1
|
Nasir NJN, Arifin N, Noordin KBA, Yusop N. Bone repair and key signalling pathways for cell-based bone regenerative therapy: A review. J Taibah Univ Med Sci 2023; 18:1350-1363. [PMID: 37305024 PMCID: PMC10248876 DOI: 10.1016/j.jtumed.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Advances in cell-based regenerative therapy create new opportunities for the treatment of bone-related disorders and injuries, by improving the reparative phase of bone healing. Apart from the classical approach of bone grafting, the application of cell-based therapies, particularly stem cells (SCs), has gained a lot of attention in recent years. SCs play an important role in regenerative therapy due to their excellent ability to differentiate into bone-forming cells. Regeneration of new bone is regulated by a wide variety of signalling molecules and intracellular networks, which are responsible for coordinating cellular processes. The activated signalling cascade is significantly involved in cell survival, proliferation, apoptosis, and interaction with the microenvironment and other types of cells within the healing site. Despite the increasing evidence from studies conducted on signalling pathways associated with bone formation, the exact mechanism involved in controlling the differentiation stage of transplanted cells is not well understood. Identifying the key activated pathways involved in bone regeneration may allow for precise manipulation of the relevant signalling molecules within the progenitor cell population to accelerate the healing process. The in-depth knowledge of molecular mechanisms would be advantageous in improving the efficiency of personalised medicine and targeted therapy in regenerative medicine. In this review, we briefly introduce the theory of bone repair mechanism and bone tissue engineering followed by an overview of relevant signalling pathways that have been identified to play an important role in cell-based bone regenerative therapy.
Collapse
Affiliation(s)
- Nur Julia N. Nasir
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Norsyahida Arifin
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Khairul Bariah A.A. Noordin
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Norhayati Yusop
- Basic and Medical Sciences Department, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
2
|
Shiying S, Weihong W, Xiuqiong T, Yemei Q. TGFB3 gene mutation associated with mandibular coronoid process hyperplasia: a family investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:e109-e115. [PMID: 37246056 DOI: 10.1016/j.oooo.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Coronoid process hyperplasia (CPH) of the mandible can lead to restricted mouth opening and maxillofacial deformities, which have been hypothesized to be closely associated with genetics. This study investigated the relationship between congenital CPH and TGFB3 mutation in a family of patients with CPH. STUDY DESIGN A limited mouth opening proband with CPH underwent whole-exome gene sequencing in November 2019, and the results confirmed compound heterozygous mutations in the TGFB3 gene. Subsequently, clinical imaging and genetic testing were performed on 10 other individuals in his family. RESULTS A total of 9 people in this family have CPH. Among them, 6 have the same exon compound heterozygous mutation sites of the TGFB3 gene (chr14-76446905 and chr14-76429713), accompanied by homozygous or heterozygous mutations in the 3'untranslated region (3'UTR) of the TGFB3 gene (chr14:76429555). The other 3 individuals have a homozygous mutation in the 3'untranslated region of the TGFB3 gene. CONCLUSION The heterogeneous compound mutation of the TGFB3 gene or the homozygous mutation of 3'UTR of the TGFB3 gene may be correlated with CPH. In addition, the specifically related mechanism needs to be confirmed by further genetic animal experiments.
Collapse
Affiliation(s)
- Shen Shiying
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital, Kunming Medical University, Kunming, Yunnan 650106, China
| | - Wang Weihong
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital, Kunming Medical University, Kunming, Yunnan 650106, China.
| | - Tang Xiuqiong
- Department of Stomatology, Luoping County People's Hospital, Qujing, Yunnan 655800, China
| | - Qian Yemei
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital, Kunming Medical University, Kunming, Yunnan 650106, China
| |
Collapse
|
3
|
Pan Y, Gu Z, Lyu Y, Yang Y, Chung M, Pan X, Cai S. Link between senescence and cell fate: Senescence-associated secretory phenotype (SASP) and its effects on stem cell fate transition. Rejuvenation Res 2022; 25:160-172. [PMID: 35658548 DOI: 10.1089/rej.2022.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Senescence is a form of durable cell cycle arrest elicited in response to a wide range of stimuli. Senescent cells remain metabolically active and secrete a variety of factors collectively termed senescence-associated secretory phenotype (SASP). SASP is highly pleiotropic and can impact numerous biological processes in which it has both beneficial and deleterious roles. The underlying mechanisms by which SASP exerts its pleiotropic influence remain largely unknown. SASP serves as an environmental factor, which regulates stem cell differentiation and alters its routine. The latter can potentially be accomplished through dedifferentiation, transdifferentiation, or reprogramming. Behavioral changes that cells undergo when exposed to SASP are involved in several senescence-associated physiological and pathological phenomena. These findings provide clues for identifying possible interventions to reduce the deleterious effects without interfering in the beneficial outcomes. Here, we discuss the multifaced effects of SASP and the changes occurring in cellular states upon exposure to SASP factors.
Collapse
Affiliation(s)
- Yu Pan
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Zhenzhen Gu
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Yansi Lyu
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Yi Yang
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Manhon Chung
- Shanghai Jiao Tong University School of Medicine, 56694, Shanghai, China;
| | - Xiaohua Pan
- Shenzhen University, 47890, Shenzhen, Guangdong, China;
| | - Sa Cai
- Shenzhen University, 47890, 3688 Nanhai Avenue, Nanshan District, Shenzhen, Shenzhen, China, 518060;
| |
Collapse
|
4
|
Shibli JA, Nagay BE, Suárez LJ, Urdániga Hung C, Bertolini M, Barão VAR, Souza JGS. Bone Tissue Engineering Using Osteogenic Cells: From the Bench to the Clinical Application. Tissue Eng Part C Methods 2022; 28:179-192. [PMID: 35166162 DOI: 10.1089/ten.tec.2022.0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The use of tissue engineering to restore and to build new bone tissue is under active research at present. The following review summarizes the latest studies and clinical trials related to the use of osteogenic cells, biomaterials, and scaffolds to regenerate bone defects in the human jaws. Bone tissue engineering (BTE) combined with scaffolds have provided a range of advantages not only to transport the target cells to their desired destination but also to support the early phases of the mineralization process. The mechanical, chemical, and physical properties of scaffolds have been evaluated as they affect the quantity of bone regeneration, particularly in the oral cavity. This review also highlighted the mechanisms underlying bone homeostasis, including the key transcription factors and signaling pathways responsible for regulating the differentiation of osteoblast lineage. Furthering understanding of the mechanisms of cellular signaling in skeletal remodeling with the use of mesenchymal stem cells and the proper scaffold properties are key-factors to enable the incorporation of new and effective treatment methods into clinical practice for bone tissue regeneration using BTE. Impact Statement The use of mesenchymal stem cells able to differentiate in osteoblast lineage for bone tissue engineering (BTE) remains a major challenge. Viable cells and signaling pathways play an essential role in bone repair and regeneration of critical size defects. Recent advances in scaffolds and biological factors such as growth factors (e.g., cytokines and hormones) controlling the osteogenic signaling cascade are now becoming new players affecting the osteogenic potential of cells. Such techniques will significantly impact the maxillofacial bone tissue replacement, repair, and regeneration for patients without having to rely on donor banks or other surgical sites.
Collapse
Affiliation(s)
- Jamil Awad Shibli
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - Lina J Suárez
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Celeste Urdániga Hung
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, University of Pittsburgh School of Dental Medicine, Pittsburgh, Pennsylvania, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Department of Periodontology, Guarulhos University, Praça Tereza Cristina, Guarulhos, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas-FCO), Montes Claros, Brazil
| |
Collapse
|
5
|
Lee HM, Seo SR, Kim J, Kim MK, Seo H, Kim KS, Jang YJ, Ryu CJ. Expression dynamics of integrin α2, α3, and αV upon osteogenic differentiation of human mesenchymal stem cells. Stem Cell Res Ther 2020; 11:210. [PMID: 32493499 PMCID: PMC7268774 DOI: 10.1186/s13287-020-01714-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Background The differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts (OBs) is a prerequisite for bone formation. However, little is known about the definitive surface markers for OBs during osteogenesis. Methods To study the surface markers on OBs, we generated and used monoclonal antibodies (MAbs) against surface molecules on transforming growth factor-β1 (TGF-β1)-treated cancer cells. The generated MAbs were further selected toward expression changes on hMSCs cultured with TGF-β1/bone morphogenetic protein-2 (BMP-2) or osteogenic differentiation medium (ODM) by flow cytometry. Immunoprecipitation and mass spectrometry were performed to identify target antigens of selected MAbs. Expression changes of the target antigens were evaluated in hMSCs, human periodontal ligament cells (hPDLCs), and human dental pulp cells (hDPCs) during osteogenic and adipogenic differentiation by quantitative polymerase chain reaction (qPCR) and flow cytometry. hMSCs were also sorted by the MAbs using magnetic-activated cell sorting system, and osteogenic potential of sorted cells was evaluated via Alizarin Red S (ARS) staining and qPCR. Results The binding reactivity of MR14-E5, one of the MAbs, was downregulated in hMSCs with ODM while the binding reactivity of ER7-A7, ER7-A8, and MR1-B1 MAbs was upregulated. Mass spectrometry and overexpression identified that MR14-E5, ER7-A7/ER7-A8, and MR1-B1 recognized integrin α2, α3, and αV, respectively. Upon osteogenic differentiation of hMSCs, the expression of integrin α2 was drastically downregulated, but the expression of integrin α3 and αV was upregulated in accordance with upregulation of osteogenic markers. Expression of integrin α3 and αV was also upregulated in hPDLCs and hDPCs during osteogenic differentiation. Cell sorting showed that integrin αV-high hMSCs have a greater osteogenic potential than integrin αV-low hMSCs upon the osteogenic differentiation of hMSCs. Cell sorting further revealed that the surface expression of integrin αV is more dramatically induced even in integrin αV-low hMSCs. Conclusion These findings suggest that integrin α3 and αV induction is a good indicator of OB differentiation. These findings also shed insight into the expression dynamics of integrins upon osteogenic differentiation of hMSCs and provide the reason why different integrin ligands are required for OB differentiation of hMSCs.
Collapse
Affiliation(s)
- Hyun Min Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Se-Ri Seo
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Jeeseung Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Min Kyu Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Hyosun Seo
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul, 02447, Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, College of Dentistry, Dankook University, Cheonan, 330-714, Korea.
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Korea.
| |
Collapse
|
6
|
Li J, Wang W. Positive effect of pentoxifylline on medication-related osteonecrosis of the jaw. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 121:264-267. [DOI: 10.1016/j.jormas.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
|
7
|
Shi A, Heinayati A, Bao D, Liu H, Ding X, Tong X, Wang L, Wang B, Qin H. Small molecule inhibitor of TGF-β signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects. Stem Cell Res Ther 2019; 10:172. [PMID: 31196174 PMCID: PMC6567469 DOI: 10.1186/s13287-019-1281-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Clinically, for stem cell-based therapy (SCBT), autologous stem cells are considered better than allogenic stem cells because of little immune rejection and no risk of communicable disease infection. However, severe maxillofacial bone defects restoration needs sufficient autologous stem cells, and this remains a challenge worldwide. Human gingival mesenchymal stem cells (hGMSCs) derived from clinically discarded, easily obtainable, and self-healing autologous gingival tissues, have higher proliferation rate compared with autologous bone marrow mesenchymal stem cells (hBMSCs). But for clinical bone regeneration purpose, GMSCs have inferior osteogenic differentiation capability. In this study, a TGF-β signaling inhibitor SB431542 was used to enhance GMSCs osteogenesis in vitro and to repair minipig severe maxillofacial bone defects. METHODS hGMSCs were isolated and cultured from clinically discarded gingival tissues. The effects of SB431542 on proliferation, apoptosis, and osteogenic differentiation of hGMSCs were analyzed in vitro, and then, SB431542-treated hGMSCs composited with Bio-Oss® were transplanted into immunocompromised mice subcutaneously to explore osteogenic differentiation in vivo. After that, SB431542-treated autologous pig GMSCs (pGMSCs) composited with Bio-Oss® were transplanted into circular confined defects (5 mm × 12 mm) in minipigs maxillary to investigate severe bone defect regeneration. Minipigs were sacrificed at 2 months and nude mice at 8 weeks to retrieve specimens for histological or micro-CT or CBCT analysis. Effects of SB431542 on TGF-β and BMP signaling in hGMSCs were investigated by Western Blot or qRT-PCR. RESULTS One micromolar of SB431542 treatment induced a robust osteogenesis of hGMSCs in vitro, without adverse effect on apoptosis and growth. In vivo, 1 μM SB431542 treatment also enabled striking osteogenesis of hGMSCs subcutaneously in nude mice and advanced new bone formation of pGMSCs in minipig maxillary bone defect model. In addition, SB431542-treated hGMSCs markedly increased bone-related proteins expression, and BMP2 and BMP4 gene expression. Conversely, SMAD3 protein-dependent TGF-β signal pathway phosphorylation was decreased. CONCLUSIONS Our study show that osteogenic differentiation of GMSCs treated with TGF-β signaling inhibitor SB431542 was increased, and SB431542-treated autologous pig GMSCs could successfully repair minipig severe maxillofacial bone defects. This preclinical study brings about a promising large bone regeneration therapeutic potential of autologous GMSCs induced by SB431542 in clinic settings.
Collapse
Affiliation(s)
- Anyuan Shi
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
- Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093 China
| | - Aerali Heinayati
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
- Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093 China
| | - Dongyu Bao
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Huifen Liu
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Xiaochen Ding
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Xin Tong
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| | - Liudi Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008 China
| | - Haiyan Qin
- Department of Dental Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008 China
| |
Collapse
|