1
|
Zhang W, Chen Z, Qiao S, Chen S, Zheng H, Wei X, Li Q, Xu B, Huang W. The effects of extracellular vesicles derived from Krüppel-Like Factor 2 overexpressing endothelial cells on the regulation of cardiac inflammation in the dilated cardiomyopathy. J Nanobiotechnology 2022; 20:76. [PMID: 35139878 PMCID: PMC8827179 DOI: 10.1186/s12951-022-01284-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is one of the common causes of heart failure. Myocardial injury triggers an inflammatory response and recruits immune cells into the heart. High expression of Krüppel-like factor 2 (KLF2) in endothelial cells (ECs) potentially exerts an anti-inflammatory effect. However, the role of extracellular vesicles (EVs) from KLF2-overexpressing ECs (KLF2-EVs) in DCM remains unclear. METHODS AND RESULTS EVs were separated from the supernatant of KLF2-overexpressing ECs by gradient centrifugation. Mice were repeatedly administered low-dose doxorubicin (DOX) and then received KLF2-EVs through an intravenous injection. Treatment with KLF2-EVs prevented doxorubicin-induced left ventricular dysfunction and reduced the recruitment of Ly6high Mo/Mø in the myocardium. We used flow cytometry to detect Ly6high monocytes in bone marrow and spleen tissues and to elucidate the mechanisms underlying this beneficial effect. KLF2-EVs increased the retention of Ly6Chigh monocytes in the bone marrow but not in the spleen tissue. KLF2-EVs also significantly downregulated C-C chemokine receptor 2 (CCR2) protein expression in cells from the bone marrow. CONCLUSIONS EVs derived from KLF2-overexpressing ECs reduced cardiac inflammation and ameliorated left ventricular dysfunction in DCM mice by targeting the CCR2 protein to inhibit Ly6Chigh monocyte mobilization from the bone marrow.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Ziwei Chen
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Shuaihua Qiao
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Siyuan Chen
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Hongyan Zheng
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xuan Wei
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Qiaoling Li
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China. .,Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Wei Huang
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
2
|
Xu K, Chen C, Wu Y, Wu M, Lin L. Advances in miR-132-Based Biomarker and Therapeutic Potential in the Cardiovascular System. Front Pharmacol 2021; 12:751487. [PMID: 34795586 PMCID: PMC8594750 DOI: 10.3389/fphar.2021.751487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerotic cardiovascular disease and subsequent heart failure threaten global health and impose a huge economic burden on society. MicroRNA-132 (miR-132), a regulatory RNA ubiquitously expressed in the cardiovascular system, is up-or down-regulated in the plasma under various cardiac conditions and may serve as a potential diagnostic or prognostic biomarker. More importantly, miR-132 in the myocardium has been demonstrated to be a master regulator in many pathological processes of ischemic or nonischemic heart failure in the past decade, such as myocardial hypertrophy, fibrosis, apoptosis, angiogenesis, calcium handling, neuroendocrine activation, and oxidative stress, through downregulating target mRNA expression. Preclinical and clinical phase 1b studies have suggested antisense oligonucleotide targeting miR-132 may be a potential therapeutic approach for ischemic or nonischemic heart failure in the future. This review aims to summarize recent advances in the physiological and pathological functions of miR-132 and its possible diagnostic and therapeutic potential in cardiovascular disease.
Collapse
Affiliation(s)
- Kaizu Xu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Chungui Chen
- Department of Radiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Ying Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Meifang Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Liming Lin
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| |
Collapse
|
3
|
Gu F, Ji D, Ni H, Chen D. SRY-Box 21 Antisense RNA 1 Knockdown Diminishes Amyloid Beta 25-35-Induced Neuronal Damage by miR-132/PI3K/AKT Pathway. Neurochem Res 2021; 46:2376-2386. [PMID: 34146195 DOI: 10.1007/s11064-021-03373-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Our study aimed to explore the function and mechanism of action of long noncoding RNA (lncRNA) SRY-Box 21 antisense RNA 1 (SOX21-AS1) in amyloid beta25-35 (Aβ25-35)-induced neuronal damage. To induce neuronal damage, neuronal cells and differentiated IMR-32 neuroblastoma cells were challenged by Aβ25-35. SOX21-AS1 and miR-132 quantities were detected by quantitative reverse transcription polymerase chain reaction. Cell damage was evaluated by detecting the changes of cell viability, apoptosis, and oxidative stress. Cell viability was measured using cell counting kit-8. Cell apoptosis was evaluated by flow cytometry and caspase-3 activity. The oxidative stress was analyzed by reactive oxygen species level. The expression of proteins associated with the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway was examined by western blot. SOX21-AS1 abundance was up-regulated in Aβ25-35-challenged neuronal cells. Silencing of SOX21-AS1 attenuated Aβ25-35-induced viability reduction and promotion of apoptosis and oxidative stress, suggesting that silencing of SOX21-AS1 repressed Aβ25-35-induced neuronal damage. miR-132 quantity was reduced in Aβ25-35-challenged neuronal cells, and negatively controlled by SOX21-AS1. miR-132 knockdown abolished the effect of SOX21-AS1 silencing on Aβ25-35-induced neuronal damage, indicating that SOX21-AS1 controls Aβ25-35-induced neuronal damage via regulating miR-132. The PI3K/AKT signaling was repressed in Aβ25-35-challenged cells, but this effect was counteracted upon overexpression of miR-132. In conclusion, SOX21-AS1 knockdown mitigated Aβ25-35-dependent neuronal cell damage by promoting miR-132/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fengming Gu
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Depeng Chen
- Department of Intensive Care Unit, People's Hospital of Huai'an Hongze District, 102 Dongfeng Road, Huai'an, 223100, China.
| |
Collapse
|
4
|
Wang L, Tian X, Cao Y, Ma X, Shang L, Li H, Zhang X, Deng F, Li S, Guo T, Yang P. Cardiac Shock Wave Therapy Improves Ventricular Function by Relieving Fibrosis Through PI3K/Akt Signaling Pathway: Evidence From a Rat Model of Post-infarction Heart Failure. Front Cardiovasc Med 2021; 8:693875. [PMID: 34222384 PMCID: PMC8241915 DOI: 10.3389/fcvm.2021.693875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 01/06/2023] Open
Abstract
Objection: Cumulative studies have identified the effectiveness of cardiac shock wave therapy (CSWT) in treating heart failure after acute myocardial infarction (AMI), but little have been discussed with regard to the beneficial effects of CSWT on anti-fibrosis along with the underlying mechanism. In this study, we investigated whether CSWT could reduce post-AMI fibrosis and further explored the molecular mechanism. Methods: Rat heart failure (HF) models induced by ligating the left anterior descending coronary artery were established and validated by echocardiography. Eligible animals were randomly categorized into five groups: the sham group, the HF group, the HF + CSWT group, the HF + LY294002 group, and the HF + CSWT + LY294002 group. The cardiac weight, serum level of BNP, NT-pro BNP and echocardiography parameters were measured to assess cardiac function in different groups. Masson's trichrome staining was used to assess the proportions of the fibrotic area. The expression level of CD34, αSMA was measured by RT-PCR, Immunohistochemistry and Immunofluorescent analyses and the level of PI3K/Akt was quantified by Immunohistochemistry and Western blotting. Results: The application of CSWT significantly improved cardiac function and reduced myocardial fibrosis and level of CD34 and αSMA, compared to the HF group. CSWT led to significant elevations of p-PI3K and p-Akt expression levels compared to that of the HF group and the inhibition of the PI3K/Akt pathway abolished the observed beneficial effects of CSWT. Conclusion: CSWT can facilitate the alleviation of cardiac fibrosis induced by AMI through the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xin Tian
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuting Cao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuejuan Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Leilei Shang
- Department of Cardiology, Suizhou Central Hospital, Suizhou, China
| | - Hao Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xueting Zhang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Furong Deng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shumin Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Guo
- Department of Cardiology, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Ping Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Multiomics Analysis of Transcriptome, Epigenome, and Genome Uncovers Putative Mechanisms for Dilated Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6653802. [PMID: 33860048 PMCID: PMC8024089 DOI: 10.1155/2021/6653802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
Objective Multiple genes have been identified to cause dilated cardiomyopathy (DCM). Nevertheless, there is still a lack of comprehensive elucidation of the molecular characteristics for DCM. Herein, we aimed to uncover putative molecular features for DCM by multiomics analysis. Methods Differentially expressed genes (DEGs) were obtained from different RNA sequencing (RNA-seq) datasets of left ventricle samples from healthy donors and DCM patients. Furthermore, protein-protein interaction (PPI) analysis was then presented. Differentially methylated genes (DMGs) were identified between DCM and control samples. Following integration of DEGs and DMGs, differentially expressed and methylated genes were acquired and their biological functions were analyzed by the clusterProfiler package. Whole exome sequencing of blood samples from 69 DCM patients was constructed in our cohort, which was analyzed the maftools package. The expression of key mutated genes was verified by three independent datasets. Results 1407 common DEGs were identified for DCM after integration of the two RNA-seq datasets. A PPI network was constructed, composed of 171 up- and 136 downregulated genes. Four hub genes were identified for DCM, including C3 (degree = 24), GNB3 (degree = 23), QSOX1 (degree = 21), and APOB (degree = 17). Moreover, 285 hyper- and 321 hypomethylated genes were screened for DCM. After integration, 20 differentially expressed and methylated genes were identified, which were associated with cell differentiation and protein digestion and absorption. Among single-nucleotide variant (SNV), C>T was the most frequent mutation classification for DCM. MUC4 was the most frequent mutation gene which occupied 71% across 69 samples, followed by PHLDA1, AHNAK2, and MAML3. These mutated genes were confirmed to be differentially expressed between DCM and control samples. Conclusion Our findings comprehensively analyzed molecular characteristics from the transcriptome, epigenome, and genome perspectives for DCM, which could provide practical implications for DCM.
Collapse
|
6
|
MicroRNA-132 attenuated cardiac fibrosis in myocardial infarction-induced heart failure rats. Biosci Rep 2021; 40:226310. [PMID: 32885809 PMCID: PMC7494995 DOI: 10.1042/bsr20201696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to determine the effect of microRNA (miR)-132 on cardiac fibrosis in myocardial infarction (MI)-induced heart failure and angiotensin (Ang) II-treated cardiac fibroblasts (CFs). Experiments were carried out in Sprague-Dawley rat treatment with ligation of left coronary artery to induce heart failure, and in CFs administration of Ang II to induce fibrosis. The level of miR-132 was increased in the heart of rats with MI-induced heart failure and the Ang II-treated CFs. In MI rats, left ventricle (LV) ejection fraction, fractional shortening, the maximum of the first differentiation of LV pressure (LV +dp/dtmax) and decline (LV -dp/dtmax) and LV systolic pressure (LVSP) were reduced, and LV end-systolic diameter (LVESD), LV end-diastolic diameter (LVEDD), LV volumes in systole (LVVS) and LV volumes in diastole (LVVD) were increased, which were reversed by miR-132 agomiR but deteriorated by miR-132 antagomiR. The expression levels of collagen I, collagen III, transforming growth factor-β (TGF-β), and α-smooth muscle actin (α-SMA) were increased in the heart of rat with MI-induced heart failure and CFs administration of Ang II. These increases were inhibited by miR-132 agomiR but enhanced by miR-132 antagomiR treatment. MiR-132 inhibited PTEN expression, and attenuated PI3K/Akt signal pathway in CFs. These results indicated that the up-regulation of miR-132 improved the cardiac dysfunction, attenuated cardiac fibrosis in heart failure via inhibiting PTEN expression, and attenuating PI3K/Akt signal pathway. Up-regulation of miR-132 may be a strategy for the treatment of heart failure and cardiac fibrosis.
Collapse
|
7
|
Wang W, Zheng H. Myocardial Infarction: The Protective Role of MiRNAs in Myocardium Pathology. Front Cardiovasc Med 2021; 8:631817. [PMID: 33748196 PMCID: PMC7973051 DOI: 10.3389/fcvm.2021.631817] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases have been regarded as the leading cause of death around the world, with myocardial infarction (MI) being the most severe form. MI leads to myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, ultimately leading to heart failure, and death. Micro RNAs (miRNAs) participate in the genesis and progression of myocardial pathology after MI by playing an important regulatory role. This review aims to summarize all available knowledge on the role of miRNAs in the myocardial pathological process after MI to uncover potential major target pathways. In addition, the main therapeutic methods and their latest progress are also reviewed. miRNAs can regulate the main signaling pathways as well as pathological processes. Thus, they have the potential to induce therapeutic effects. Hence, the combination of miRNAs with recently developed exosome nanocomplexes may represent the future direction of therapeutics.
Collapse
Affiliation(s)
- Wei Wang
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Hao Zheng
- Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
8
|
Liu Y, Li Y, Li J, Zuo X, Cao Q, Xie W, Wang H. Inhibiting miR‑1 attenuates pulmonary arterial hypertension in rats. Mol Med Rep 2021; 23:283. [PMID: 33604679 PMCID: PMC7905329 DOI: 10.3892/mmr.2021.11922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) are reported to serve key roles in pulmonary arterial hypertension (PAH). miR-1 has been found in cardiovascular diseases. The present study aimed to determine whether the knockdown of miR-1 could inhibit right ventricle (RV) remodeling and thereby control PAH in model rats. PAH model rats were established by exposing rats to hypoxia, while cardiac fibroblasts (CFs) obtained from PAH model rats were treated with hypoxia to establish an in vitro model, and RV remodeling was evaluated by Masson staining and the levels of collagen I, collagen III, α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) evaluated by western blotting or reverse transcription-quantitative PCR. The results revealed that the expression levels of miR-1 were upregulated in the RV of PAH model rats induced with hypoxia and in the CFs treated with hypoxia. The mean pulmonary arterial pressure, RV systolic pressure, RV/(left ventricle + interventricular septum) and RV/tibia length were increased in PAH rats; however, the increases in all parameters were subsequently reversed by transfection with a miR-1 antagomiR in PAH model rats. The transfection with the miR-1 antagomiR inhibited the development of RV fibrosis and downregulated the mRNA expression levels of collagen I, collagen III, α-SMA and CTGF in the RV tissue of PAH model rats. The upregulation of collagen I, collagen III, α-SMA and CTGF expression levels in hypoxia-treated CFs was also subsequently reversed by miR-1 antagomiR transfection. The expression levels of collagen I, collagen III, α-SMA and CTGF were also upregulated in the CFs obtained from PAH model rats, and these increases were attenuated by miR-1 antagomiR transfection. The expression levels of phosphorylated (p)-PI3K and p-AKT were also upregulated in hypoxia-treated CFs, and these increases were also inhibited by transfection with miR-1 antagomiR. In conclusion, these results indicated that inhibiting miR-1 may attenuate RV hypertrophy and fibrosis in PAH model rats, a mechanism that may involve the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yun Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jinhai Li
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiangrong Zuo
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Quan Cao
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
9
|
Genetic Restrictive Cardiomyopathy: Causes and Consequences-An Integrative Approach. Int J Mol Sci 2021; 22:ijms22020558. [PMID: 33429969 PMCID: PMC7827163 DOI: 10.3390/ijms22020558] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM.
Collapse
|
10
|
Peterlin A, Počivavšek K, Petrovič D, Peterlin B. The Role of microRNAs in Heart Failure: A Systematic Review. Front Cardiovasc Med 2020; 7:161. [PMID: 33195446 PMCID: PMC7593250 DOI: 10.3389/fcvm.2020.00161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs are highly investigated for their role in the pathogenesis of cardiovascular diseases. Nevertheless, evidence for clinical implementation is still lacking. In our systematic review, we evaluated the potential of microRNAs as pathophysiological and diagnostic biomarkers of heart failure. We identified 72 differentially expressed microRNA molecules among groups of heart failure patients and control groups by searching the PubMed database. We did not identify a substantial overlap of differentially expressed microRNAs among different studies; only five microRNAs (miR-1228, miR-122, miR-423-5p, miR-142-3p, and exosomal miR-92b-5p) were differentially expressed in more than one included study. Gene set enrichment analysis, based on the gene targets of microRNAs presented in the included studies, showed that gene targets of differentially expressed microRNAs were enriched in the MAPK, TGFβ, PI3K-Akt, and IL-2 signaling pathways, as well as apoptosis pathway, p53 activity regulation, and angiogenesis pathway. Results of our systematic review show that there is currently insufficient support for the use of any of the presented microRNAs as pathophysiological or prognostic biomarkers in the clinical setting.
Collapse
Affiliation(s)
- Ana Peterlin
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Ljubljana, Slovenia
| | - Karolina Počivavšek
- Department of Cardiovascular Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Danijel Petrovič
- Faculty of Medicine, Institute of Histology and Embryology, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Shao X, Zhang X, Yang L, Zhang R, Zhu R, Feng R. Integrated analysis of mRNA and microRNA expression profiles reveals differential transcriptome signature in ischaemic and dilated cardiomyopathy induced heart failure. Epigenetics 2020; 16:917-932. [PMID: 33016206 DOI: 10.1080/15592294.2020.1827721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Cardiac remodelling is widely accepted as a common characteristic for many heart diseases, especially in heart failure (HF). Ischaemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are associated with cardiac remodelling. Both mRNA and microRNA are potential diagnostic markers and therapeutic targets of cardiac remodelling in HF. However, the mechanisms of microRNA-mRNA joint regulation in HF are still unclear. In this study, 3 gene expression profiles from patients with and without HF were analysed to harvest shared differentially expressed genes (microRNA and mRNA) with significant major biological function. Moreover, key genes highly related to ICM and DCM-induced HF were screened out through a Weighted Genes Co-Expression Network Analysis (WGCNA). Based on microRNA-mRNA analysis, several microRNAs and target genes were identified. Combined with pathway analysis, we found that miR-542-3p and its target gene CILP were likely involved in the regulation of TGF-β signalling pathway in ICM induced HF. Collectively, the microRNA-mRNA interaction network analysis revealed that miR-542-3p-CILP as mediator of TGF-β signalling pathway might be a new mechanism to mediate ICM induced HF. This study provides certain novel targets for diagnosis and therapeutic treatment of ICM- and DCM-induced HF.
Collapse
Affiliation(s)
- Xiuli Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lei Yang
- Tianjin Customs, Technical Center for Safety of Industrial Products, Tianjin, China
| | - Ruijia Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rongli Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Nazari-Shafti TZ, Exarchos V, Biefer HRC, Cesarovic N, Meyborg H, Falk V, Emmert MY. MicroRNA Mediated Cardioprotection - Is There a Path to Clinical Translation? Front Bioeng Biotechnol 2020; 8:149. [PMID: 32266222 PMCID: PMC7099408 DOI: 10.3389/fbioe.2020.00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
In the past 20 years, there have been several approaches to achieve cardioprotection or cardiac regeneration using a vast variety of cell therapies and remote ischemic pre-conditioning (RIPC). To date, substantial proof that either cell therapy or RIPC has the potential for clinically relevant cardiac repair or regeneration of cardiac tissue is still pending. Preclinical trials indicate that the secretome of cells in situ (during RIPC) as well as of transplanted cells may exhibit cardioprotective properties in the acute setting of cardiac injury. The secretome generally consists of cell-specific cytokines and extracellular vesicles (EVs) containing microRNAs (miRNAs). It is currently hypothesized that a subset of known miRNAs play a crucial part in the facilitation of cardioprotective effects. miRNAs are small non-coding RNA molecules that inhibit post-transcriptional translation of messenger RNAs (mRNAs) and play an important role in gene translation regulation. It is also known that one miRNAs usually targets multiple mRNAs. This makes predictability of pharmacokinetics and mechanism of action very difficult and could in part explain the inferior performance of various progenitor cells in clinical studies. Identification of miRNAs involved in cardioprotection and remodeling, the composition of miRNA profiles, and the exact mechanism of action are important to the design of future cell-based but also cell-free cardioprotective therapeutics. This review will give a description of miRNA with cardioprotective properties and a current overview on known mechanism of action and potential missing links. Additionally, we will give an outlook on the potential for clinical translation of miRNAs in the setting of myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Timo Z Nazari-Shafti
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany
| | - Vasileios Exarchos
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Héctor Rodriguez Cetina Biefer
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nikola Cesarovic
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Heike Meyborg
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany
| | - Volkmar Falk
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany.,Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Y Emmert
- Department for Cardiovascular and Thoracic Surgery, German Heart Center Berlin, Berlin, Germany.,Deutsches Zentrum für Herz-und Kreislauferkrankungen, Berlin, Germany.,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany.,Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Wyss Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Xuan T, Wang D, Lv J, Pan Z, Fang J, Xiang Y, Cheng H, Wang X, Guo X. Downregulation of Cypher induces apoptosis in cardiomyocytes via Akt/p38 MAPK signaling pathway. Int J Med Sci 2020; 17:2328-2337. [PMID: 32922198 PMCID: PMC7484636 DOI: 10.7150/ijms.48872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/17/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Dilated cardiomyopathy (DCM) is considered as the most common form of non-ischemic cardiomyopathy with a high mortality worldwide. Cytoskeleton protein Cypher plays an important role in maintaining cardiac function. Genetic studies in human and animal models revealed that Cypher is involved in the development of DCM. However, the underlying molecular mechanism is not fully understood. Accumulating evidences suggest that apoptosis in myocytes may contribute to DCM. Thus, the purpose of this study is to define whether lack of Cypher in cardiomyocytes can elevate apoptosis signaling and lead to DCM eventually. Methods and Results: Cypher-siRNA sufficiently inhibited Cypher expression in cardiomyocytes. TUNEL-positive cardiomyocytes were increased in both Cypher knockdown neonatal rat cardiomyocytes and Cypher knockout mice hearts, which were rare in the control group. Flow cytometry further confirmed that downregulation of Cypher significantly increased myocytes apoptosis in vitro. Cell counting kit-8 assay revealed that Cypher knockdown in H9c2 cells significantly reduced cell viability. Cypher knockdown was found to increase cleaved caspase-3 expression and suppress p21, ratio of bcl-2 to Bax. Cypher-deficiency induced apoptosis was linked to downregulation of Akt activation and elevated p-p38 MAPK accumulation. Pharmacological activation of Akt with SC79 attenuated apoptosis with enhanced phosphorylation of Akt and reduced p-p38 MAPK and Bax expression. Conclusions: Downregulation of Cypher participates in the promotion of cardiomyocytes apoptosis through inhibiting Akt dependent pathway and enhancing p38 MAPK phosphorylation. These findings may provide a new potential therapeutic strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Tianming Xuan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongfei Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialan Lv
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhicheng Pan
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Fang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yin Xiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingxiang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Ranjan P, Kumari R, Verma SK. Cardiac Fibroblasts and Cardiac Fibrosis: Precise Role of Exosomes. Front Cell Dev Biol 2019; 7:318. [PMID: 31867328 PMCID: PMC6904280 DOI: 10.3389/fcell.2019.00318] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a group of extracellular microvesicles that deliver biologically active RNAs, proteins, lipids and other signaling molecules to recipient cells. Classically, exosomes act as a vehicle by which cells or organs communicate with each other to maintain cellular/tissue homeostasis and to respond to pathological stress. Most multicellular systems, including the cardiovascular system, use exosomes for intercellular communication. In heart, endogenous exosomes from cardiac cells or stem cells aid in regulation of cell survival, cell proliferation and cell death; and thus tightly regulate cardiac biology and repair processes. Pathological stimulus in heart alters secretion and molecular composition of exosomes, thus influencing the above processes. The past decade has yielded increasing interest in the role of exosomes in the cardiovascular system and significant contribution of cardiac fibroblast (CF) and mediated cardiac fibrosis in heart failure, in this review we had overviewed the relevant literatures about fibroblast exosomes, its effect in the cardiovascular biology and its impact on cardiovascular disease (CVD). This review briefly describes the communication between fibroblasts and other cardiac cells via exosomes, the influence of such on myocardial fibrosis and remodeling, and the possibilities to use exosomes as biomarkers for acute and chronic heart diseases.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajesh Kumari
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
15
|
Colpaert RMW, Calore M. MicroRNAs in Cardiac Diseases. Cells 2019; 8:E737. [PMID: 31323768 PMCID: PMC6678080 DOI: 10.3390/cells8070737] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Since their discovery 20 years ago, microRNAs have been related to posttranscriptional regulation of gene expression in major cardiac physiological and pathological processes. We know now that cardiac muscle phenotypes are tightly regulated by multiple noncoding RNA species to maintain cardiac homeostasis. Upon stress or various pathological conditions, this class of non-coding RNAs has been found to modulate different cardiac pathological conditions, such as contractility, arrhythmia, myocardial infarction, hypertrophy, and inherited cardiomyopathies. This review summarizes and updates microRNAs playing a role in the different processes underlying the pathogenic phenotypes of cardiac muscle and highlights their potential role as disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robin M W Colpaert
- IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Martina Calore
- IMAiA-Institute for Molecular Biology and RNA Technology, Faculty of Science and Engineering, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|