1
|
Li J, Hu YP, Liang XL, Liu MW. Sodium Houttuyniae attenuates ferroptosis by regulating TRAF6-c-Myc signaling pathways in lipopolysaccharide-induced acute lung injury (ALI). BMC Pharmacol Toxicol 2024; 25:63. [PMID: 39243105 PMCID: PMC11380410 DOI: 10.1186/s40360-024-00787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
The impact of Sodium Houttuyniae (SH) on lipopolysaccharide (LPS)-induced ALI has been investigated extensively. However, it remains ambiguous whether ferroptosis participates in this process. This study aimed to find out the impacts and probable mechanisms of SH on LPS-induced ferroptosis. A rat ALI model and type II alveolar epithelial (ATII) cell injury model were treated with LPS. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, and Giemsa staining were executed to ascertain the effects of SH on LPS-induced ALI. Moreover, Transmission electron microscopy, Cell Counting Kit-8 (CCK8), ferrous iron colorimetric assay kit, Immunohistochemistry, Immunofluorescence, Reactive oxygen species assay kit, western blotting (Wb), and qRT-PCR examined the impacts of SH on LPS-induced ferroptosis and ferroptosis-related pathways. Theresults found that by using SH treatment, there was a remarkable attenuation of ALI by suppressing LPS-induced ferroptosis. Ferroptosis was demonstrated by a decline in the levels of glutathione peroxidase 4 (GPX4), FTH1, and glutathione (GSH) and a surge in the accumulation of malondialdehyde (MDA), reactive oxygen species (ROS), NOX1, NCOA4, and Fe2+, and disruption of mitochondrial structure, which were reversed by SH treatment. SH suppressed ferroptosis by regulating TRAF6-c-Myc in ALI rats and rat ATII cells. The results suggested that SH treatment attenuated LPS-induced ALI by repressing ferroptosis, and the mode of action can be linked to regulating the TRAF6-c-Myc signaling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Juan Li
- Department of Respiratory and Critical Care Medicine, Third People's Hospital of Yuxi City, Yuxi, Yunnan, 653100, China
| | - Yan-Ping Hu
- Department of Neurology, Third People's Hospital of Yuxi City, Yuxi, Yunnan, 653100, China
| | - Xing-Ling Liang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ming-Wei Liu
- Department of Emergency, People's Hospital of Dali Bai Autonomous Prefecture, No. 35 Renmin South Road, Xiaguan Street, Dali, Yunnan, 671000, China.
| |
Collapse
|
2
|
Li M, Sun W, Fu C, Xu S, Wang C, Chen H, Zhu X. Predictive value of serum MED1 and PGC-1α for bronchopulmonary dysplasia in preterm infants. BMC Pulm Med 2024; 24:363. [PMID: 39069619 PMCID: PMC11285520 DOI: 10.1186/s12890-024-03145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE This study aimed to predict the bronchopulmonary dysplasia (BPD) in preterm infants with a gestational age(GA) < 32 weeks utilizing clinical data, serum mediator complex subunit 1 (MED1), and serum peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α). METHODS This prospective observational study enrolled 70 preterm infants with GA < 32 weeks. The infants were categorized into two groups: non-BPD group(N = 35) and BPD group(N = 35), including 25 cases with mild BPD and 10 patients with moderate/severe subgroups. We performed multifactorial regression analysis to investigate the postnatal risk factors for BPD. Furthermore, we compared serum levels of biomarkers, including MED1 and PGC-1α, among infants with and without BPD at postnatal days 1, 7, 14, 28, and PMA 36 weeks. A logistic regression model was constructed to predict BPD's likelihood using clinical risk factors and serum biomarkers. RESULTS Serum levels of MED1 on the first postnatal day, PGC-1α on the 1st, 7th, and 28th days, and PMA at 36 weeks were significantly lower in the BPD group than in the non-BPD group (P < 0.05). Furthermore, the predictive model for BPD was created by combing serum levels of MED1 and PGC-1α on postnatal day 1 along with clinical risk factors such as frequent apnea, mechanical ventilation time > 7 d, and time to reach total enteral nutrition. Our predictive model had a high predictive accuracy(C statistics of 0.989) . CONCLUSION MED1and PGC-1α could potentially serve as valuable biomarkers, combined with clinical factors, to aid clinicians in the early diagnosis of BPD.
Collapse
Affiliation(s)
- Mengzhao Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, China
| | - Wenqiang Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Changchang Fu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Shuyang Xu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Chengzhu Wang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Huijuan Chen
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Feng J, Zhong H, Mei S, Tang R, Zhou Y, Xing S, Gao Y, Xu Q, He Z. LPS-induced monocarboxylate transporter-1 inhibition facilitates lactate accumulation triggering epithelial-mesenchymal transformation and pulmonary fibrosis. Cell Mol Life Sci 2024; 81:206. [PMID: 38709307 DOI: 10.1007/s00018-024-05242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.
Collapse
Affiliation(s)
- Jinhua Feng
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Han Zhong
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Shuya Mei
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Ri Tang
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Yang Zhou
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Shunpeng Xing
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Yuan Gao
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China
| | - Qiaoyi Xu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China.
| | - Zhengyu He
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, 200127, China.
| |
Collapse
|
4
|
Meng T, Zhang D, Zhang Y, Tian P, Chen J, Liu A, Li Y, Song C, Zheng Y, Su G. Tamoxifen induced cardiac damage via the IL-6/p-STAT3/PGC-1α pathway. Int Immunopharmacol 2023; 125:110978. [PMID: 37925944 DOI: 10.1016/j.intimp.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
Tamoxifen (TAM) is an effective anticancer drug for breast and ovarian cancer. However, increased risk of cardiotoxicity is a long-term clinical problem associated with TAM, while the underlying mechanisms remain unclear. Here, we performed experiments in cardiomyocytes and tumor-bearing or nontumor-bearing mice, and demonstrated that TAM induced cardiac injury via the IL-6/p-STAT3/PGC-1α/IL-6 feedback loop, which is responsible for reactive oxygen species (ROS) accumulation. Compared with non-tumor bearing mice, tumor-bearing mice showed stronger cardiac toxicity after TAM injection, although there was no significant difference. In vitro experiments demonstrated STAT3 phosphorylation inhibitor can increase PGC-1α expression and protect cardiomyocyte via decreasing ROS. Since tumor has higher STAT3 phosphorylation and IL-6 expression level, our research results indicated combining TAM and STAT3 inhibitor might be an effective treatment strategy which can provide both tumor killing and cardioprotective function. Further in vivo research is needed to fully elucidate the effect and mechanisms of the combination therapy of TAM and STAT3 inhibitor.
Collapse
Affiliation(s)
- Tingting Meng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Zhang
- Jinan Central Hospital, Jinan, Shandong, China
| | - Yu Zhang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Tian
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Jianlin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Weifang Medical University, Weifang, China
| | - Anbang Liu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunhong Song
- Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
5
|
Cheng Y, Yang X, Wang Y, Ding Q, Huang Y, Zhang C. The role of the Gas6/TAM signal pathway in the LPS-induced pulmonary epithelial cells injury. Mol Immunol 2023; 163:181-187. [PMID: 37820442 DOI: 10.1016/j.molimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is an acute inflammatory respiratory disease. The interaction between growth arrest-specific 6 (Gas6) and tyrosine kinases of the Tyro3, Axl, Mer (TAM) family plays an important role in a variety of physiological and pathological processes, including inflammation. In this study, we mainly clarified the mechanism of the Gas6/TAM signal pathway in lipopolysaccharide (LPS)-induced pulmonary epithelial cells (BEAS-2B cells) injury. METHODS We cultured BEAS-2B cells in vitro and established a LPS-induced BEAS-2B cells injury model. Then, the siRNA sequence (siGas6-2) was transfected into cells. The expression of Gas6/TAM was measured based on quantitative reverse transcription polymerase chain reaction (qRT-RCR) and western blot (WB). Cell proliferation and apoptosis were measured by cell counting Kit-8 (CCK-8) and flow cytometry. The expression of pro-inflammatory factors was measured by qRT-RCR and WB. RESULTS Our study showed that when the 40 μg/mL LPS-induced BEAS-2B cells injury model was established, cell viability was significantly reduced, but the Gas6/TAM signal pathway was activated. When transfection with siGas6-2, low expression of Gas6 directly reduced the expression of downstream TAM receptors. Furthermore, the inhibition of the Gas6/TAM signal pathway significantly reduced the occurrence of cell apoptosis and the expression of inflammatory factors, and promoted cell proliferation. CONCLUSION Our research indicated that Gas6/TAM played an important role in cell proliferation, apoptosis, and inflammatory response in the LPS-induced BEAS-2B cells injury, and Gas6/TAM may be a new target in the treatment of ALI in the future.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Ying Wang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Quan Ding
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Yu Huang
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China.
| |
Collapse
|
6
|
Kuppuswami J, Senthilkumar GP. Nutri-stress, mitochondrial dysfunction, and insulin resistance-role of heat shock proteins. Cell Stress Chaperones 2023; 28:35-48. [PMID: 36441381 PMCID: PMC9877269 DOI: 10.1007/s12192-022-01314-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Excess nutrient flux into the cellular energy system results in a scenario of cellular metabolic stress in diseases involving insulin resistance, such as type 2 diabetes, referred to as nutri-stress and results in cellular bioenergetic imbalance, which leads to insulin resistance and disease. Under nutri-stress, the heat shock response system is compromised due to metabolic abnormalities that disturb energy homeostasis. Heat shock proteins (HSPs) are the chief protectors of intracellular homeostasis during stress. Heat shock response (HSR) impairment contributes to several metabolic pathways that aggravate chronic hyperglycaemia and insulin resistance, highlighting a central role in disease pathogenesis. This article discusses the role of nutri-stress-related molecular events in causing insulin resistance and the nature of the roles played by heat shock proteins in some of the crucial checkpoints of the molecular networks involved in insulin resistance. Ample evidence suggests that the heat shock machinery regulates critical pathways in mitochondrial function and energy metabolism and that cellular energy status highly influences it. Weakening of HSPs, therefore, leads to loss of their vital cytoprotective functions, propagating nutri-stress in the system. Further research into the mechanistic roles of HSPs in metabolic homeostasis will help widen our understanding of lifestyle diseases, their onset, and complications. These inducible proteins may be crucial to attenuating lifestyle risk factors and disease management.
Collapse
Affiliation(s)
- Jayashree Kuppuswami
- Department of Biochemistry, Jawaharlal Institute of Post-Graduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | | |
Collapse
|
7
|
Robinson C, Lockey RF, Kolliputi N. Can PPAR γ Keep Cadmium in Check? Biomolecules 2022; 12:biom12081094. [PMID: 36008989 PMCID: PMC9405879 DOI: 10.3390/biom12081094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Cd, a naturally occurring endocrine toxin found in tobacco leaves, originates in the environment and enters the body through inhalation, targeting the lungs and kidneys. A study published by Larsen-Carey et al. revealed that cadmium mediates the persistence of classically activated lung macrophages to exacerbate lung injury. The research discovered a novel role for PPAR γ as an effective regulator for the alternative activation of macrophages in response to Cd and Cd-induced lung injury.
Collapse
|
8
|
Shi X, Li T, Liu Y, Yin L, Xiao L, Fu L, Zhu Y, Chen H, Wang K, Xiao X, Zhang H, Tan S, Tan S. HSF1 Protects Sepsis-Induced Acute Lung Injury by Inhibiting NLRP3 Inflammasome Activation. Front Immunol 2022; 13:781003. [PMID: 35720321 PMCID: PMC9199371 DOI: 10.3389/fimmu.2022.781003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an important transcription factor, heat shock factor 1 (HSF1) plays an endogenous anti-inflammation role in the body and can alleviate multiple organ dysfunction caused by sepsis, which contributes to an uncontrolled inflammatory response. The NLRP3 inflammasome is a supramolecular complex that plays key roles in immune surveillance. Inflammation is accomplished by NLRP3 inflammasome activation, which leads to the proteolytic maturation of IL-1β and pyroptosis. However, whether HSF1 is involved in the activation of the NLRP3 inflammasome in septic acute lung injury (ALI) has not been reported. Here, we show that HSF1 suppresses NLRP3 inflammasome activation in transcriptional and post-translational modification levels. HSF1 can repress NLRP3 expression via inhibiting NF-κB phosphorylation. HSF1 can inhibit caspase-1 activation and IL-1β maturation via promoting NLRP3 ubiquitination. Our finding not only elucidates a novel mechanism for HSF1-mediated protection of septic ALI but also identifies new therapeutic targets for septic ALI and related diseases.
Collapse
Affiliation(s)
- Xueyan Shi
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research, Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union, Medical College, Beijing, China
| | - Tao Li
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Medical College of Jiaying University, Meizhou, China
| | - Yanting Liu
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Leijin Yin
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lan Xiao
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liyao Fu
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaxi Zhu
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Huan Chen
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Kangkai Wang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xianzhong Xiao
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Huali Zhang
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Sichuang Tan
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sipin Tan
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
9
|
Cao Z, Qin H, Huang Y, Zhao Y, Chen Z, Hu J, Gao Q. Crosstalk of pyroptosis, ferroptosis, and mitochondrial aldehyde dehydrogenase 2-related mechanisms in sepsis-induced lung injury in a mouse model. Bioengineered 2022; 13:4810-4820. [PMID: 35188436 PMCID: PMC8973599 DOI: 10.1080/21655979.2022.2033381] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acute lung injury (ALI) is a common complication of sepsis. Mitochondrial aldehyde dehydrogenase 2 (ALDH2), an enzyme involved in aldehyde metabolism, exerts a protective effect against sepsis. This study investigated the possible mechanisms underlying the roles of ALDH2, pyroptosis, and ferroptosis in sepsis-induced lung injury. A mouse model of sepsis-induced lung injury was established by cecal ligation and puncture (CLP); lung morphology was evaluated by calculation of lung coefficient, hematoxylin–eosin staining, and electron microscopy. Malondialdehyde (MDA), reactive oxygen species (ROS), and 4-hydroxy-2-nonenal (4-HNE) protein expression levels were used to detect the level of lipid oxidative stress. In addition, total iron was detected using an iron detection kit, and the expression of ferroptosis-related proteins (PTGS2, GPX4), pyroptosis-related proteins, and ALDH2 was examined using western blotting. To further examine the likely mechanisms, the ferroptosis inhibitor ferrostatin 1 (Fer-1), NLRP3 inflammasome inhibitor MCC950, and ALDH2 activator Alda-1 were added. CLP-treated mice exhibited destruction of lung tissue morphology, lipid peroxidation injury, iron content, and increased lung PTGS2 protein expression, accompanied by a decrease in GPX4 protein expression. CLP also downregulated ALDH2 expression and increased the expression of the NLRP3 inflammasome and pyroptosis-related proteins. These adverse effects of CLP were relieved by Alda-1, Fer-1, and MCC950 treatment. In conclusion, both pyroptosis and ferroptosis participate in CLP-induced ALI, and ALDH2 plays a protective role by reducing pyroptosis and ferroptosis. This study provides a scientific basis for the treatment of lung injury in sepsis.
Collapse
Affiliation(s)
- Zhenzhen Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, P. R. China
| | - Hongqian Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, P. R. China
| | - Yuhui Huang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, P.R. China.,Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, P.R. China
| | - Yingxue Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, P. R. China
| | - Zhipeng Chen
- Clinical Medical College, Bengbu Medical College, Anhui, P. R. China
| | - Junfeng Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Anhui, P. R. China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, P.R. China.,Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, Anhui, P.R. China
| |
Collapse
|
10
|
Mechanism of the switch from NO to H 2O 2 in endothelium-dependent vasodilation in diabetes. Basic Res Cardiol 2022; 117:2. [PMID: 35024970 PMCID: PMC8886611 DOI: 10.1007/s00395-022-00910-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction is prevalent among people with diabetes and is correlated with cardiac mortality. Compromised endothelial-dependent dilation (EDD) is an early event in the progression of diabetes, but its mechanisms remain incompletely understood. Nitric oxide (NO) is the major endothelium-dependent vasodilatory metabolite in the healthy coronary circulation, but this switches to hydrogen peroxide (H2O2) in coronary artery disease (CAD) patients. Because diabetes is a significant risk factor for CAD, we hypothesized that a similar NO-to-H2O2 switch would occur in diabetes. Vasodilation was measured ex vivo in isolated coronary arteries from wild type (WT) and microRNA-21 (miR-21) null mice on a chow or high-fat/high-sugar diet, and B6.BKS(D)-Leprdb/J (db/db) mice using myography. Myocardial blood flow (MBF), blood pressure, and heart rate were measured in vivo using contrast echocardiography and a solid-state pressure sensor catheter. RNA from coronary arteries, endothelial cells, and cardiac tissues was analyzed via quantitative real-time PCR for gene expression, and cardiac protein expression was assessed via western blot analyses. Superoxide was detected via electron paramagnetic resonance. (1) Ex vivo coronary EDD and in vivo MBF were impaired in diabetic mice. (2) Nω-Nitro-L-arginine methyl ester, an NO synthase inhibitor (L-NAME), inhibited ex vivo coronary EDD and in vivo MBF in WT. In contrast, polyethylene glycol-catalase, an H2O2 scavenger (Peg-Cat), inhibited diabetic mouse EDD ex vivo and MBF in vivo. (3) miR-21 was upregulated in diabetic mouse endothelial cells, and the deficiency of miR-21 prevented the NO-to-H2O2 switch and ameliorated diabetic mouse vasodilation impairments. (4) Diabetic mice displayed increased serum NO and H2O2, upregulated mRNA expression of Sod1, Sod2, iNos, and Cav1, and downregulated Pgc-1α in coronary arteries, but the deficiency of miR-21 reversed these changes. (5) miR-21-deficient mice exhibited increased cardiac PGC-1α, PPARα and eNOS protein and reduced endothelial superoxide. (6) Inhibition of PGC-1α changed the mRNA expression of genes regulated by miR-21, and overexpression of PGC-1α decreased the expression of miR-21 in high (25.5 mM) glucose treated coronary endothelial cells. Diabetic mice exhibit a NO-to-H2O2 switch in the mediator of coronary EDD, which contributes to microvascular dysfunction and is mediated by miR-21. This study represents the first mouse model recapitulating the NO-to-H2O2 switch seen in CAD patients in diabetes.
Collapse
|
11
|
Cui T, Wang Y, Song P, Yi X, Chen J, Yang Y, Wang H, Kang P, Guo S, Liu L, Li K, Jian Z, Li S, Li C. HSF1-Dependent Autophagy Activation Contributes to the Survival of Melanocytes Under Oxidative Stress in Vitiligo. J Invest Dermatol 2021; 142:1659-1669.e4. [PMID: 34780715 DOI: 10.1016/j.jid.2021.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Autophagy plays a protective role in oxidative stress‒induced melanocyte death. Dysregulated autophagy increases the sensitivity of melanocytes in response to oxidative damage and promotes melanocyte degeneration in vitiligo. However, the molecular mechanism underlying this process is not fully understood. In this study, using RNA-sequencing technology, we compared the transcriptome change between normal and vitiligo melanocytes with or without treatment of oxidative stress. We found that ATG5 and ATG12, the critical components for autophagosome formation, were significantly reduced in vitiligo melanocytes under oxidative stress. Mechanistically, HSF1 is the prime transcription factor for both ATG5 and ATG12, accounting for the reduced level of ATG5 and ATG12 in vitiligo melanocytes. Deficiency of HSF1 led to accumulation of intracellular ROS, imbalance of mitochondrion membrane potential, and apoptosis in melanocytes exposure to oxidative stress. Furthermore, overexpression of HSF1 could ameliorate oxidative stress‒induced melanocytes death through the activation of autophagy by upregulating ATG5 and ATG12. These findings suggested that targeting HSF1-ATG5/12 axis could prevent oxidative stress‒induced melanocyte death and may be used as a therapeutic strategy for vitiligo treatment.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Shen H, Zhu F, Li J, Tang S, Zhang Y, Zhang J. Protective Effect of Asiaticoside on Radiation-induced Proliferation Inhibition and DNA Damage of Fibroblasts and Mice Death. Open Life Sci 2020; 15:145-151. [PMID: 33987471 PMCID: PMC8114779 DOI: 10.1515/biol-2020-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022] Open
Abstract
Background Radiation-induced injuries (RII) mainly result from reactive oxygen species (ROS), which are harmful compounds that can damage DNA. Asiaticoside (AC), one of the main functional components extracted from Centella asiatica, has potent pharmacological effects such as anti-inflammatory and anti-oxidant activity. However, its role in RII remains unclear. Purpose The purpose of the current study is to investigate whether AC can mitigate RII in vitro and in vivo. Material and Methods Cell model of RII was successfully established by 5J/m2 radiation in vitro. For the in vivo RII model, mice were irradiated with 5 Gy to the thorax. The degree of damage to cells or mouse tissue was determined by measuring the numbers of DNA double-strand breaks (DSBs), oxidative stress, and mouse survival rates. Results In the in vitro assay, AC administration significantly reduced radiation-induced growth inhibition of Escherichia coli and fibroblasts, DSBs and apoptosis of fibroblasts; in the in vivo study, AC could decrease antioxidant capacity (T-AOC) of plasma and protect mice from RII, thereby improving the survival rates of mice after radiation. Conclusions These novel data indicate that AC is able to prevent radiation-initiated genotoxicity by mitigating DNA damage, and might serve as a safe and effective radio-protective agent.
Collapse
Affiliation(s)
- Haiyan Shen
- Department of Plastic Surgery, Affiliated Hangzhou People's Hospital Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Fei Zhu
- Department of Plastic Surgery, Affiliated Hangzhou People's Hospital Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Jinsheng Li
- Department of Plastic Surgery, Affiliated Hangzhou People's Hospital Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Songjia Tang
- Department of Plastic Surgery, Affiliated Hangzhou People's Hospital Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Yale Zhang
- Department of Plastic Surgery, Affiliated Hangzhou People's Hospital Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou People's Hospital Zhejiang University School of Medicine, Hangzhou, 310003, P.R. China
| |
Collapse
|
13
|
Liu P, Feng Y, Li H, Chen X, Wang G, Xu S, Li Y, Zhao L. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 2020; 25:10. [PMID: 32161620 PMCID: PMC7045739 DOI: 10.1186/s11658-020-00205-0] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background Ferroptosis is a newly recognized type of cell death, which is different from traditional necrosis, apoptosis or autophagic cell death. However, the position of ferroptosis in lipopolysaccharide (LPS)-induced acute lung injury (ALI) has not been explored intensively so far. In this study, we mainly analyzed the relationship between ferroptosis and LPS-induced ALI. Methods In this study, a human bronchial epithelial cell line, BEAS-2B, was treated with LPS and ferrostatin-1 (Fer-1, ferroptosis inhibitor). The cell viability was measured using CCK-8. Additionally, the levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and iron, as well as the protein level of SLC7A11 and GPX4, were measured in different groups. To further confirm the in vitro results, an ALI model was induced by LPS in mice, and the therapeutic action of Fer-1 and ferroptosis level in lung tissues were evaluated. Results The cell viability of BEAS-2B was down-regulated by LPS treatment, together with the ferroptosis markers SLC7A11 and GPX4, while the levels of MDA, 4-HNE and total iron were increased by LPS treatment in a dose-dependent manner, which could be rescued by Fer-1. The results of the in vivo experiment also indicated that Fer-1 exerted therapeutic action against LPS-induced ALI, and down-regulated the ferroptosis level in lung tissues. Conclusions Our study indicated that ferroptosis has an important role in the progression of LPS-induced ALI, and ferroptosis may become a novel target in the treatment of ALI patients.
Collapse
Affiliation(s)
- Pengfei Liu
- 1Department of Anesthesiology, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020 China.,2Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| | - Yetong Feng
- 3Health Science Center, School of Basic Medical Sciences, Shenzhen University, Shenzhen, 518037 China
| | - Hanwei Li
- 1Department of Anesthesiology, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020 China.,4Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280 China
| | - Xin Chen
- 5Department of Laboratory Medicine, The 2nd Clinical Medicine College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020 China
| | - Guangsuo Wang
- 6Department of Thoracic Surgery, The 2nd Clinical Medicine College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020 China
| | - Shiyuan Xu
- 4Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280 China
| | - Yalan Li
- 7Department of Anesthesiology, First Affiliated Hospital of Jinan University, Guangzhou, 510632 China.,2Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| | - Lei Zhao
- 1Department of Anesthesiology, The 2nd Clinical Medical College (Shenzhen People's Hospital) of Jinan University, The 1st Affiliated Hospitals of Southern University of Science and Technology, Shenzhen, 518020 China.,2Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
14
|
Shang L, Wang L, Shi X, Wang N, Zhao L, Wang J, Liu C. HMGB1 was negatively regulated by HSF1 and mediated the TLR4/MyD88/NF-κB signal pathway in asthma. Life Sci 2019; 241:117120. [PMID: 31825792 DOI: 10.1016/j.lfs.2019.117120] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 01/23/2023]
Abstract
AIMS The present study explored the function and regulatory mechanism of High mobility group box 1 (HMGB1) in asthma. MAIN METHODS OVA (ovalbumin)-induced asthmatic mice model and LPS-treated cellular model were established in this study. Airway inflammation was measured through detecting the expression of IL-4, IL-5, IL-13 and Interferon-γ (IFN-γ) in serum and BALF (bronchoalveolar lavage fluid) by ELISA kits. Bioinformatics predictive analysis, ChIP assays, Luciferase reporter assay and Western blotting were used to explore the relation between HMGB1 and HSF1 (Heat shock factor 1). KEY FINDINGS HMGB1 expression was increased in OVA-induced asthmatic mice. Silencing HMGB1 attenuated the increasing of IgE, inflammatory factors (IL-4, IL-5 and IL-13), and airway hyperresponsiveness that induced by OVA. In addition, our study found that HSF1 directly bind with the HMGB1 promoter and negatively regulation of HMGB1. HSF-1 were upregulated in OVA-induced asthmatic mice, and knockdown of HSF1 aggravated the OVA-induced airway inflammation and airway hyperreactivity in mice may through promoting the expression of HMGB1 and the activation of the Toll-like receptor 4 (TLR4)/Myeloid differentiation primary response 88 (MyD88)/Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signal pathway. SIGNIFICANCE The expression of HMGB1 could be negatively regulated by HSF1, and the TLR4/MyD88/NF-κB signal pathway was involved in HSF1/HMGB1-mediated regulation of asthma.
Collapse
Affiliation(s)
- Liqun Shang
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital Xi'an, Shaanxi, 710068, PR China
| | - Li Wang
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital Xi'an, Shaanxi, 710068, PR China
| | - Xiaolan Shi
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China
| | - Ning Wang
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China
| | - Long Zhao
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China
| | - Jing Wang
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China
| | - Cuicui Liu
- Department of Respiratory and Asthma, Xi'an Children's Hospital, Xi'an, Shaanxi, 710003, PR China.
| |
Collapse
|
15
|
Cardioprotective Effects of Puerarin-V on Isoproterenol-Induced Myocardial Infarction Mice Is Associated with Regulation of PPAR-Υ/NF-κB Pathway. Molecules 2018; 23:molecules23123322. [PMID: 30558188 PMCID: PMC6321361 DOI: 10.3390/molecules23123322] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
Puerarin is a well-known traditional Chinese medicine which has been used for the treatment of cardiovascular diseases. Recently, a new advantageous crystal form of puerarin, puerarin-V, has been developed. However, the cardioprotective effects of puerarin-V on myocardial infarction (MI) heart failure are still unclear. In this research, we aim to evaluate the cardioprotective effects of puerarin-V on the isoproterenol (ISO)-induced MI mice and elucidate the underlying mechanisms. To induce MI in C57BL/6 mice, ISO was administered at 40 mg/kg subcutaneously every 12 h for three times in total. The mice were randomly divided into nine groups: (1) control; (2) ISO; (3) ISO + puerarin injection; (4⁻9) ISO + puerarin-V at different doses and timings. After treatment, cardiac function was evaluated by electrocardiogram (ECG), biochemical and histochemical analysis. In vitro inflammatory responses and apoptosis were evaluated in human coronary artery endothelial cells (HCAECs) challenged by lipopolysaccharide (LPS). LPS-induced PPAR-Υ/NF-κB and subsequently activation of cytokines were assessed by the western blot and real-time polymerase chain reaction (PCR). Administration of puerarin-V significantly inhibits the typical ST segment depression compared with that in MI mice. Further, puerarin-V treatment significantly improves ventricular wall infarction, decreases the incidence of mortality, and inhibits the levels of myocardial injury markers. Moreover, puerarin-V treatment reduces the inflammatory milieu in the heart of MI mice, thereby blocking the upregulation of proinflammatory cytokines (TNF-α, IL-1β and IL-6). The beneficial effects of puerarin-V might be associated with the normalization in gene expression of PPAR-Υ and PPAR-Υ/NF-κB /ΙκB-α/ΙΚΚα/β phosphorylation. In the in vitro experiment, treatment with puerarin-V (0.3, 1 and 3 μM) significantly reduces cell death and suppresses the inflammation cytokines expression. Likewise, puerarin-V exhibits similar mechanisms. The cardioprotective effects of puerarin-V treatment on MI mice in the pre + post-ISO group seem to be more prominent compared to those in the post-ISO group. Puerarin-V exerts cardioprotective effects against ISO-induced MI in mice, which may be related to the activation of PPAR-γ and the inhibition of NF-κB signaling in vivo and in vitro. Taken together, our research provides a new therapeutic option for the treatment of MI in clinic.
Collapse
|