spontaneous term labor. Besides, many studies have provided strong evidence that they play critical roles in spermatogenesis. Furthermore, Multiple mechanisms can affect the expression of NR4As. Broadly, NR4A family receptors affect the human reproductive system in multiple ways. CONCLUSIONS Further research is needed to specifically dissect the functions and regulatory mechanisms of these receptors and their pharmaceutical antagonists and agonists. The connection between the NR4A subfamily and a variety of reproductive disorders needs to be proven experimentally such that further examination of human tissue is required to assess the role of these receptors in human reproductive diseases.
Collapse
Affiliation(s)
- Boya Wang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Anhui Medical, Anhui, China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China
| | - Yingming He
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Anhui Medical, Anhui, China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China
| | - Pin Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yue Huang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Huifen Xiang
- Department of Gynecology and Obstetrics, The Fourth Affiliated Hospital of Anhui Medical, Anhui, China.,Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), Hefei, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Gupta A, Mandal K, Singh P, Sarkar R, Majumdar SS. Declining levels of miR-382-3p at puberty trigger the onset of spermatogenesis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:192-207. [PMID: 34513304 PMCID: PMC8413679 DOI: 10.1016/j.omtn.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
A major change in the transcriptome of testicular Sertoli cells (Scs) at the onset of puberty enables them to induce robust spermatogenesis. Through comprehensive literature mining, we generated a list of genes crucial for Sc functioning and computationally predicted the microRNAs regulating them. Differential expression analysis of microRNAs in infant and pubertal rat Scs showed that miR-382-3p levels decline significantly in pubertal Scs. Interestingly, miR-382-3p was found to regulate genes like Ar and Wt1, which are crucial for functional competence of Scs. We generated a transgenic (Tg) mouse model in which pubertal decline of miR-382-3p was prevented by its overexpression in pubertal Scs. Elevated miR-382-3p restricted the functional maturation of Scs at puberty, leading to infertility. Prevention of decline in miR-382-3p expression in pubertal Scs was responsible for defective blood-testis barrier (BTB) formation, severe testicular defects, low epididymal sperm counts and loss of fertility in these mice. This provided substantial evidence that decline in levels of miR-382-3p at puberty is the essential trigger for onset of robust spermatogenesis at puberty. Hence, sustained high levels of miR-382-3p in pubertal Scs could be one of the underlying causes of idiopathic male infertility and should be considered for diagnosis and treatment of infertility.
Collapse
Affiliation(s)
- Alka Gupta
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Mandal
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Parminder Singh
- Metabolic Research Laboratory, National Institute of Immunology, New Delhi, India
| | - Rajesh Sarkar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Genes and Protein Engineering Laboratory, National Institute of Animal Biotechnology, Hyderabad, India
- Corresponding author: Subeer S. Majumdar, Cellular Endocrinology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
5
|
Sarkar RK, Sen Sharma S, Mandal K, Wadhwa N, Kunj N, Gupta A, Pal R, Rai U, Majumdar SS. Homeobox transcription factor Meis1 is crucial to Sertoli cell mediated regulation of male fertility. Andrology 2020; 9:689-699. [PMID: 33145986 DOI: 10.1111/andr.12941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Infertility has become a global phenomenon and constantly declining sperm count in males in modern world pose a major threat to procreation of humans. Male fertility is critically dependent on proper functioning of testicular Sertoli cells. Defective Sertoli cell proliferation and/or impaired functional maturation may be one of the underlying causes of idiopathic male infertility. Using high-throughput "omics" approach, we found binding sites for homeobox transcription factor MEIS1 on the promoters of several genes up-regulated in pubertal (mature) Sertoli cells, indicating that MEIS1 may be crucial for Sertoli cell-mediated regulation of spermatogenesis at and after puberty. OBJECTIVE To decipher the role of transcription factor MEIS1 in Sertoli cell maturation and spermatogenesis. MATERIALS AND METHODS Sc-specific Meis1 knockdown (KD) transgenic mice were generated using pronuclear microinjection. Morphometric and histological analysis of the testes from transgenic mice was performed to identify defects in spermatogenesis. Epididymal sperm count and litter size were analyzed to determine the effect of Meis1 knockdown on fertility. RESULTS Sertoli cell (Sc)-specific Meis1 KD led to massive germ cell loss due to apoptosis and impaired spermatogenesis. Unlike normal pubertal Sc, the levels of SOX9 in pubertal Sc of Meis1 KD were significantly high, like immature Sc. A significant reduction in epididymal sperm count was observed in these mice. The mice were found to be infertile or sub-fertile (with reduced litter size), depending on the extent of Meis1 inhibition. DISCUSSION The results of this study demonstrated for the first time, a role of Meis1 in Sc maturation and normal spermatogenic progression. Inhibition of Meis1 in Sc was associated with deregulated spermatogenesis and a consequent decline in fertility of the transgenic mice. CONCLUSIONS Our results provided substantial evidence that suboptimal Meis1 expression in Sc may be one of the underlying causes of idiopathic infertility.
Collapse
Affiliation(s)
- Rajesh K Sarkar
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India.,Reproductive Physiology Lab, Department of Zoology, University of Delhi, New Delhi, India
| | - Souvik Sen Sharma
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Kamal Mandal
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Neerja Wadhwa
- Embryo Biotechnology Lab, National Institute of Immunology, New Delhi, India
| | - Neetu Kunj
- Embryo Biotechnology Lab, National Institute of Immunology, New Delhi, India
| | - Alka Gupta
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Rahul Pal
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India
| | - Umesh Rai
- Reproductive Physiology Lab, Department of Zoology, University of Delhi, New Delhi, India
| | - Subeer S Majumdar
- Cellular Endocrinology Lab, National Institute of Immunology, New Delhi, India.,National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|