1
|
Huang J, Tan R. HMOX1: A pivotal regulator of prognosis and immune dynamics in ovarian cancer. BMC Womens Health 2024; 24:476. [PMID: 39210460 PMCID: PMC11363456 DOI: 10.1186/s12905-024-03309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study investigates the intricate role of Heme Oxygenase 1 (HMOX1) in ovarian cancer, emphasizing its prognostic significance, influence on immune cell infiltration, and impact on the malignant characteristics of primary ovarian cancer cells. MATERIALS AND METHODS Our research began with an analysis of HMOX1 expression and its prognostic implications using data from The Cancer Genome Atlas (TCGA) dataset, supported by immunohistochemical staining. Further analyses encompassed co-expression studies, Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. We utilized the TIMER and TISIDB platforms to evaluate the immunotherapeutic potential of HMOX1. Additionally, in vitro studies that involved modulating HMOX1 levels in primary ovarian cancer cells were conducted to confirm its biological functions. RESULTS Our findings indicate a significant overexpression of HMOX1 in ovarian cancer, which correlates with increased tumor malignancy and poorer prognosis. HMOX1 was shown to significantly modulate the infiltration of immune cells, particularly neutrophils and macrophages. Single-cell RNA sequencing (scRNA-seq) analysis revealed that HMOX1 is predominantly expressed in tumor-associated macrophages (TAMs), with a positive correlation to chemokines and their receptors. An increase in HMOX1 levels was associated with heightened levels of immunoinhibitors, immunostimulators, and MHC molecules. Functional assays demonstrated that HMOX1 knockdown promotes apoptosis, attenuating cell proliferation and invasion, while its overexpression yields opposing effects. CONCLUSION HMOX1 emerges as a critical therapeutic target, intricately involved in immunomodulation, prognosis, and the malignant behavior of ovarian cancer. This highlights HMOX1 as a potential biomarker and therapeutic target in the fight against ovarian cancer.
Collapse
Affiliation(s)
- Jinfa Huang
- Department of Gynecology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528308, China
| | - Ruiwan Tan
- Department of Ultrasound, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, Guangdong, 528308, China.
| |
Collapse
|
2
|
Wu J, Jiang L, Wang S, Peng L, Zhang R, Liu Z. TGF β1 promotes the polarization of M2-type macrophages and activates PI3K/mTOR signaling pathway by inhibiting ISG20 to sensitize ovarian cancer to cisplatin. Int Immunopharmacol 2024; 134:112235. [PMID: 38761779 DOI: 10.1016/j.intimp.2024.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
The involvement of Interferon-stimulated exonuclease gene 20 (ISG20) has been reported in renal clear cell carcinoma, hepatocellular carcinoma, and cervical cancer. However, its role in ovarian cancer chemotherapy remains unclear. In this study, we conducted a comparative analysis of TGF-β1 and ISG20 in cisplatin-sensitive and cisplatin-resistant ovarian cancer cells and tissues using qRT-PCR and a tissue immunofluorescence analysis. We also investigated the impact of ISG20-targeted drugs (IFN-γ) and TGF-β1 inhibitors on cisplatin response both in vivo and in vitro. Additionally, we assessed the effects of TGF-β1 or ISG20 on the polarization of tumor-associated macrophages through flow cytometry and ELISA analysis. Our findings revealed that ISG20 expression was lower in cisplatin-resistant tissues compared to cisplatin-sensitive tissues; however, overexpression of ISG20 sensitized ovarian cancer to cisplatin treatment. Furthermore, activation of ISG20 expression with IFN-γ or TGF-β1 inhibitors enhanced the sensitivity of ovarian cancer cells to cisplatin therapy. Notably, our results demonstrated that TGF-β1 promoted M2-type macrophage polarization as well as PI3K/mTOR pathway activation by suppressing ISG20 expression both in vivo and in vitro. In conclusion, our study highlights the critical role played by ISG20 within the network underlying cisplatin resistance in ovarian cancer. Targeting ISG20 using IFN-γ or TGF-β1 inhibitors may represent a promising therapeutic strategy for treating ovarian cancer.
Collapse
Affiliation(s)
- Jianfa Wu
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lingli Jiang
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Sihong Wang
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lei Peng
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Rong Zhang
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Zhou Liu
- Department of Gynecology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China; Department of Gynecology, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
3
|
Chen D, Cai B, Zhu Y, Ma Y, Yu X, Xiong J, Shen J, Tie W, Zhang Y, Guo F. Targeting histone demethylases JMJD3 and UTX: selenium as a potential therapeutic agent for cervical cancer. Clin Epigenetics 2024; 16:51. [PMID: 38576048 PMCID: PMC10993516 DOI: 10.1186/s13148-024-01665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The intriguing connection between selenium and cancer resembles a captivating puzzle that keeps researchers engaged and curious. While selenium has shown promise in reducing cancer risks through supplementation, its interaction with epigenetics in cervical cancer remains a fascinating yet largely unexplored realm. Unraveling the intricacies of selenium's role and its interaction with epigenetic factors could unlock valuable insights in the battle against this complex disease. RESULT Selenium has shown remarkable inhibitory effects on cervical cancer cells in various ways. In in vitro studies, it effectively inhibits the proliferation, migration, and invasion of cervical cancer cells, while promoting apoptosis. Selenium also demonstrates significant inhibitory effects on human cervical cancer-derived organoids. Furthermore, in an in vivo study, the administration of selenium dioxide solution effectively suppresses the growth of cervical cancer tumors in mice. One of the mechanisms behind selenium's inhibitory effects is its ability to inhibit histone demethylases, specifically JMJD3 and UTX. This inhibition is observed both in vitro and in vivo. Notably, when JMJD3 and UTX are inhibited with GSK-J4, similar biological effects are observed in both in vitro and in vivo models, effectively inhibiting organoid models derived from cervical cancer patients. Inhibiting JMJD3 and UTX also induces G2/M phase arrest, promotes cellular apoptosis, and reverses epithelial-mesenchymal transition (EMT). ChIP-qPCR analysis confirms that JMJD3 and UTX inhibition increases the recruitment of a specific histone modification, H3K27me3, to the transcription start sites (TSS) of target genes in cervical cancer cells (HeLa and SiHa cells). Furthermore, the expressions of JMJD3 and UTX are found to be significantly higher in cervical cancer tissues compared to adjacent normal cervical tissues, suggesting their potential as therapeutic targets. CONCLUSIONS Our study highlights the significant inhibitory effects of selenium on the growth, migration, and invasion of cervical cancer cells, promoting apoptosis and displaying promising potential as a therapeutic agent. We identified the histone demethylases JMJD3 and UTX as specific targets of selenium, and their inhibition replicates the observed effects on cancer cell behavior. These findings suggest that JMJD3 and UTX could be valuable targets for selenium-based treatments of cervical cancer.
Collapse
Affiliation(s)
- Dezhi Chen
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Bo Cai
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi Province, China
| | - Yingying Zhu
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Yimin Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Xiaoting Yu
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jieqi Xiong
- Jiangxi Maternal and Child Health Hospital, Nanchang, 330008, Jiangxi Province, China
| | - Jiaying Shen
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Weiwei Tie
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Yisheng Zhang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315100, Zhejiang Province, China.
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Xu X, Wang D, Xu W, Li H, Chen N, Li N, Yao Q, Chen W, Zhong J, Mao W. NIPBL-mediated RAD21 facilitates tumorigenicity by the PI3K pathway in non-small-cell lung cancer. Commun Biol 2024; 7:206. [PMID: 38378967 PMCID: PMC10879132 DOI: 10.1038/s42003-024-05801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
It is urgent to identify novel early diagnostic markers and therapeutic targets for non-small-cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases and has a 5-year survival rate of 4-17%. Here, chromatin immunoprecipitation (ChIP) was used to identify DNA‒protein interactions, RNA methylation was determined by methylated RNA immunoprecipitation (MeRIP), RNA stability was tested by an RNA decay assay. We showed that RAD21, a member of the cohesin complex, is upregulated in NSCLC tissues and cell lines and found to be an independent prognostic factor for overall survival (OS) of NSCLC patients. Mechanistically, the cohesin loading factor Nipped-B-Like Protein (NIPBL) promoted RAD21 gene transcription by enhancing histone H3 lysine 27 (H3K27) demethylation via recruiting lysine demethylase 6B (KDM6B) to the RAD21 gene promoter. RAD21 enhanced phosphatidylinositol 3-kinase (PI3K) gene transcription, and NIPBL reversed the effect of enhancer of zeste 2; catalytic subunit of polycomb repressive complex 2 (EZH2) on RAD21-mediated PI3K gene transcription by disrupting the association between EZH2 and RAD21. Moreover, NIPBL level was increased by stabilization of its transcripts through mRNA methylation. These findings highlight the oncogenic role of RAD21 in NSCLC and suggest its use as a potential diagnostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, China
| | - Ding Wang
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
| | - Weizhen Xu
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
| | - Huihui Li
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Ning Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Na Li
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Qifeng Yao
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Wei Chen
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China.
| | - Jianxiang Zhong
- School of Life Science and Technology, Southeast University, 2 Sipailou, Nanjing, China.
| | - Weimin Mao
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China.
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 1 Banshan East Road, Hangzhou, China.
| |
Collapse
|
5
|
Tang D, Lu Y, Zuo N, Yan R, Wu C, Wu L, Liu S, He Y. The H3K27 demethylase controls the lateral line embryogenesis of zebrafish. Cell Biol Toxicol 2023; 39:1137-1152. [PMID: 34716527 PMCID: PMC10406677 DOI: 10.1007/s10565-021-09669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Kdm6b, a specific histone 3 lysine 27 (H3K27) demethylase, has been reported to be implicated in a variety of developmental processes including cell differentiation and cell fate determination and multiple organogenesis. Here, we regulated the transcript level of kdm6bb to study the potential role in controlling the hearing organ development of zebrafish. METHODS A morpholino antisense oligonucleotide (MO) strategy was used to induce Kdm6b deficiency; immunohistochemical staining and in situ hybridization analysis were conducted to figure out the morphologic alterations and embryonic mechanisms. RESULTS Kdm6bb is expressed in the primordium and neuromasts at the early stage of zebrafish embryogenesis, suggesting a potential function of Kdm6b in the development of mechanosensory organs. Knockdown of kdm6bb severely influences the cell migration and proliferation in posterior lateral line primordium, abates the number of neuromasts along the trunk, and mRNA-mediated rescue test can partially renew the neuromasts. Loss of kdm6bb might be related to aberrant expressions of chemokine genes encompassing cxcl12a and cxcr4b/cxcr7b in the migrating primordium. Moreover, inhibition of kdm6bb reduces the expression of genes in Fgf signaling pathway, while it increases the axin2 and lef1 expression level of Wnt/β-catenin signaling during the migrating stage. CONCLUSIONS Collectively, our results revealed that Kdm6b plays an essential role in guiding the migration of primordium and in regulating the deposition of zebrafish neuromasts by mediating the gene expression of chemokines and Wnt and Fgf signaling pathway. Since histone methylation and demethylation are reversible, targeting Kdm6b may present as a novel therapeutic regimen for hearing disorders.
Collapse
Affiliation(s)
- Dongmei Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Yitong Lu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Lijuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, 2 Zheshanwest Road, Wuhu, 241001, Anhui, China.
| | - Yingzi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
6
|
Srivastava R, Singh R, Jauhari S, Lodhi N, Srivastava R. Histone Demethylase Modulation: Epigenetic Strategy to Combat Cancer Progression. EPIGENOMES 2023; 7:epigenomes7020010. [PMID: 37218871 DOI: 10.3390/epigenomes7020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Epigenetic modifications are heritable, reversible changes in histones or the DNA that control gene functions, being exogenous to the genomic sequence itself. Human diseases, particularly cancer, are frequently connected to epigenetic dysregulations. One of them is histone methylation, which is a dynamically reversible and synchronously regulated process that orchestrates the three-dimensional epigenome, nuclear processes of transcription, DNA repair, cell cycle, and epigenetic functions, by adding or removing methylation groups to histones. Over the past few years, reversible histone methylation has become recognized as a crucial regulatory mechanism for the epigenome. With the development of numerous medications that target epigenetic regulators, epigenome-targeted therapy has been used in the treatment of malignancies and has shown meaningful therapeutic potential in preclinical and clinical trials. The present review focuses on the recent advances in our knowledge on the role of histone demethylases in tumor development and modulation, in emphasizing molecular mechanisms that control cancer cell progression. Finally, we emphasize current developments in the advent of new molecular inhibitors that target histone demethylases to regulate cancer progression.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Rubi Singh
- Department of Hematology, Bioreference Laboratories, Elmwood Park, NJ 07407, USA
| | - Shaurya Jauhari
- Division of Education, Training, and Assessment, Global Education Center, Infosys Limited, Mysuru 570027, Karnataka, India
| | - Niraj Lodhi
- Clinical Research (Research and Development Division) Mirna Analytics LLC, Harlem Bio-Space, New York, NY 10027, USA
| | - Rakesh Srivastava
- Molecular Biology and Microbiology, GenTox Research and Development, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
7
|
Zhang MJ, Wu CC, Wang S, Yang LL, Sun ZJ. Overexpression of LAG3, TIM3, and A2aR in adenoid cystic carcinoma and mucoepidermoid carcinoma. Oral Dis 2023; 29:175-187. [PMID: 34651389 DOI: 10.1111/odi.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Adenoid cystic carcinoma (AdCC) and mucoepidermoid carcinoma (MEC) are the two most frequent malignancies of salivary glands. This study aims to explore the expression and migration of LAG3, TIM3, and A2aR in AdCC and MEC, and the potential relationship with oncogenic signaling molecules and immunosuppressive cytokines. MATERIALS AND METHODS Custom made human salivary gland tissue microarrays included 81 AdCCs, 52 MECs, 76 normal salivary glands (NSG), and 14 pleomorphic adenoma (PMA) samples. Immunohistochemical analysis of lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3), adenosine 2a receptor (A2aR), oncogenic phosphorylated S6 kinase (p-S6) and ERK1/2 (p-ERK1/2 ), and TGF-β1 was performed with salivary gland tissue microarrays of human samples. The correlation of the immunostaining was analyzed based on a digital pathological system, and data were evaluated by hierarchical cluster. Further in vitro studies of knockdown immune checkpoints LAG3, TIM3, and A2aR were carried out by siRNA transfection. RESULTS The expression levels of LAG3, TIM3, and A2aR were remarkably increased in AdCC and MEC, compared with NSG and PMA samples, but were independent of pathology grade. They were closely correlated with TGF-β1, slightly related to p-ERK1/2 and p-S6. After the knockdown of immune checkpoints LAG3, TIM3, and A2aR, the migration of SACC-LM cell line was significantly reduced. CONCLUSIONS These results suggested that LAG3, TIM3, and A2aR are overexpressed in AdCC and MEC, may promote migration of SACC-LM cell and correlated with TGF-β1 and oncogenic signaling pathways.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cong-Cong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
KDM6B promotes gastric carcinogenesis and metastasis via upregulation of CXCR4 expression. Cell Death Dis 2022; 13:1068. [PMID: 36564369 PMCID: PMC9789124 DOI: 10.1038/s41419-022-05458-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
KDM6B (Lysine-specific demethylase 6B) is a histone lysine demethyltransferase that plays a key role in many types of cancers. However, its potential role in gastric cancer (GC) remains unclear. Here, we focused on the clinical significance and potential role of KDM6B in GC. We found that the KDM6B expression is upregulated in GC tissues and that its high expression in patients is related to poor prognosis. KDM6B ectopic expression promotes GC cells' proliferation and metastasis, while its inhibition has opposite effects in vitro and in vivo. Mechanistically, KDM6B promotes GC cells proliferation and metastasis through its enzymatic activity through the induction of H3K27me3 demethylation near the CXCR4 (C-X-C chemokine receptor type 4) promoter region, resulting in the upregulation of CXCR4 expression. Furthermore, H. pylori was found to induce KDM6B expression. In conclusion, our results suggest that KDM6B is aberrantly expressed in GC and plays a key role in gastric carcinogenesis and metastasis through CXCR4 upregulation. Our work also suggests that KDM6B may be a potential oncogenic factor and a therapeutic target for GC.
Collapse
|
9
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
10
|
Chen YH, Chen CH, Chien CY, Su YY, Luo SD, Li SH. JMJD3 suppresses tumor progression in oral tongue squamous cell carcinoma patients receiving surgical resection. PeerJ 2022; 10:e13759. [PMID: 35855897 PMCID: PMC9288160 DOI: 10.7717/peerj.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Jumonji domain-containing-3 (JMJD3) is reported to be a histone H3 lysine 27 (H3K27) demethylase and a tumor suppressor gene. The present study designed to investigate the crucial role of JMJD3 in oral tongue squamous cell carcinoma (OTSCC) patients who received surgical resection. Methods We enrolled a total of 156 OTSCC patients receiving surgical resection, including 73 patients (47%) with high expression of JMJD3 and 83 patients (53%) harboring low expression of JMJD3. Two OTSCC cell lines, SAS and Cal 27, were used to explore the modulation of cancer. GSK-J4, a potent inhibitor of JMJD3, was used to treat the two OTSCC cell lines. The Chi-square test was performed to examine between-group differences in categorical variables; the Kaplan-Meier method was used to investigate survival outcome in univariate analysis, and the Cox regression model was used for multivariate analysis. Results The median follow-up period was 59.2 months and he five-year disease-free survival (DFS) and overall survival (OS) rates were 46.2% and 50.0%, respectively. Better five-year DFS (59% versus 35%) and five-year OS (63% versus 39%) were mentioned in patients with high expression of JMJD3 compared to those with low expression of JMJD3. High expression of JMJD3 was significantly associated with superior DFS and OS in the univariate and multivariate analyses. Following successful inhibition of JMJD3 by GSK-J4, western blotting analysis showed the decreased expression of Rb and p21. Conclusion Our study showed that high expression of JMJD3 is a good prognostic factor in OTSCC patients who underwent surgical resection.
Collapse
Affiliation(s)
- Yen-Hao Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Department of Nursing, School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Chang-Han Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yan-Ye Su
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
12
|
Tian C, Liu Y, Xue L, Zhang D, Zhang X, Su J, Chen J, Li X, Wang L, Jiao S. Sorafenib inhibits ovarian cancer cell proliferation and mobility and induces radiosensitivity by targeting the tumor cell epithelial–mesenchymal transition. Open Life Sci 2022; 17:616-625. [PMID: 35800071 PMCID: PMC9202537 DOI: 10.1515/biol-2022-0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Sorafenib, a pan-protein kinase inhibitor, inhibits the activity of various kinases (like vascular endothelial growth factor, platelet-derived growth factor, and rapidly accelerated fibrosarcoma) and clinically has been used to treat different human cancers. This study investigated its antitumor activity in ovarian cancer and the underlying molecular events. To achieve that, ovarian cancer SKOV-3 cells were treated with or without sorafenib (10 µM), transforming growth factor (TGF)-β1 (10 ng/mL), sorafenib (10 µM) + TGF-β1 (10 ng/mL), and TGF-β1 (10 ng/mL) + Ly2157299 (5 µM), followed by 8-Gy radiation. The cells were then subjected to cell viability, wound healing, Transwell, caspase-3 activity, and western blot assays. TGF-β1 treatment enhanced ovarian cancer cell epithelial–mesenchymal transition (EMT), whereas sorafenib and a selective TGF-β1 inhibitor Ly2157299 reversed tumor cell EMT, invasion, and expression of EMT markers (E-cadherin and vimentin). Sorafenib and Ly2157299 treatment also significantly reduced the tumor cell viability. Furthermore, both sorafenib and Ly2157299 significantly enhanced ovarian cancer cell radiosensitivity, as assessed by a caspase-3 activity assay. In conclusion, sorafenib inhibited ovarian cancer cell proliferation and mobility and induced tumor cell radiosensitivity. Molecularly, sorafenib could inhibit the TGF-β1-mediated EMT. Future studies will assess sorafenib anti-ovarian cancer activity plus TGF-β1 inhibitors in ovarian cancer in vivo.
Collapse
Affiliation(s)
- Chuntao Tian
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Ying Liu
- Department of Pathology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Lingfei Xue
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Dong Zhang
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Xiaotong Zhang
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Jing Su
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Jiaohong Chen
- Department of Oncology, The Sanmenxia Central Hospital , Henan 472000 , China
| | - Xiangke Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052 , China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University , Zhengzhou 450052 , China
| | - Shunchang Jiao
- Department of Oncology, The General Hospital of Chinese PLA , Beijing 100853 , China
| |
Collapse
|
13
|
Roy S, Sinha N, Huang B, Cline-Fedewa H, Gleicher N, Wang J, Sen A. Jumonji Domain-containing Protein-3 (JMJD3/Kdm6b) Is Critical for Normal Ovarian Function and Female Fertility. Endocrinology 2022; 163:6565906. [PMID: 35396990 PMCID: PMC9070484 DOI: 10.1210/endocr/bqac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/19/2022]
Abstract
In females, reproductive success is dependent on the expression of a number of genes regulated at different levels, one of which is through epigenetic modulation. How a specific epigenetic modification regulates gene expression and their downstream effect on ovarian function are important for understanding the female reproductive process. The trimethylation of histone3 at lysine27 (H3K27me3) is associated with gene repression. JMJD3 (or KDM6b), a jumonji domain-containing histone demethylase specifically catalyzes the demethylation of H3K27me3, that positively influences gene expression. This study reports that the expression of JMJD3 specifically in the ovarian granulosa cells (GCs) is critical for maintaining normal female fertility. Conditional deletion of Jmjd3 in the GCs results in a decreased number of total healthy follicles, disrupted estrous cycle, and increased follicular atresia culminating in subfertility and premature ovarian failure. At the molecular level, the depletion of Jmjd3 and RNA-seq analysis reveal that JMJD3 is essential for mitochondrial function. JMJD3-mediated reduction of H3K27me3 induces the expression of Lif (Leukemia inhibitory factor) and Ctnnb1 (β-catenin), that in turn regulate the expression of key mitochondrial genes critical for the electron transport chain. Moreover, mitochondrial DNA content is also significantly decreased in Jmjd3 null GCs. Additionally, we have uncovered that the expression of Jmjd3 in GCs decreases with age, both in mice and in humans. Thus, in summary, our studies highlight the critical role of JMJD3 in nuclear-mitochondrial genome coordination that is essential for maintaining normal ovarian function and female fertility and underscore a potential role of JMJD3 in female reproductive aging.
Collapse
Affiliation(s)
- Sambit Roy
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Niharika Sinha
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Binbin Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Holly Cline-Fedewa
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aritro Sen
- Reproductive and Developmental Sciences Program, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: Aritro Sen, PhD, Reproductive and Developmental Sciences Program, Department of Animal Sciences, 766 Service Rd, Interdisciplinary Science & Technology Building, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Hua C, Chen J, Li S, Zhou J, Fu J, Sun W, Wang W. KDM6 Demethylases and Their Roles in Human Cancers. Front Oncol 2021; 11:779918. [PMID: 34950587 PMCID: PMC8688854 DOI: 10.3389/fonc.2021.779918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer therapy is moving beyond traditional chemotherapy to include epigenetic approaches. KDM6 demethylases are dynamic regulation of gene expression by histone demethylation in response to diverse stimuli, and thus their dysregulation has been observed in various cancers. In this review, we first briefly introduce structural features of KDM6 subfamily, and then discuss the regulation of KDM6, which involves the coordinated control between cellular metabolism (intrinsic regulators) and tumor microenvironment (extrinsic stimuli). We further describe the aberrant functions of KDM6 in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose potential therapy of KDM6 enzymes based on their structural features, epigenetics, and immunomodulatory mechanisms, providing novel insights for prevention and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Shuting Li
- Wenzhou Medical University, Wenzhou, China
| | | | - Jiahong Fu
- Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Ha JH, Jayaraman M, Yan M, Dhanasekaran P, Isidoro C, Song YS, Dhanasekaran DN. Identification of GNA12-driven gene signatures and key signaling networks in ovarian cancer. Oncol Lett 2021; 22:719. [PMID: 34429759 PMCID: PMC8371953 DOI: 10.3892/ol.2021.12980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
With the focus on defining the oncogenic network stimulated by lysophosphatidic acid (LPA) in ovarian cancer, the present study sought to interrogate the oncotranscriptome regulated by the LPA-mediated signaling pathway. LPA, LPA-receptor (LPAR) and LPAR-activated G protein 12 α-subunit, encoded by G protein subunit α 12 (GNA12), all serve an important role in ovarian cancer progression. While the general signaling mechanism regulated by LPA/LPAR/GNA12 has previously been characterized, the global transcriptomic network regulated by GNA12 in ovarian cancer pathophysiology remains largely unknown. To define the LPA/LPAR/GNA12-orchestrated oncogenic networks in ovarian cancer, transcriptomic and bioinformatical analyses were conducted using SKOV3 cells, in which the expression of GNA12 was silenced. Array analysis was performed in Agilent SurePrint G3 Human Comparative Genomic Hybridization 8×60 microarray platform. The array results were validated using Kuramochi cells. Gene and functional enrichment analyses were performed using Database for Annotation, Visualization and Integrated Discovery, Search Tool for Retrieval of Interacting Genes and Cytoscape algorithms. The results indicated a paradigm in which GNA12 drove ovarian cancer progression by upregulating a pro-tumorigenic network with AKT1, VEGFA, TGFB1, BCL2L1, STAT3, insulin-like growth factor 1 and growth hormone releasing hormone as critical hub and/or bottleneck nodes. Moreover, GNA12 downregulated a growth-suppressive network involving proteasome 20S subunit (PSM) β6, PSM α6, PSM ATPase 5, ubiquitin conjugating enzyme E2 E1, PSM non-ATPase 10, NDUFA4 mitochondrial complex-associated, NADH:ubiquinone oxidoreductase subunit B8 and anaphase promoting complex subunit 1 as hub or bottleneck nodes. In addition to providing novel insights into the LPA/LPAR/GNA12-regulated oncogenic networks in ovarian cancer, the present study identified several potential nodes in this network that could be assessed for targeted therapy.
Collapse
Affiliation(s)
- Ji-Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Mingda Yan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Padmaja Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, University of Eastern Piedmont, I-17-28100 Novara, Italy
| | - Yong-Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Republic of Korea
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
16
|
Feng J, Li H, Li J, Meng P, Wang L, Liu C, Zhao S, Sun W, Zhang Y. hnRNPK knockdown alleviates NLRP3 inflammasome priming by repressing FLIP expression in Raw264.7 macrophages. Redox Rep 2021; 25:104-111. [PMID: 33269646 PMCID: PMC7717877 DOI: 10.1080/13510002.2020.1857157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objectives: Inflammation is an important predisposing and progressive factor in chronic kidney disease (CKD). Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is associated with many fundamental cellular processes, but in chronic inflammatory pathologies remains unclear. Methods: An in vitro peripheral inflammation model was established using lipopolysaccharide (LPS)-stimulated mouse RAW264.7 macrophages, followed by inflammasome activation by ATP treatment. Knockdown of hnRNPK by sihnRNPK and FLICE-like inhibitory protein (FLIP) by siFLIP transfection were achieved in Raw264.7 macrophages. ELISA was used to determine the expression of IL-1β, IL-18 and TNF-α. Real time PCR was applied to detect the mRNA levels of hnRNPK, NOD-like receptors family pyrin domain-containing 3 (NLRP3), FLIP, Caspase-1, IL-1β and IL-18. Western blot and immunofluorescence were performed to detect relevant protein expressions. Co-immunoprecipitation (Co-IP) was used to assess the interaction of hnRNPK with FLIP. Results: Results showed that LPS plus ATP activated NLRP3 inflammasome, which evidenced by the up-regulation of TNF-α, IL-1β and IL-18. Notably, hnRNPK and FLIP were significantly up-regulated in activated NLRP3 inflammasome of macrophages. HnRNPK or FLIP knockdown significantly suppressed the activation of NLRP3 inflammasome, as reflected by down-regulation of Caspase-1, IL-1β and IL-18. Importantly, hnRNPK could directly bind to FLIP in activated NLRP3 inflammasome. Discussion: Our findings suggest that hnRNPK could promote the activation of NLRP3 inflammasome by directly binding FLIP, which might provide potential new therapeutic targets for CKD.
Collapse
Affiliation(s)
- Junxia Feng
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hongyan Li
- Department of nephrology, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jingchun Li
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ping Meng
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Lina Wang
- Department of nephrology, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunli Liu
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shili Zhao
- Department of nephrology, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wei Sun
- The Central Laboratory, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yunfang Zhang
- Department of nephrology, Affiliated Huadu Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Punnia-Moorthy G, Hersey P, Emran AA, Tiffen J. Lysine Demethylases: Promising Drug Targets in Melanoma and Other Cancers. Front Genet 2021; 12:680633. [PMID: 34220955 PMCID: PMC8242339 DOI: 10.3389/fgene.2021.680633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been implicated in a variety of pathological processes including carcinogenesis. A major group of enzymes that influence epigenetic modifications are lysine demethylases (KDMs) also known as "erasers" which remove methyl groups on lysine (K) amino acids of histones. Numerous studies have implicated aberrant lysine demethylase activity in a variety of cancers, including melanoma. This review will focus on the structure, classification and functions of KDMs in normal biology and the current knowledge of how KDMs are deregulated in cancer pathogenesis, emphasizing our interest in melanoma. We highlight the current knowledge gaps of KDMs in melanoma pathobiology and describe opportunities to increases our understanding of their importance in this disease. We summarize the progress of several pre-clinical compounds that inhibit KDMs and represent promising candidates for further investigation in oncology.
Collapse
Affiliation(s)
- Gaya Punnia-Moorthy
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Jessamy Tiffen
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Mesenchymal Stem Cell-Derived Exosomal microRNA-3940-5p Inhibits Colorectal Cancer Metastasis by Targeting Integrin α6. Dig Dis Sci 2021; 66:1916-1927. [PMID: 32671583 DOI: 10.1007/s10620-020-06458-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Exosomes are potential tools for disease control by regulating intercellular communication through carrying proteins and RNAs between cells or remote organs. Exosome activities have aroused wide concerns in cancer biology and malignancy control. AIMS This study was performed to explore the roles of mesenchymal stem cell (MSC)-derived exosomes in colorectal cancer (CRC) progression. METHODS MSC-exosomal microRNAs (miRNAs) in CRC tissues were analyzed, and aberrantly expressed miRNAs in CRC tissues were obtained from the data available on the GEO database. Altered expression of miR-3940-5p was introduced to identify its role in CRC invasion and metastasis in both cell and animal models. The binding relationship between miR-3940-5p and Integrin alpha6 (ITGA6) was predicted on TargetScan and validated through a luciferase assay. The effects of ITGA6 on CRC were figured out. RESULTS MSC-derived exosomes carried miR-3940-5p into CRC cells. Up-regulation of miR-3940-5p inhibited epithelial-mesenchymal transition (EMT) and invasion of CRC cells, and suppressed the tumor metastasis and growth in vivo. miR-3940-5p was found to directly bind to ITGA6. Overexpression of ITGA6 promoted CRC cell invasion and EMT and tumor progression through upregulating the transforming growth factor-beta1 (TGF-β1) signaling. A TGF-β1-specific antagonist, Disitertide, blocked the functions of ITGA6 both in vivo and in vitro. CONCLUSION MSC-exosomal miR-3940-5p inhibits invasion and EMT of CRC cells as well as growth and metastasis of tumors through targeting ITGA6 and the following TGF-β1 inactivation. This study may provide novel insights into exosome-based treatment for CRC.
Collapse
|
19
|
Stenman A, Backman S, Johansson K, Paulsson JO, Stålberg P, Zedenius J, Juhlin CC. Pan-genomic characterization of high-risk pediatric papillary thyroid carcinoma. Endocr Relat Cancer 2021; 28:337-351. [PMID: 33827048 PMCID: PMC8111328 DOI: 10.1530/erc-20-0464] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
Pediatric papillary thyroid carcinomas (pPTCs) are often indolent tumors with excellent long-term outcome, although subsets of cases are clinically troublesome and recur. Although it is generally thought to exhibit similar molecular aberrancies as their counterpart tumors in adults, the pan-genomic landscape of clinically aggressive pPTCs has not been previously described. In this study, five pairs of primary and synchronously metastatic pPTC from patients with high-risk phenotypes were characterized using parallel whole-genome and -transcriptome sequencing. Primary tumors and their metastatic components displayed an exceedingly low number of coding somatic mutations and gross chromosomal alterations overall, with surprisingly few shared mutational events. Two cases exhibited one established gene fusion event each (SQSTM1-NTRK3 and NCOA4-RET) in both primary and metastatic tissues, and one case each was positive for a BRAF V600E mutation and a germline truncating CHEK2 mutation, respectively. One single case was without apparent driver events and was considered as a genetic orphan. Non-coding mutations in cancer-associated regions were generally not present. By expressional analyses, fusion-driven primary and metastatic pPTC clustered separately from the mutation-driven cases and the sole genetic orphan. We conclude that pPTCs are genetically indolent tumors with exceedingly stable genomes. Several mutations found exclusively in the metastatic samples which may represent novel genetic events that drive the metastatic behavior, and the differences in mutational compositions suggest early clonal divergence between primary tumors and metastases. Moreover, an overrepresentation of mutational and expressional dysregulation of immune regulatory pathways was noted among fusion-positive pPTC metastases, suggesting that these tumors might facilitate spread through immune evasive mechanisms.
Collapse
Affiliation(s)
- Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Klara Johansson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan O Paulsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
- Correspondence should be addressed to C C Juhlin:
| |
Collapse
|
20
|
Epigenetic regulation of TGF-β-induced EMT by JMJD3/KDM6B histone H3K27 demethylase. Oncogenesis 2021; 10:17. [PMID: 33637682 PMCID: PMC7910473 DOI: 10.1038/s41389-021-00307-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling pathways are well-recognized for their role in proliferation and epithelial–mesenchymal transition (EMT) of cancer cells, but much less is understood about their contribution to interactions with other signaling events. Recent studies have indicated that crosstalk between TGF-β and Ras signaling makes a contribution to TGF-β-mediated EMT. Here, we demonstrate that Jumonji domain containing-3 (JMJD3 also called KDM6B) promotes TGF-β-mediated Smad activation and EMT in Ras-activated lung cancer cells. JMJD3 in lung cancer patients was significantly increased and JMJD3 expression in lung tumor tissues was correlated with expression of K-Ras or H-Ras in particular, and its expression was regulated by Ras activity in lung cancer cells. JMJD3 promotes TGF-β-induced Smad activation and EMT in Ras-activated lung cancer cells through the induction of syntenin, a protein that regulates TGF-β receptor activation upon ligand binding. Tissue array and ChIP analysis revealed that JMJD3 epigenetically induces syntenin expression by directly regulating H3K27 methylation levels. Mechanical exploration identified a physical and functional association of JMJD3 with syntenin presiding over the TGF-β in Ras-activated lung cancer cells. Taken together, these findings provide new insight into the mechanisms by which JMJD3 promotes syntenin expression resulting in oncogenic Ras cooperation with TGF-β to promote EMT.
Collapse
|
21
|
Lagunas-Rangel FA. KDM6B (JMJD3) and its dual role in cancer. Biochimie 2021; 184:63-71. [PMID: 33581195 DOI: 10.1016/j.biochi.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic modifications play a fundamental role in the regulation of gene expression and cell fate. During the development of cancer, epigenetic modifications appear that favor cell proliferation and migration, but at the same time prevent differentiation and apoptosis, among other processes. KDM6B is a histone demethylase that specifically removes methyl groups from H3K27me3, thus allowing re-expression of its target genes. It is currently known that KDM6B can act as both a tumor suppressor and an oncogene depending on the cellular context. Therefore, in this work we summarize the current knowledge of the role that KDM6B plays in different oncological contexts, and we try to orient it towards its clinical application.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|
22
|
Jiang Y, Li F, Gao B, Ma M, Chen M, Wu Y, Zhang W, Sun Y, Liu S, Shen H. KDM6B-mediated histone demethylation of LDHA promotes lung metastasis of osteosarcoma. Theranostics 2021; 11:3868-3881. [PMID: 33664867 PMCID: PMC7914357 DOI: 10.7150/thno.53347] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
Rationale: Osteosarcoma (OS), the most common type of bone tumor, which seriously affects the patients' limb function and life quality. OS has a strong tendency of lung metastasis, and the five-year survival rate of patients with metastatic osteosarcoma is less than 20%. Thus, new treatment targets and strategies are urgently needed. Methods: The expression of the histone demethylase KDM6B and H3K27me3 levels in OS specimens were analyzed using quantitative PCR and immunohistochemical assays. The biological functions of KDM6B were determined using in vitro transwell, wound healing assays, and an in vivo orthotopic injection-induced lung metastasis model. Subsequently, chromatin immunoprecipitation sequencing (ChIP-seq) combined with transcriptomic RNA sequencing (RNA-seq), and subsequent ChIP-qPCR, western blot, and aerobic glycolysis assays were used to explore the mechanism of KDM6B function and validate the candidate target gene of KDM6B. Results: KDM6B expression was significantly upregulated in OS patients, and high KDM6B expression was associated with poorer prognosis in OS patients. Targeting KDM6B significantly inhibited OS cell migration in vitro and lung metastasis in vivo. RNA-seq and ChIP-seq analysis revealed that KDM6B increases lactate dehydrogenase LDHA expression in OS cells by directly mediating H3K27me3 demethylation. The phenotypes of inhibited cell metastasis in KDM6B-knockdown OS cells was reversed upon overexpression of LDHA. Finally, a small molecule inhibitor targeting KDM6B significantly inhibited OS cell migration in vitro and lung metastasis in vivo. Conclusions: Collectively, we elucidated that upregulated KDM6B facilitates tumor metastasis in OS via modulating LDHA expression. Our findings deepen the recognition of OS metastasis mechanism and suggest that KDM6B might be a new potential therapeutic target for the treatment of OS (especially highly metastatic OS).
Collapse
|
23
|
The Functions of the Demethylase JMJD3 in Cancer. Int J Mol Sci 2021; 22:ijms22020968. [PMID: 33478063 PMCID: PMC7835890 DOI: 10.3390/ijms22020968] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3’s involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.
Collapse
|
24
|
Das P, Taube JH. Regulating Methylation at H3K27: A Trick or Treat for Cancer Cell Plasticity. Cancers (Basel) 2020; 12:E2792. [PMID: 33003334 PMCID: PMC7600873 DOI: 10.3390/cancers12102792] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Properly timed addition and removal of histone 3 lysine 27 tri-methylation (H3K27me3) is critical for enabling proper differentiation throughout all stages of development and, likewise, can guide carcinoma cells into altered differentiation states which correspond to poor prognoses and treatment evasion. In early embryonic stages, H3K27me3 is invoked to silence genes and restrict cell fate. Not surprisingly, mutation or altered functionality in the enzymes that regulate this pathway results in aberrant methylation or demethylation that can lead to malignancy. Likewise, changes in expression or activity of these enzymes impact cellular plasticity, metastasis, and treatment evasion. This review focuses on current knowledge regarding methylation and de-methylation of H3K27 in cancer initiation and cancer cell plasticity.
Collapse
Affiliation(s)
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76706, USA;
| |
Collapse
|
25
|
Zhou Y, Tian Q, Zheng C, Yang J, Fan J, Shentu Y. Myocardial infarction-induced anxiety-like behavior is associated with epigenetic alterations in the hippocampus of rat. Brain Res Bull 2020; 164:172-183. [PMID: 32871241 DOI: 10.1016/j.brainresbull.2020.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental animal studies indicate that there is a high risk for the incidence of neuropsychiatric disorders suffering from cardiovascular diseases such as myocardial infarction (MI). However, the potential mechanism of this association remains largely unknown. This study sought to evaluate whether epigenetic alterations in the hippocampus is associated with MI-induced anxiety-like behavior in rats. MI was induced by occlusion of the left anterior descending artery in adult female rats. Anxiety-like behavior was examined by elevated plus maze, light-dark box, and open field test. Relative gene and protein levels expression in the hippocampus were tested by qRT-PCR and western blotting, respectively. We found that MI rats exhibited anxiety-like behavior compared with those in controls, and there is a positive correlation between MI and anxiety-like behavior. We also found that MI decreased KDM6B while increased SIRT1 expression in the hippocampus of MI rats relative to those in controls. In addition, MI not only increased levels of IL-1β, bax, and cleaved-caspase 3, but also increased Iba-1 and GFAP expression in the hippocampus, as compared to those in controls, suggesting a promotion of neuro-inflammation and apoptosis in hippocampus. Co-immunoprecipitation assay illustrated that H3K27me3 functioned by counteracting with YAP activation in the hippocampus of MI rats relative to those in controls. Together, these results suggest a potential role of hippocampal epigenetic signaling in MI-induced anxiety-like behavior in rats, and pharmacological targeting KDM6B or SIRT1 could be a strategy to ameliorate anxiety-like behavior induced by MI.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuyun Tian
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi, 334709, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
26
|
DEAD-Box Helicase 4 (Ddx4) + Stem Cells Sustain Tumor Progression in Non-Serous Ovarian Cancers. Int J Mol Sci 2020; 21:ijms21176096. [PMID: 32847044 PMCID: PMC7503840 DOI: 10.3390/ijms21176096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
DEAD-Box Helicase 4 (Ddx4)+ ovarian stem cells are able to differentiate into several cell types under appropriate stimuli. Ddx4 expression has been correlated with poor prognosis of serous ovarian cancer (OC), while the potential role of Ddx4+ cells in non-serous epithelial OC (NS-EOC) is almost unexplored. The aim of this study was to demonstrate the presence of Ddx4+ cells in NS-EOC and investigate the effect of follicle-stimulating hormone (FSH) on this population. Increased Ddx4 expression was demonstrated in samples from patients with advanced NS-EOC, compared to those with early-stage disease. Under FSH stimulation, OC-derived Ddx4+ cells differentiated into mesenchymal-like (ML) cells, able to deregulate genes involved in cell migration, invasiveness, stemness and chemoresistance in A2780 OC cells. This effect was primarily induced by ML-cells deriving from advanced NS-EOC, suggesting that a tumor-conditioned germ cell niche inhabits its microenvironment and is able to modulate, in a paracrine manner, tumor cell behavior through transcriptome modulation.
Collapse
|
27
|
Zhang J, Ying Y, Li M, Wang M, Huang X, Jia M, Zeng J, Ma C, Zhang Y, Li C, Wang X, Shu XS. Targeted inhibition of KDM6 histone demethylases eradicates tumor-initiating cells via enhancer reprogramming in colorectal cancer. Am J Cancer Res 2020; 10:10016-10030. [PMID: 32929331 PMCID: PMC7481431 DOI: 10.7150/thno.47081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor-initiating cells (TICs) maintain heterogeneity within tumors and seed metastases at distant sites, contributing to therapeutic resistance and disease recurrence. In colorectal cancer (CRC), strategy that effectively eradicates TICs and is of potential value for clinical use still remains in need. Methods: The anti-tumorigenic activity of a small-molecule inhibitor of KDM6 histone demethylases named GSK-J4 in CRC was evaluated by in vitro assays and in vivo imaging of xenografted tumors. Sphere formation, flow cytometry analysis of cell surface markers and intestinal organoid formation were performed to examine the impact of GSK-J4 on TIC properties. Transcriptome analysis and global profiling of H3K27ac, H3K27me3, and KDM6A levels by ChIP-seq were conducted to elucidate how KDM6 inhibition reshapes epigenetic landscape and thereby eliminating TICs. Results: GSK-J4 alleviated the malignant phenotypes of CRC cells in vitro and in vivo, sensitized them to chemotherapeutic treatment, and strongly repressed TIC properties and stemness-associated gene signatures in these cells. Mechanistically, KDM6 inhibition induced global enhancer reprogramming with a preferential impact on super-enhancer-associated genes, including some key genes that control stemness in CRC such as ID1. Besides, expression of both Kdm6a and Kdm6b was more abundant in mouse intestinal crypt when compared with upper villus and inhibition of their activities blocked intestinal organoid formation. Finally, we unveiled the power of KDM6B in predicting both the overall survival outcome and recurrence of CRC patients. Conclusions: Our study provides a novel rational strategy to eradicate TICs through reshaping epigenetic landscape in CRC, which might also be beneficial for optimizing current therapeutics.
Collapse
|
28
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
29
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Li C, Du L, Ren Y, Liu X, Jiao Q, Cui D, Wen M, Wang C, Wei G, Wang Y, Ji A, Wang Q. SKP2 promotes breast cancer tumorigenesis and radiation tolerance through PDCD4 ubiquitination. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:76. [PMID: 30760284 PMCID: PMC6375223 DOI: 10.1186/s13046-019-1069-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
Background S-phase kinase-associated protein 2 (SKP2) is an oncogene and cell cycle regulator that specifically recognizes phosphorylated cell cycle regulator proteins and mediates their ubiquitination. Programmed cell death protein 4 (PDCD4) is a tumor suppressor gene that plays a role in cell apoptosis and DNA-damage response via interacting with eukaryotic initiation factor-4A (eIF4A) and P53. Previous research showed SKP2 may interact with PDCD4, however the relationship between SKP2 and PDCD4 is unclear. Methods To validate the interaction between SKP2 and PDCD4, mass spectrometric analysis and reciprocal co-immunoprecipitation (Co-IP) experiments were performed. SKP2 stably overexpressed or knockdown breast cancer cell lines were established and western blot was used to detect proteins changes before and after radiation. In vitro and in vivo experiments were performed to verify whether SKP2 inhibits cell apoptosis and promotes DNA-damage response via PDCD4 suppression. SMIP004 was used to test the effect of radiotherapy combined with SKP2 inhibitor. Results We found that SKP2 remarkably promoted PDCD4 phosphorylation, ubiquitination and degradation. SKP2 promoted cell proliferation, inhibited cell apoptosis and enhanced the response to DNA-damage via PDCD4 suppression in breast cancer. SKP2 and PDCD4 showed negative correlation in human breast cancer tissues. Radiotherapy combine with SKP2 inhibitor SMIP004 showed significant inhibitory effects on breast cancer cells in vitro and in vivo. Conclusions We identify PDCD4 as an important ubiquitination substrate of SKP2. SKP2 promotes breast cancer tumorigenesis and radiation tolerance via PDCD4 degradation. Radiotherapy combine with SKP2-targeted adjuvant therapy may improve breast cancer patient survival in clinical medicine. Electronic supplementary material The online version of this article (10.1186/s13046-019-1069-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ce Li
- School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Yidan Ren
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Xiaoyan Liu
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qinlian Jiao
- International Biotechnology R&D Center, Shandong University School of Ocean, 180 Wenhua Xi Road, Weihai, 264209, Shandong, China
| | - Donghai Cui
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mingxin Wen
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Guangwei Wei
- Department of Human Anatomy and Key Laboratory of Experimental Teratology, Ministry of Education, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Tianqiao District, Jinan, 250033, Shandong, China
| | - Aiguo Ji
- School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Qin Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
31
|
Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: A View on Paradoxical Roles of KDM6B and EZH2. EPIGENOMES 2018; 3:epigenomes3010001. [PMID: 34991274 PMCID: PMC8594212 DOI: 10.3390/epigenomes3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
EMT (epithelial to mesenchymal transition) is a plastic phenomenon involved in metastasis formation. Its plasticity is conferred in a great part by its epigenetic regulation. It has been reported that the trimethylation of lysine 27 histone H3 (H3K27me3) was a master regulator of EMT through two antagonist enzymes that regulate this mark, the methyltransferase EZH2 (enhancer of zeste homolog 2) and the lysine demethylase KDM6B (lysine femethylase 6B). Here we report that EZH2 and KDM6B are overexpressed in numerous cancers and involved in the aggressive phenotype and EMT in various cell lines by regulating a specific subset of genes. The first paradoxical role of these enzymes is that they are antagonistic, but both involved in cancer aggressiveness and EMT. The second paradoxical role of EZH2 and KDM6B during EMT and cancer aggressiveness is that they are also inactivated or under-expressed in some cancer types and linked to epithelial phenotypes in other cancer cell lines. We also report that new cancer therapeutic strategies are targeting KDM6B and EZH2, but the specificity of these treatments may be increased by learning more about the mechanisms of action of these enzymes and their specific partners or target genes in different cancer types.
Collapse
|
32
|
Soleimani A, Pashirzad M, Avan A, Ferns GA, Khazaei M, Hassanian SM. Role of the transforming growth factor-β signaling pathway in the pathogenesis of colorectal cancer. J Cell Biochem 2018; 120:8899-8907. [PMID: 30556274 DOI: 10.1002/jcb.28331] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway plays an important role in cancer cell proliferation, growth, metastasis, and apoptosis. It has been shown that TGF-β acts as a tumor suppressor in the early stages of the disease, and as a tumor promoter in its late stages. Mutations in the TGF-β signaling components, the TGF-β receptors and cytoplasmic signaling transducers, are frequently observed in colorectal carcinomas. Exploiting specific TGF-β receptor agonist and antagonist with antitumor properties may be a way of controlling cancer progression. This review summarizes the regulatory role of TGF-β signaling in the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Pashirzad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|