1
|
Fan W, Wei B, Chen X, Zhang Y, Xiao P, Li K, Zhang YQ, Huang J, Leng L, Bucala R. Potential role of RhoA GTPase regulation in type interferon signaling in systemic lupus erythematosus. Arthritis Res Ther 2024; 26:31. [PMID: 38243295 PMCID: PMC10799493 DOI: 10.1186/s13075-024-03263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by abnormal activation of the type I interferon (IFN) pathway, which results in tissue inflammation and organ damage. We explored the role of the RhoA GTPase in the type I IFN activation pathway to provide a potential basis for targeting GTPase signaling for the treatment of SLE. METHODS Total RNA was extracted from peripheral blood mononuclear cells (PBMCs) of SLE patients and healthy controls, and the mRNA expression levels of RhoA and IFN-stimulated genes were measured by SYBR Green quantitative reverse transcriptase-polymerase chain reaction. IFN-a-stimulated response element (ISRE)-luciferase reporter gene assays and Western blotting were conducted to assess the biologic function of RhoA. An enzyme-linked immunoassay (ELISA) measured C-X-C motif chemokine ligand 10 (CXCL10) protein expression. RESULTS Our studies demonstrate that the expression of RhoA in the PBMCs of SLE subjects was significantly higher than in healthy controls and positively correlated with type I IFN scores and type I IFN-stimulated gene (ISGs) expression levels. SiRNA-mediated knockdown of RhoA and the RhoA/ROCK inhibitor Y27632 reduced the activity of the type I IFN-induced ISRE, the signal transducer and activator of transcription 1 (STAT-1) phosphorylation, and the expression of CXCL10 and 2'-5'-oligoadenylate synthetase 1 (OAS1). Finally, we verified that Y27632 could significantly down-regulate the OAS1 and CXCL10 expression levels in the PBMCs of SLE patients. CONCLUSION Our study shows that RhoA positively regulates the activation of the type I IFN response pathway. Reducing the expression level of RhoA inhibits the abnormal activation of the type I IFN system, and the RhoA/ROCK inhibitor Y27632 decreases aberrant type I IFN signaling in SLE PBMCs, suggesting the possibility of targeting the RhoA GTPase for the treatment of SLE.
Collapse
Affiliation(s)
- Wei Fan
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China.
| | - Bo Wei
- Department of Rheumatology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xuyan Chen
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Yi Zhang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Pingping Xiao
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Kaiyan Li
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Yi Qin Zhang
- Department of Nephrology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Jinmei Huang
- Department of Rheumatology and Immunology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, 361021, China
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Xue Y, Zhang L, Guo R, Shao X, Shi M, Yuan C, Li X, Li B. miR-485 regulates Th17 generation and pathogenesis in experimental autoimmune encephalomyelitis through targeting STAT3. J Neuroimmunol 2023; 379:578100. [PMID: 37187004 DOI: 10.1016/j.jneuroim.2023.578100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an induced autoimmune disease widely used as an animal model for multiple sclerosis, which is mainly characterized by demyelination, axonal loss, as well as neurodegeneration of central nervous system (CNS). T-helper (Th) 17 cell that generate interleukin-17 (IL-17) plays a key role in its pathogenesis. Their activity and differentiation are tightly regulated by some cytokines and transcription factors. Certain microRNAs (miRNAs) are involved in the pathogenesis of various autoimmune disorders, including EAE. Our research detected a novel miRNA that can regulate EAE. According to the results, during EAE, the expression of miR-485 notably lowered, and STAT3 was significantly increased. It was discovered that miR-485 knockdown in vivo upregulated Th17-associated cytokines and aggravated EAE, while the overexpressed miR-485 down-regulated Th17-associated cytokines and mitigated EAE. The up-regulation of miRNA-485 in vitro inhibited Th17-associated cytokines expression within EAE CD4+ T cells. Furthermore, as revealed by target prediction and dual-luciferase reporter assays, miR-485 directly targets STAT3, a gene that encodes a protein responsible for Th17 generation. Overall, miR-485 exert vital functions in Th17 generation and EAE pathogenesis.
Collapse
Affiliation(s)
- Yumei Xue
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Xi Shao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China; Department of Neurology, Baoding First Central Hospital, Baoding, China
| | - Xiaobing Li
- Department of Pharmacy, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, China; Key Laboratory of Neurology of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
3
|
Han QJ, Mu YL, Zhao HJ, Zhao RR, Guo QJ, Su YH, Zhang J. Fasudil prevents liver fibrosis via activating natural killer cells and suppressing hepatic stellate cells. World J Gastroenterol 2021; 27:3581-3594. [PMID: 34239271 PMCID: PMC8240055 DOI: 10.3748/wjg.v27.i24.3581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fasudil, as a Ras homology family member A (RhoA) kinase inhibitor, is used to improve brain microcirculation and promote nerve regeneration clinically. Increasing evidence shows that Rho-kinase inhibition could improve liver fibrosis.
AIM To evaluate the anti-fibrotic effects of Fasudil in a mouse model of liver fibrosis induced by thioacetamide (TAA).
METHODS C57BL/6 mice were administered TAA once every 3 d for 12 times. At 1 wk after induction with TAA, Fasudil was intraperitoneally injected once a day for 3 wk, followed by hematoxylin and eosin staining, sirius red staining, western blotting, and quantitative polymerase chain reaction (qPCR), and immune cell activation was assayed by fluorescence-activated cell sorting. Furthermore, the effects of Fasudil on hepatic stellate cells and natural killer (NK) cells were assayed in vitro.
RESULTS First, we found that TAA-induced liver injury was protected, and the positive area of sirius red staining and type I collagen deposition were significantly decreased by Fasudil treatment. Furthermore, western blot and qPCR assays showed that the levels of alpha smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), MMP-9, and transforming growth factor beta 1 (TGF-β1) were inhibited by Fasudil. Moreover, flow cytometry analysis revealed that NK cells were activated by Fasudil treatment in vivo and in vitro. Furthermore, Fasudil directly promoted the apoptosis and inhibited the proliferation of hepatic stellate cells by decreasing α-SMA and TGF-β1.
CONCLUSION Fasudil inhibits liver fibrosis by activating NK cells and blocking hepatic stellate cell activation, thereby providing a feasible solution for the clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yong-Liang Mu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Hua-Jun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Rong-Rong Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Quan-Juan Guo
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Hang Su
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
4
|
Katsuyama T, Li H, Krishfield SM, Kyttaris VC, Moulton VR. Splicing factor SRSF1 limits IFN-γ production via RhoH and ameliorates experimental nephritis. Rheumatology (Oxford) 2021; 60:420-429. [PMID: 32810232 DOI: 10.1093/rheumatology/keaa300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE CD4 T helper 1 (Th1) cells producing IFN-γ contribute to inflammatory responses in the pathogenesis of SLE and lupus nephritis. Moreover, elevated serum type II IFN levels precede the appearance of type I IFNs and autoantibodies in patient years before clinical diagnosis. However, the molecules and mechanisms that control this inflammatory response in SLE remain unclear. Serine/arginine-rich splicing factor 1 (SRSF1) is decreased in T cells from SLE patients, and restrains T cell hyperactivity and systemic autoimmunity. Our objective here was to evaluate the role of SRSF1 in IFN-γ production, Th1 differentiation and experimental nephritis. METHODS T cell-conditional Srsf1-knockout mice were used to study nephrotoxic serum-induced nephritis and evaluate IFN-γ production and Th1 differentiation by flow cytometry. RNA sequencing was used to assess transcriptomics profiles. RhoH was silenced by siRNA transfections in human T cells by electroporation. RhoH and SRSF1 protein levels were assessed by immunoblots. RESULTS Deletion of Srsf1 in T cells led to increased Th1 differentiation and exacerbated nephrotoxic serum nephritis. The expression levels of RhoH are decreased in Srsf1-deficient T cells, and silencing RhoH in human T cells leads to increased production of IFN-γ. Furthermore, RhoH expression was decreased and directly correlated with SRSF1 in T cells from SLE patients. CONCLUSION Our study uncovers a previously unrecognized role of SRSF1 in restraining IFN-γ production and Th1 differentiation through the control of RhoH. Reduced expression of SRSF1 may contribute to pathogenesis of autoimmune-related nephritis through these molecular mechanisms.
Collapse
Affiliation(s)
- Takayuki Katsuyama
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Suzanne M Krishfield
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vaishali R Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Kim CS, Mathew AP, Vasukutty A, Uthaman S, Joo SY, Bae EH, Ma SK, Park IK, Kim SW. Glycol chitosan-based tacrolimus-loaded nanomicelle therapy ameliorates lupus nephritis. J Nanobiotechnology 2021; 19:109. [PMID: 33865397 PMCID: PMC8052756 DOI: 10.1186/s12951-021-00857-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Recently, we developed hydrophobically modified glycol chitosan (HGC) nanomicelles loaded with tacrolimus (TAC) (HGC-TAC) for the targeted renal delivery of TAC. Herein, we determined whether the administration of the HGC-TAC nanomicelles decreases kidney injury in a model of lupus nephritis. Lupus-prone female MRL/lpr mice were randomly assigned into three groups that received intravenous administration of either vehicle control, an equivalent dose of TAC, or HGC-TAC (0.5 mg/kg TAC) weekly for 8 weeks. Age-matched MRL/MpJ mice without Faslpr mutation were also treated with HGC vehicle and used as healthy controls. Results Weekly intravenous treatment with HGC-TAC significantly reduced genetically attributable lupus activity in lupus nephritis-positive mice. In addition, HGC-TAC treatment mitigated renal dysfunction, proteinuria, and histological injury, including glomerular proliferative lesions and tubulointerstitial infiltration. Furthermore, HGC-TAC treatment reduced renal inflammation and inflammatory gene expression and ameliorated increased apoptosis and glomerular fibrosis. Moreover, HGC-TAC administration regulated renal injury via the TGF-β1/MAPK/NF-κB signaling pathway. These renoprotective effects of HGC-TAC treatment were more potent in lupus mice compared to those of TAC treatment alone. Conclusion Our study indicates that weekly treatment with the HGC-TAC nanomicelles reduces kidney injury resulting from lupus nephritis by preventing inflammation, fibrosis, and apoptosis. This advantage of a new therapeutic modality using kidney-targeted HGC-TAC nanocarriers may improve drug adherence and provide treatment efficacy in lupus nephritis mice. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00857-w.
Collapse
Affiliation(s)
- Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea.,Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences, BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soo Yeon Joo
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea.,Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea.,Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea.
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju, 61496, Republic of Korea. .,Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea.
| |
Collapse
|
6
|
Electroacupuncture Pretreatment Regulates Apoptosis of Myocardial Ischemia-Reperfusion Injury in Rats Through RhoA/p38MAPK Pathway Mediated by miR-133a-5p. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8827891. [PMID: 33763149 PMCID: PMC7964106 DOI: 10.1155/2021/8827891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/24/2020] [Accepted: 01/26/2021] [Indexed: 11/18/2022]
Abstract
The electroacupuncture (EA) pretreatment possesses a beneficial effect on myocardial ischemia/reperfusion (I/R) injury. However, the molecular mechanism of the EA effect is not fully understood. The study aimed to explore the protective effect of EA pretreatment on myocardial ischemia-reperfusion injury (MIRI) and apoptosis-related mechanisms in rats. Rats underwent in vivo myocardial ischemia-reperfusion, EA pretreatment, or intravenous injection of antagomirs. Cardiac function, infarct area, and myocardial cell apoptosis were measured. Meanwhile, the expressions of MKK3, MKK6, p38MAPK, Bax, Bcl-2, and Caspase-3 were also detected. We found that EA pretreatment significantly reduced infarct area and myocarpal cell apoptosis and enhanced cardiac function. EA pretreatment decreased the expression of Bax, Caspase-3, MKK3, MKK6, p38MAPK, Bax, and Caspase-3. In conclusion, The EA pretreatment down regulated the expression of MKK3, MKK6, and p38MAPK through the RhoA/p38MAPK pathway. EA pretreatment protect MIRI rats from apoptosis by down regulating the expression of MKK3, MKK6, and p38MAPK, thereby reducing the expression of Bax, Caspase-3 and up regulating the expression of Bcl-2, which mechanism is closely related to the RhoA/p38MAPK pathway mediated by miR-133a-5p.
Collapse
|
7
|
MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells. Biosci Rep 2021; 40:222166. [PMID: 32073611 PMCID: PMC7056448 DOI: 10.1042/bsr20192384] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia-induced renal tubular cell injury is thought to play a critical role in the pathogenesis of diabetic nephropathy (DN). However, the role of miRNAs in renal tubular cell injury remains to be fully elucidated. The aim of the present study was to investigate the role and mechanisms of miRNAs protecting against high glucose (HG)-induced apoptosis and inflammation in renal tubular cells. First, we analyzed microRNA (miRNA) expression profiles in kidney tissues from DN patients using miRNA microarray. It was observed that miRNA-140-5p (miR-140-5p) was significantly down-regulated in kidney tissues from patients with DN. An inverse correlation between miR-140-5p expression levels with serum proteinuria was observed in DN patients, suggesting miR-140-5p may be involved in the progression of DN. HG-induced injury in HK-2 cells was used to explore the potential role of miR-140-5p in DN. We found that miR-140-5p overexpression improved HG-induced cell injury, as evidenced by the enhancement of cell viability, and inhibition of the activity of caspase-3 and reactive oxygen species (ROS) generation. It was also observed that up-regulation of miR-140-5p suppressed HG induced the expressions of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in HK-2 cells. In addition, TLR4, one of the upstream molecules of NF-κB signaling pathway, was found to be a direct target of miR-140-5p in the HK-2. Moreover, the HG-induced activation of NF-κB signaling pathway was inhibited by miR-140-5p overexpression. These results indicated that miR-140-5p protected HK-2 cells against HG-induced injury through blocking the TLR4/NF-κB pathway, and miR-140-5p may be considered as a potential prognostic biomarker and therapeutic target in the treatment of DN.
Collapse
|
8
|
miR-485 suppresses inflammation and proliferation of mesangial cells in an in vitro model of diabetic nephropathy by targeting NOX5. Biochem Biophys Res Commun 2019; 521:984-990. [PMID: 31727371 DOI: 10.1016/j.bbrc.2019.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/02/2019] [Indexed: 12/12/2022]
Abstract
Diabetic nephropathy (DN) is among the common complications of diabetes and is a major cause of end-stage kidney disease. Emerging data indicate that renal inflammation is involved in DN progression and aggravation. Still, the exact cellular mechanisms remain unclear. Dysregulated expression of microRNAs (miRNAs) is associated with multiple diseases, including DN. The relationship between miRNAs and inflammation in DN is also unexplored. Here, we evaluated the role of miR-485 in mediating the response of human mesangial cells (HMCs) to a high glucose (HG) concentration, and the potential underlying mechanism. We found that miR-485 expression is significantly decreased in HG-stimulated HMCs. Overexpression of miR-485 suppressed HG-induced proliferation of HMCs. Lower production of proinflammatory cytokines (i.e., TNF-α, IL-1β, and IL-6) was observed in miR-485-overexpressing HMCs. Overexpression of miR-485 markedly suppressed the overexpression of extracellular-matrix proteins, e.g., collagen IV (Col IV) and fibronectin (FN), in HG-stimulated HMCs. Furthermore, miR-485 suppressed the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 5 (NOX5), restrained the HG-induced HMC proliferation, downregulated the expression of proinflammatory cytokines, and inhibited the production of extracellular-matrix proteins in HMCs. These results provide new insights into the involvement of the miR-485-NOX5 signaling pathway in DN progression.
Collapse
|
9
|
Sun G, Zhu P, Dai Y, Chen W. Bioinformatics Analysis of the Core Genes Related to Lupus Nephritis Through a Network and Pathway-Based Approach. DNA Cell Biol 2019; 38:639-650. [PMID: 31090450 DOI: 10.1089/dna.2019.4631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we explored the genes genetically associated with lupus nephritis (LN), and their function by bioinformatics analysis. We collected genes potentially associated with LN from National Center for Biotechnology Information Center (NCBI-Gene) and Online Mendelian Inheritance in Man (OMIM) databases. The major bioinformatics analysis linked with genes was then revealed by weighted gene co-expression network analysis (WGCNA), crosstalk analysis, functional analysis, and Pivot algorithm. Two hundred twenty-three LN-related genes were obtained by intersecting NCBI-Gene and OMIM databases. Two thousand five hundred sixty-eight LN-related proteins and 23 modules were excavated by String protein interaction network and WGCNA co-expression analysis, respectively. Pivot algorithm included no coding RNA, transcription factor and drug indicated the high-count correlation-associated modules related to cancer, kidney pathophysiological changes, and kidney injury, respectively. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis based on 23 modules revealed LN-related genes mainly involved in immune response. Moreover, 19 genes that came from intersection of LN, arthritis, pleurisy, and myocarditis have close relationship with immune diseases and immune processes. Our results from this research may have important implications for understanding the genes underlying LN. Also, the framework proposed in this work can be used to research pathological molecular network and genes related to LN.
Collapse
Affiliation(s)
- Guoping Sun
- 1 Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, China
| | - Peng Zhu
- 1 Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, China
| | - Yong Dai
- 2 Clinical Medical Research Center, Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wenbiao Chen
- 3 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Fu D, Senouthai S, Wang J, You Y. FKN Facilitates HK-2 Cell EMT and Tubulointerstitial Lesions via the Wnt/β-Catenin Pathway in a Murine Model of Lupus Nephritis. Front Immunol 2019; 10:784. [PMID: 31134047 PMCID: PMC6524725 DOI: 10.3389/fimmu.2019.00784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Fractalkine (FKN), also known as chemokine (C-X3-C motif) ligand 1, constitutes an intriguing chemokine with a documented role in the development of numerous inflammatory diseases including autoimmune disease. Specifically, it has been reported that FKN is involved in the disease progression of lupus nephritis (LN). The epithelial-mesenchymal transition (EMT) plays a significant role in the formation of tubulointerstitial lesions (TIL), which are increasingly recognized as a hallmark of tissue fibrogenesis after injury. However, the correlation between FKN and EMT or TIL in LN has not been determined. To investigate the potential role of FKN in EMT and TIL, MRL lymphoproliferation (MRL/lpr) strain mice were treated with an anti-FKN antibody, recombinant-FKN chemokine domain, or isotype antibody. Our results revealed that treatment with the anti-FKN antibody improved EMT, TIL, and renal function in MRL/lpr mice, along with inhibiting activation of the Wnt/β-catenin signaling pathway. In contrast, administration of the recombinant-FKN chemokine domain had the opposite effect. Furthermore, to further explore the roles of FKN in EMT, we assessed the levels of EMT markers in FKN-depleted or overexpressing human proximal tubule epithelial HK-2 cells. Our results provide the first evidence that the E-cadherin level was upregulated, whereas α-SMA and vimentin expression was downregulated in FKN-depleted HK-2 cells. In contrast, overexpression of FKN in HK-2 cells enhanced EMT. In addition, inhibition of the Wnt/β-catenin pathway by XAV939 negated the effect of FKN overexpression, whereas activation of the Wnt/β-catenin pathway by Ang II impaired the effect of the FKN knockout on EMT in HK-2 cells. Together, our data indicate that FKN plays essential roles in the EMT progression and development of TIL in MRL/lpr mice, most likely through activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dongdong Fu
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Soulixay Senouthai
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Junjie Wang
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yanwu You
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|