1
|
Cheng Y, Li Q, Sun G, Li T, Zou Y, Ye H, Wang K, Shi J, Wang P. Serum anti-CFL1, anti-EZR, and anti-CYPA autoantibody as diagnostic markers in ovarian cancer. Sci Rep 2024; 14:9757. [PMID: 38684875 PMCID: PMC11058243 DOI: 10.1038/s41598-024-60544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
The purpose of this study was to identify novel autoantibodies against tumor-associated antigens (TAAs) and explore a diagnostic panel for Ovarian cancer (OC). Enzyme-linked immunosorbent assay was used to detect the expression of five anti-TAA autoantibodies in the discovery (70 OC and 70 normal controls) and validation cohorts (128 OC and 128 normal controls). Machine learning methods were used to construct a diagnostic panel. Serum samples from 81 patients with benign ovarian disease were used to identify the specificity of anti-TAA autoantibodies for OC. In both the discovery and validation cohorts, the expression of anti-CFL1, anti-EZR, anti-CYPA, and anti-PFN1 was higher in patients with OC than that in normal controls. The area under the receiver operating characteristic curve, sensitivity, and specificity of the panel containing anti-CFL1, anti-EZR, and anti-CYPA were 0.762, 55.56%, and 81.31%. The panel identified 53.06%, 53.33%, and 51.11% of CA125 negative, HE4 negative and the Risk of Ovarian Malignancy Algorithm negative OC patients, respectively. The combination of the three anti-TAA autoantibodies can serve as a favorable diagnostic tool for OC and has the potential to be a complementary biomarker for CA125 and HE4 in the diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Yifan Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Qing Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guiying Sun
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Yuanlin Zou
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Keyan Wang
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan Province, China.
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
2
|
Wilczyński J, Paradowska E, Wilczyński M. High-Grade Serous Ovarian Cancer-A Risk Factor Puzzle and Screening Fugitive. Biomedicines 2024; 12:229. [PMID: 38275400 PMCID: PMC10813374 DOI: 10.3390/biomedicines12010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal tumor of the female genital tract. Despite extensive studies and the identification of some precursor lesions like serous tubal intraepithelial cancer (STIC) or the deviated mutational status of the patients (BRCA germinal mutation), the pathophysiology of HGSOC and the existence of particular risk factors is still a puzzle. Moreover, a lack of screening programs results in delayed diagnosis, which is accompanied by a secondary chemo-resistance of the tumor and usually results in a high recurrence rate after the primary therapy. Therefore, there is an urgent need to identify the substantial risk factors for both predisposed and low-risk populations of women, as well as to create an economically and clinically justified screening program. This paper reviews the classic and novel risk factors for HGSOC and methods of diagnosis and prediction, including serum biomarkers, the liquid biopsy of circulating tumor cells or circulating tumor DNA, epigenetic markers, exosomes, and genomic and proteomic biomarkers. The novel future complex approach to ovarian cancer diagnosis should be devised based on these findings, and the general outcome of such an approach is proposed and discussed in the paper.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic and Gynecological Oncology, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
3
|
Englisz A, Smycz-Kubańska M, Mielczarek-Palacz A. Evaluation of the Potential Diagnostic Utility of the Determination of Selected Immunological and Molecular Parameters in Patients with Ovarian Cancer. Diagnostics (Basel) 2023; 13:diagnostics13101714. [PMID: 37238197 DOI: 10.3390/diagnostics13101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ovarian cancer is one of the most serious challenges in modern gynaecological oncology. Due to its non-specific symptoms and the lack of an effective screening procedure to detect the disease at an early stage, ovarian cancer is still marked by a high mortality rate among women. For this reason, a great deal of research is being carried out to find new markers that can be used in the detection of ovarian cancer to improve early diagnosis and survival rates of women with ovarian cancer. Our study focuses on presenting the currently used diagnostic markers and the latest selected immunological and molecular parameters being currently investigated for their potential use in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Aleksandra Englisz
- The Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
4
|
Chen B, Hu H, Chen X. From Basic Science to Clinical Practice: The Role of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A)/p90 in Cancer. Front Genet 2023; 14:1110656. [PMID: 36911405 PMCID: PMC9998691 DOI: 10.3389/fgene.2023.1110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A), initially reported as a tumor-associated antigen (known as p90), is highly expressed in most solid and hematological tumors. The interaction of CIP2A/p90, protein phosphatase 2A (PP2A), and c-Myc can hinder the function of PP2A toward c-Myc S62 induction, thus stabilizing c-Myc protein, which represents a potential role of CIP2A/p90 in tumorigeneses such as cell proliferation, invasion, and migration, as well as cancer drug resistance. The signaling pathways and regulation networks of CIP2A/p90 are complex and not yet fully understood. Many previous studies have also demonstrated that CIP2A/p90 can be used as a potential therapeutic cancer target. In addition, the autoantibody against CIP2A/p90 in sera may be used as a promising biomarker in the diagnosis of certain types of cancer. In this Review, we focus on recent advances relating to CIP2A/p90 and their implications for future research.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Zhang R, Siu MKY, Ngan HYS, Chan KKL. Molecular Biomarkers for the Early Detection of Ovarian Cancer. Int J Mol Sci 2022; 23:ijms231912041. [PMID: 36233339 PMCID: PMC9569881 DOI: 10.3390/ijms231912041] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer, leading to over 152,000 deaths each year. A late diagnosis is the primary factor causing a poor prognosis of ovarian cancer and often occurs due to a lack of specific symptoms and effective biomarkers for an early detection. Currently, cancer antigen 125 (CA125) is the most widely used biomarker for ovarian cancer detection, but this approach is limited by a low specificity. In recent years, multimarker panels have been developed by combining molecular biomarkers such as human epididymis secretory protein 4 (HE4), ultrasound results, or menopausal status to improve the diagnostic efficacy. The risk of ovarian malignancy algorithm (ROMA), the risk of malignancy index (RMI), and OVA1 assays have also been clinically used with improved sensitivity and specificity. Ongoing investigations into novel biomarkers such as autoantibodies, ctDNAs, miRNAs, and DNA methylation signatures continue to aim to provide earlier detection methods for ovarian cancer. This paper reviews recent advancements in molecular biomarkers for the early detection of ovarian cancer.
Collapse
|
6
|
Luo M, Wu S, Ma Y, Liang H, Luo Y, Gu W, Fan L, Hao Y, Li H, Xing L. Evaluating a Panel of Autoantibodies Against Tumor-Associated Antigens in Human Osteosarcoma. Front Genet 2022; 13:872253. [PMID: 35547257 PMCID: PMC9081566 DOI: 10.3389/fgene.2022.872253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background: The aim of this study was to identify a panel of candidate autoantibodies against tumor-associated antigens in the detection of osteosarcoma (OS) so as to provide a theoretical basis for constructing a non-invasive serological diagnosis method in early immunodiagnosis of OS. Methods: The serological proteome analysis (SERPA) approach was used to select candidate anti-TAA autoantibodies. Then, indirect enzyme-linked immunosorbent assay (ELISA) was used to verify the expression levels of eight candidate autoantibodies in the serum of 51 OS cases, 28 osteochondroma (OC), and 51 normal human sera (NHS). The rank-sum test was used to compare the content of eight autoantibodies in the sera of three groups. The diagnostic value of each indicator for OS was analyzed by an ROC curve. Differential autoantibodies between OS and NHS were screened. Then, a binary logistic regression model was used to establish a prediction logistical regression model. Results: Through ELISA, the expression levels of seven autoantibodies (ENO1, GAPDH, HSP27, HSP60, PDLIM1, STMN1, and TPI1) in OS patients were identified higher than those in healthy patients (p < 0.05). By establishing a binary logistic regression predictive model, the optimal panel including three anti-TAAs (ENO1, GAPDH, and TPI1) autoantibodies was screened out. The sensitivity, specificity, Youden index, accuracy, and AUC of diagnosis of OS were 70.59%, 86.27%, 0.5686, 78.43%, and 0.798, respectively. Conclusion: The results proved that through establishing a predictive model, an optimal panel of autoantibodies could help detect OS from OC or NHS at an early stage, which could be used as a promising and powerful tool in clinical practice.
Collapse
Affiliation(s)
- Manli Luo
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan Provincial Rehabilitation Hospital, Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Songmei Wu
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Ma
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Hong Liang
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Yage Luo
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Wentao Gu
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
| | - Lijuan Fan
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Hao
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Haiting Li
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Linbo Xing
- Luoyang Orthopedic Hospital of Henan Province (Orthopedic Hospital of Henan Province), Luoyang, China
- Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
7
|
Temporal reproducibility of IgG and IgM autoantibodies in serum from healthy women. Sci Rep 2022; 12:6192. [PMID: 35418192 PMCID: PMC9008031 DOI: 10.1038/s41598-022-10174-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Autoantibodies are present in healthy individuals and altered in chronic diseases. We used repeated samples collected from participants in the NYU Women's Health Study to assess autoantibody reproducibility and repertoire stability over a one-year period using the HuProt array. We included two samples collected one year apart from each of 46 healthy women (92 samples). We also included eight blinded replicate samples to assess laboratory reproducibility. A total of 21,211 IgG and IgM autoantibodies were interrogated. Of those, 86% of IgG (n = 18,303) and 34% of IgM (n = 7,242) autoantibodies showed adequate lab reproducibility (coefficient of variation [CV] < 20%). Intraclass correlation coefficients (ICCs) were estimated to assess temporal reproducibility. A high proportion of both IgG and IgM autoantibodies with CV < 20% (76% and 98%, respectively) showed excellent temporal reproducibility (ICC > 0.8). Temporal reproducibility was lower after using quantile normalization suggesting that batch variability was not an important source of error, and that normalization removed some informative biological information. To our knowledge this study is the largest in terms of sample size and autoantibody numbers to assess autoantibody reproducibility in healthy women. The results suggest that for many autoantibodies a single measurement may be used to rank individuals in studies of autoantibodies as etiologic markers of disease.
Collapse
|
8
|
Serum Autoantibodies against LRDD, STC1, and FOXA1 as Biomarkers in the Detection of Ovarian Cancer. DISEASE MARKERS 2022; 2022:6657820. [PMID: 35273656 PMCID: PMC8904091 DOI: 10.1155/2022/6657820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/03/2021] [Accepted: 01/29/2022] [Indexed: 01/13/2023]
Abstract
Purpose This study is aimed at evaluating serum autoantibodies against four tumor-associated antigens, including LRDD, STC1, FOXA1, and EDNRB, as biomarkers in the immunodiagnosis of ovarian cancer (OC). Methods The autoantibodies against LRDD, STC1, FOXA1, and EDNRB were measured using an enzyme-linked immunosorbent assay (ELISA) in 94 OC patients and 94 normal healthy controls (NHC) in the research group. In addition, the diagnostic values of different autoantibodies were validated in another independent validation group, which comprised 136 OC patients, 136 NHC, and 181 patients with benign ovarian diseases (BOD). Results In the research group, autoantibodies against LRDD, STC1, and FOXA1 had higher serum titer in OC patients than NHC (P < 0.001). The area under receiver operating characteristic curves (AUCs) of these three autoantibodies were 0.910, 0.879, and 0.817, respectively. In the validation group, they showed AUCs of 0.759, 0.762, and 0.817 and sensitivities of 49.3%, 42.7%, and 48.5%, respectively, at specificity over 90% for discriminating OC patients from NHC. For discriminating OC patients from BOD, they showed AUCs of 0.718, 0.729, and 0.814 and sensitivities of 47.1%, 39.0%, and 51.5%, respectively, at specificity over 90%. The parallel analyses demonstrated that the combination of anti-LRDD and anti-FOXA1 autoantibodies achieved the optimal diagnostic performance with the sensitivity of 58.1% at 87.5% specificity and accuracy of 72.8%. The positive rate of the optimal autoantibody panel improved from 62.4% to 87.1% when combined with CA125 in detecting OC patients. Conclusion Serum autoantibodies against LRDD, STC1, and FOXA1 have potential diagnostic values in detecting OC.
Collapse
|
9
|
Wang T, Huang XY, Zheng SJ, Liu YY, Chen SS, Ren F, Lu J, Duan ZP, Liu M. Serum Anti-14-3-3 Zeta Autoantibody as a Biomarker for Predicting Hepatocarcinogenesis. Front Oncol 2021; 11:733680. [PMID: 34722278 PMCID: PMC8555665 DOI: 10.3389/fonc.2021.733680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Alpha-fetoprotein (AFP) is still the only serum biomarker widely used in clinical settings. However, approximately 40% of HCC patients exhibit normal AFP levels, including very early HCC and AFP-negative HCC; for these patients, serum AFP is not applicable as a biomarker of early detection. Thus, there is an urgent need to identify novel biomarkers for patients for whom disease cannot be diagnosed early. In this study, we screened and identified novel proteins in AFP-negative HCC and evaluated the feasibility of using autoantibodies to those protein to predict hepatocarcinogenesis. First, we screened and identified differentially expressed proteins between AFP-negative HCC tissue and adjacent non-tumor liver tissue using SWATH-MS proteome technology. In total, 2,506 proteins were identified with a global false discovery rate of 1%, of which 592 proteins were expressed differentially with 175 upregulated and 417 downregulated (adjusted p-value <0.05, fold-change FC ≥1.5 or ≤0.67) between the tumor and matched benign samples, including 14-3-3 zeta protein. For further serological verification, autoantibodies against 14-3-3 zeta in serum were evaluated using enzyme-linked immunosorbent, Western blotting, and indirect immunofluorescence assays. Five serial serum samples from one patient with AFP-negative HCC showed anti-14-3-3 zeta autoantibody in sera 9 months before the diagnosis of HCC, which gradually increased with an increase in the size of the nodule. Based on these findings, we detected the prevalence of serum anti-14-3-3 zeta autoantibody in liver cirrhosis (LC) patients, which is commonly considered a premalignant liver disease of HCC. We found that the prevalence of autoantibodies against 14-3-3 zeta protein was 16.1% (15/93) in LC patient sera, which was significantly higher than that in patients with chronic hepatitis (0/75, p = 0.000) and normal human sera (1/60, 1.7%, p = 0.01). Therefore, we suggest that anti-14-3-3 zeta autoantibody might be a biomarker for predicting hepatocarcinogenesis. Further follow-up and research of patients with positive autoantibodies will be continued to confirm the relationship between anti-14-3-3 zeta autoantibody and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory and Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xue-Ying Huang
- Department of Oncology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Su-Jun Zheng
- First Department of Hepatology Center, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Ye-Ying Liu
- Department of Oncology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Si-Si Chen
- Department of Oncology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Department of Oncology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Zhong-Ping Duan
- Fourth Department of Hepatology Center, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Department of Oncology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
El-Rasikh AM, Farghali HAM, Abdelrahman HA, Elgaffary M, Abdelmalek S, Emam IA, Ghoneim MA, Selim SA. The implication of autoantibodies in early diagnosis and monitoring of plasmonic photothermal therapy in the treatment of feline mammary carcinoma. Sci Rep 2021; 11:10441. [PMID: 34001936 PMCID: PMC8129074 DOI: 10.1038/s41598-021-89894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 02/03/2023] Open
Abstract
Feline mammary carcinoma (FMC) shows great similarities to human breast cancer in the cellular and molecular levels. So, in cats as in humans, the role of immune responses is indicated to detect and follow up the development of tumors. As a new breast cancer therapeutic approach, Plasmonic Photothermal Therapy (PPTT) is an effective localized treatment for canine and feline mammary-carcinoma. Its systemic effect has not been inquired yet and needs many studies to hypothesis how the PPTT eradicates tumor cells. In this study, it is the first time to detect (P53, PCNA, MUC-1, and C-MYC) feline autoantibodies (AAbs), study the relationship between PCNA AAbs and mammary-tumors, and investigate the effect of PPTT on the humoral immune response of cats with mammary-carcinoma through detection of AAbs level before, during, and after the treatment. The four-AAbs panel was evaluated in serum of normal and clinically diagnosed cats with mammary tumors using Enzyme-Linked Immunosorbent Assay. The panel showed 100% specificity and 93.7% sensitivity to mammary tumors. The panel was evaluated in PPTT monotherapy, mastectomy monotherapy, and combination therapy. PPTT monotherapy decreased AAbs level significantly while mastectomy monotherapy and combination therapy had a nonsignificant effect on AAbs level.
Collapse
Affiliation(s)
- Asmaa M. El-Rasikh
- grid.7776.10000 0004 0639 9286Department of Microbiology, Immunology, and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Haithem A. M. Farghali
- grid.7776.10000 0004 0639 9286Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Hisham A. Abdelrahman
- grid.7776.10000 0004 0639 9286Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Mostafa Elgaffary
- grid.7776.10000 0004 0639 9286Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Shaymaa Abdelmalek
- grid.7776.10000 0004 0639 9286Department of Microbiology, Immunology, and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Ibrahim A. Emam
- grid.7776.10000 0004 0639 9286Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Magdy A. Ghoneim
- grid.7776.10000 0004 0639 9286Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| | - Salah A. Selim
- grid.7776.10000 0004 0639 9286Department of Microbiology, Immunology, and Mycology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211 Egypt
| |
Collapse
|
11
|
Ma Y, Wang X, Qiu C, Qin J, Wang K, Sun G, Jiang D, Li J, Wang L, Shi J, Wang P, Ye H, Dai L, Jiang BH, Zhang J. Using protein microarray to identify and evaluate autoantibodies to tumor-associated antigens in ovarian cancer. Cancer Sci 2020; 112:537-549. [PMID: 33185955 PMCID: PMC7894002 DOI: 10.1111/cas.14732] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to develop a noninvasive serological diagnostic approach in identifying and evaluating a panel of candidate autoantibodies to tumor‐associated antigens (TAAs) based on protein microarray technology for early detection of ovarian cancer (OC). Protein microarray based on 154 proteins encoded by 138 cancer driver genes was used to screen candidate anti‐TAA autoantibodies in a discovery cohort containing 17 OC and 27 normal controls (NC). Indirect enzyme‐linked immunosorbent assay (ELISA) was used to detect the content of candidate anti‐TAA autoantibodies in sera from 140 subjects in the training cohort. Differential anti‐TAA autoantibodies were further validated in the validation cohort with 328 subjects. Subsequently, 112 sera from the patients with ovarian benign diseases with 104 OC sera and 104 NC sera together were recruited to identify the specificity of representative autoantibodies to OC among ovarian diseases. Five TAAs (GNAS, NPM1, FUBP1, p53, and KRAS) were screened out in the discovery phase, in which four of them presented higher levels in OC than controls (P < .05) in the training cohort, which was consistent with the result in the subsequent validation cohort. An optimized panel of three anti‐TAA (GNAS, p53, and NPM1) autoantibodies was identified to have relatively high sensitivity (51.2%), specificity (86.0%), and accuracy (68.6%), respectively. This panel can identify 51% of OC patients with CA125 negative. This study supports our assumption that anti‐TAA autoantibodies can be considered as potential diagnostic biomarkers for detection of OC; especially a panel of three anti‐TAA autoantibodies could be a good tool in immunodiagnosis of OC.
Collapse
Affiliation(s)
- Yan Ma
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.,Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital & Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Xiao Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Cuipeng Qiu
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jiejie Qin
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Keyan Wang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guiying Sun
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Di Jiang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital & Henan Provincial Orthopedic Institute, Zhengzhou, China
| | - Lin Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Jianxiang Shi
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hua Ye
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bing-Hua Jiang
- Department of Pathology, The University of Iowa, Iowa City, IA, USA
| | - Jianying Zhang
- Department of Epidemiology and Health Statistics & Henan Key Laboratory of Tumor Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China.,Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Ushigome M, Shimada H, Nabeya Y, Shiratori F, Soda H, Takiguchi N, Hoshino I, Kuwajima A, Kaneko T, Funahashi K. Possible predictive significance of serum RalA autoantibodies on relapse-free survival in patients with colorectal cancer. Mol Clin Oncol 2020; 14:18. [PMID: 33363728 PMCID: PMC7725215 DOI: 10.3892/mco.2020.2180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
RalA protein, a member of the Ras superfamily of small GTPases, is a tumor antigen that induces serum RalA antibodies (s-RalA-Abs). The present study explored the clinicopathological and prognostic significance of s-RalA-Abs in patients with colorectal cancer. Serum samples were obtained from 314 patients with colorectal cancer at stage 0/I (n=71), stage II (n=86), stage III (n=78), stage IV (n=64) and recurrence (n=15). Samples were analyzed for the presence of s-RalA-Abs using ELISA. The cutoff optical density value was fixed at 0.324 (mean of heathy controls + 3 standard deviations). The overall positive rate for serum anti-RalA antibodies was 14%. The presence of s-RalA-Abs was not significantly associated with clinicopathological characteristic factors. Additionally, the s-RalA-Abs(+) group demonstrated significantly poor relapse-free survival rates. The s-RalA-Abs (+)/carcinoembryonic antigen (CEA)(+) group exhibited the worst prognosis and s-RalA-Abs(+)/CEA(+) was an independent risk factor for poor relapse-free survival. Although the positive rate was not high, s-RalA-Abs may be a useful predictor of poor relapse-free survival in patients with colorectal cancer.
Collapse
Affiliation(s)
- Mitsunori Ushigome
- Department of Surgery, School of Medicine, Toho University, Ota-ku, Tokyo 143-8541, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Ota-ku, Tokyo 143-8541, Japan
| | - Yoshihiro Nabeya
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Fumiaki Shiratori
- Department of Surgery, School of Medicine, Toho University, Ota-ku, Tokyo 143-8541, Japan.,Division of Gastroenterological Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Hiroaki Soda
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Nobuhiro Takiguchi
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Isamu Hoshino
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chuo-ku, Chiba 260-8717, Japan
| | - Akiko Kuwajima
- Medical and Biological Laboratories Co., Ltd, Naka-ku, Nagoya 460-0008, Japan
| | - Tomoaki Kaneko
- Department of Surgery, School of Medicine, Toho University, Ota-ku, Tokyo 143-8541, Japan
| | - Kimihiko Funahashi
- Department of Surgery, School of Medicine, Toho University, Ota-ku, Tokyo 143-8541, Japan
| |
Collapse
|
13
|
Prognostic Value of Circulating IGFBP2 and Related Autoantibodies in Children with Metastatic Rhabdomyosarcomas. Diagnostics (Basel) 2020; 10:diagnostics10020115. [PMID: 32093404 PMCID: PMC7168276 DOI: 10.3390/diagnostics10020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor-binding protein 2 (IGFBP2) is a tumor-associated protein measurable in patients’ biopsies and blood samples. Increased IGFBP2 expression correlates with tumor severity in rhabdomyosarcoma (RMS). Thus, we examined the plasmatic IGFBP2 levels in 114 RMS patients and 15 healthy controls by ELISA assay in order to evaluate its value as a plasma biomarker for RMS. Additionally, we looked for the presence of a humoral response against IGBFP2 protein measurable by the production of anti-IGFBP2 autoantibodies. We demonstrated that both circulating IGFBP2 protein and autoantibodies were significantly higher in RMS patients with respect to controls and their combination showed a better discriminative capacity. IGFBP2 protein identified metastatic patients with worse event-free survival, whereas both IGFBP2 and anti-IGFBP2 antibodies negatively correlated with overall survival. Our study suggests that IGFBP2 and anti-IGFBP2 antibodies are useful for diagnostic and prognostic purposes, mainly as independent negative prognostic markers in metastatic patients. This is the first study that reports a specific humoral response in RMS plasma samples and proves the value of blood-based biomarkers in improving risk assessment and outcome of metastatic RMS patients.
Collapse
|
14
|
Proteome Profiling Uncovers an Autoimmune Response Signature That Reflects Ovarian Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12020485. [PMID: 32092936 PMCID: PMC7072578 DOI: 10.3390/cancers12020485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Harnessing the immune response to tumor antigens in the form of autoantibodies, which occurs early during tumor development, has relevance to the detection of cancer at early stages. We conducted an initial screen of antigens associated with an autoantibody response in serous ovarian cancer using recombinant protein arrays. The top 25 recombinants that exhibited increased reactivity with cases compared to controls revealed TP53 and MYC, which are ovarian cancer driver genes, as major network nodes. A mass spectrometry based independent analysis of circulating immunoglobulin (Ig)-bound proteins in ovarian cancer and of ovarian cancer cell surface MHC-II bound peptides also revealed a TP53–MYC related network of antigens. Our findings support the occurrence of a humoral immune response to antigens linked to ovarian cancer driver genes that may have utility for early detection applications.
Collapse
|
15
|
Sun G, Ye H, Wang X, Li T, Jiang D, Qiu C, Dai L, Shi J, Wang K, Song C, Wang P, Zhang J. Autoantibodies against tumor-associated antigens combined with microRNAs in detecting esophageal squamous cell carcinoma. Cancer Med 2020; 9:1173-1182. [PMID: 31856412 PMCID: PMC6997060 DOI: 10.1002/cam4.2792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023] Open
Abstract
Esophageal carcinoma (EC) is a common malignant disease worldwide, especially in China. There is currently no specific blood test for detecting EC. Autoantibodies against tumor-associated antigens (TAAbs) and microRNAs (miRNAs) are promising markers for cancer diagnosis and this study focuses on combining TAAbs and miRNAs to evaluate the diagnostic value in esophageal squamous cell carcinoma (ESCC). The expression levels of seven TAAbs and five microRNAs in plasmas from 125 patients diagnosed with ESCC and 125 healthy individuals were detected by enzyme-linked immunosorbent assay (ELISA) and reverse transcription quantitative-polymerase chain reaction (RT-qPCR), respectively. The receiver operating characteristic (ROC) analysis was applied to estimate the diagnostic value of these markers for distinguishing ESCC patients from normal individuals. Logistic regression analysis was performed to generate prediction model and calculate the probability of individuals being diagnosed with ESCC. Three panels were established including four TAAbs, three miRNAs, and three TAAbs combined with three miRNAs. The panel consisting of three TAAbs (HCCR, C-myc, and MDM2) and three miRNAs (miR-21, miR-223, and miR-375) attained great diagnostic value for ESCC, with an area under the receiver operating characteristic curve (AUC) of 0.89 (95% CI: 0.85-0.93) with the sensitivity of 69%, the specificity of 90%, the PPV of 83%, the NPV of 79%, and the coincidence rate of 81%. The optimal panel of six-member markers was able to effectively discriminate the patients with ESCC from normal individuals, especially for early esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Guiying Sun
- College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
| | - Hua Ye
- College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
| | - Xiao Wang
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Tiandong Li
- College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
| | - Di Jiang
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
- Department of immunologyCollege of Basic MedicineZhengzhou UniversityZhengzhouChina
| | - Cuipeng Qiu
- College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
| | - Liping Dai
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Jianxiang Shi
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Kaijuan Wang
- College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
| | - Chunhua Song
- College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
| | - Peng Wang
- College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
| | - Jianying Zhang
- College of Public HealthZhengzhou UniversityZhengzhouChina
- Henan Key Laboratory of Tumor EpidemiologyZhengzhou UniversityZhengzhouChina
- Henan Institute of Medical and Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
16
|
Kobayashi M, Katayama H, Fahrmann JF, Hanash SM. Development of autoantibody signatures for common cancers. Semin Immunol 2020; 47:101388. [DOI: 10.1016/j.smim.2020.101388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
|
17
|
Qiu C, Wang P, Wang B, Shi J, Wang X, Li T, Qin J, Dai L, Ye H, Zhang J. Establishment and validation of an immunodiagnostic model for prediction of breast cancer. Oncoimmunology 2019; 9:1682382. [PMID: 32002291 PMCID: PMC6959442 DOI: 10.1080/2162402x.2019.1682382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Serum autoantibodies that react with tumor-associated antigens (TAAs) can be used as potential biomarkers for diagnosis of cancer. This study aims to evaluate the immunodiagnostic value of 11 anti-TAAs autoantibodies for detection of breast cancer (BC) and establish a diagnostic model for distinguishing BC from normal human controls (NHC) and benign breast diseases (BBD). Sera from 10 BC patients and 10 NHC were used to detect 11 anti-TAAs autoantibodies by western blotting. The 11 anti-TAAs autoantibodies were further assessed in 983 sera by relative quantitative enzyme-linked immunosorbent assay (ELISA). Binary logistic regression and Fisher linear discriminant analysis were conducted to establish a prediction model by using 184 BC and 184 NHC (training cohort, n = 568) and validated by leave-one-out cross-validation. Logistic regression model was selected to establish the prediction model. Results were validated using an independent validation cohort (n = 415). The five anti-TAAs (p53, cyclinB1, p16, p62, 14-3-3ξ) autoantibodies were selected to construct the model with the area under the curve (AUC) of 0.943 (95% CI, 0.919–0.967) in training cohort and 0.916 (95% CI, 0.886–0.947) in the validation cohort. In the identification of BC and BBD, AUCs were 0.881 (95% CI, 0.848–0.914) and 0.849 (95% CI, 0.803–0.894) in training and validation cohort, respectively. In summary, our study indicates that the immunodiagnostic model can distinguish BC from NHC and BC from BBD and this model may have a potential application in immunodiagnosis of breast cancer.
Collapse
Affiliation(s)
- Cuipeng Qiu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Wang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Bofei Wang
- College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianxiang Shi
- College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Wang
- College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tiandong Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiejie Qin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Liping Dai
- College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Ye
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianying Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.,College of Public Health, Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|