1
|
Du S, Pei X, Huang Y, Wang Y, Li Z, Niu X, Zhang W, Sun W. Hemin/G-quadruplex and AuNPs-MoS 2 based novel dual signal amplification strategy for ultrasensitively sandwich-type electrochemical thrombin aptasensor. Bioelectrochemistry 2024; 157:108635. [PMID: 38185025 DOI: 10.1016/j.bioelechem.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
In this work, a novel sandwich-type electrochemical aptasensor based on the dual signal amplification strategy of hemin/G-quadruplex and AuNPs-MoS2 was designed and constructed, which realized the highly sensitive and specific detection of thrombin (TB). In this aptasensor, the 15-mer TB-binding aptamer (TBA-1) modified with thiol group was immobilized on the surface of AuNPs modified glassy carbon electrode (AuNPs/GCE) as capturing elements. Another thiol-modified 29-mer TB-binding aptamer (TBA-2) sequence containing G-quadruplex structure for hemin immobilization was designed. The formed hemin/G-quadruplex/TBA-2 sequence was further combined to the AuNPs decorated flower-like molybdenum disulfide (AuNPs-MoS2) composite surface via Au-S bonds, acting the role of reporter probe. In presence of the target TB, the sandwich-type electrochemical aptamer detection system could be formed properly. With the assistance of the dual signal amplification of AuNPs-MoS2 and hemin/G-quadruplex toward H2O2 reduction, the sandwich-type electrochemical aptasensor was successfully constructed for sensitive detection of TB. The results demonstrate that the fabricated aptasensor displays a wide linear range of 1.0 × 10-6 ∼ 10.0 nM with a low detection limit of 0.34 fM. This proposed aptasensor shows potential application in the detection of TB content in real biological samples with high sensitivity, selectivity, and reliability.
Collapse
Affiliation(s)
- Shina Du
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xiaoying Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yan Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yuebo Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xueliang Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Weili Zhang
- College of Pharmacy, Key Laboratory of Biomedical Engineering and Technology in Universities of Shandong, Qilu Medical University, Zibo 255300, PR China.
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| |
Collapse
|
2
|
Bararu Bojan I, Dobreanu S, Vladeanu MC, Ciocoiu M, Badescu C, Plesoianu C, Filip N, Iliescu D, Frasinariu O, Bojan A, Tudor R, Badulescu OV. The Etiology of the Thrombotic Phenomena Involved in the Process of Coronary Artery Disease-What Is the Role of Thrombophilic Genes in the Development of This Pathology? Int J Mol Sci 2024; 25:5228. [PMID: 38791267 PMCID: PMC11120830 DOI: 10.3390/ijms25105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases, among which includes coronary artery disease, represent one of the most important causes of mortality and morbidity worldwide. Research aimed at determining the risk factors involved recognizes a group of "traditional" risk factors, but also more recent studies identified over 100 "novel" ones which may have a role in the disease. Among the latter is the thrombophilia profile of a patient, a pathology well-established for its involvement in venous thromboembolism, but with less studied implications in arterial thrombosis. This paper reviews the literature, explaining the pathophysiology of the thrombophilia causes associated most with coronary thrombosis events. Results of several studies on the subject, including a meta-analysis with over 60,000 subjects, determined the significant involvement of factor V Leiden, prothrombin G20210A mutation, plasminogen activator inhibitor-1 and antiphospholipid syndrome in the development of coronary artery disease. The mechanisms involved are currently at different stages of research, with some already established and used as therapeutic targets.
Collapse
Affiliation(s)
- Iris Bararu Bojan
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| | - Stefan Dobreanu
- Recuperare Hospital Iasi, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania (C.B.)
| | - Maria Cristina Vladeanu
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| | - Manuela Ciocoiu
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| | - Codruta Badescu
- Recuperare Hospital Iasi, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania (C.B.)
| | - Carmen Plesoianu
- Department of Internal Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Nina Filip
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| | - Dan Iliescu
- Department of Internal Medicine, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Otilia Frasinariu
- Department of Pediatry, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Andrei Bojan
- Department of Surgical Sciences, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Razvan Tudor
- Department of Orthopedy, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania
| | - Oana Viola Badulescu
- Department of Pathophysiology, University of Medicine and Pharmacy Gr. T. Popa, 700115 Iași, Romania; (I.B.B.); (N.F.); (O.V.B.)
| |
Collapse
|
3
|
Liu S, Jin X, Wang R, Meng X, Du K, Li J, Gao X, Chang Y. A metabolomics discrimination-based strategy for screening the antithrombin active markers of perilla seeds: A natural oil crop. Food Chem 2024; 432:137183. [PMID: 37633135 DOI: 10.1016/j.foodchem.2023.137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Natural crops oil with high nutritional value has gradually attracted attention. Perilla seeds are regarded as a source of functional edible oil in America, Asia and European countries due to its abundant nutrients. In this research, samples were extracted by different polarity solvents and evaluated their thrombin inhibition activities in vitro. Metabolomics combined with chemometrics revealed the antithrombin active markers of perilla seeds. The enzyme kinetics and molecular docking results were useful in clarifying their inhibition of thrombin. The orthogonal experimental design was applied to optimize the extraction process of six antithrombin active markers from perilla seeds. The results showed that rosmarinic acid, luteolin, luteolin-7-O-glucoside, α-linolenic acid, linoleic acid, and oleic acid were screened out as functional and active markers. Besides, perilla seeds as a natural oil crop had the potential of antithrombin. It can also be applied in the food field because of its nutraceutical functions. Metabolomics combined with chemometrics will facilitate the discovery of functional, active markers in perilla seeds, which is conducive to accurate quality control.
Collapse
Affiliation(s)
- Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Chan MD, Yasamanova AN, Avakian GG, Nikonova AA, Kamchatnov PR. [The multidirectional effects of thrombin and the possibility of their control in neurology]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:42-48. [PMID: 38512094 DOI: 10.17116/jnevro202412403242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The review presents the main physiological functions of thrombin. The procoagulant and anticoagulant activities of the key serine protease are discussed in both physiological and pathological conditions of hemostasis. The involvement of thrombin in atherogenesis, as well as its role as a mediator of vascular dysfunction and inflammation in both the peripheral and central nervous system, is highlighted. A pronounced imbalance between the pro- and anticoagulant systems leads to an increase in thrombin formation and creates conditions for the development of thrombosis. Tests that allow direct or indirect assessment of thrombin's functional activity are presented. The potential applications of direct thrombin inhibitors and direct blockers of thrombin PAR receptors in vascular neurology are also considered.
Collapse
Affiliation(s)
- M D Chan
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A N Yasamanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G G Avakian
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Nikonova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - P R Kamchatnov
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Iannucci J, Grammas P. Thrombin, a Key Driver of Pathological Inflammation in the Brain. Cells 2023; 12:cells12091222. [PMID: 37174621 PMCID: PMC10177239 DOI: 10.3390/cells12091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/21/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), are major contributors to death and disability worldwide. A multitude of evidence suggests that neuroinflammation is critical in neurodegenerative disease processes. Exploring the key mediators of neuroinflammation in AD, a prototypical neurodegenerative disease, could help identify pathologic inflammatory mediators and mechanisms in other neurodegenerative diseases. Elevated levels of the multifunctional inflammatory protein thrombin are commonly found in conditions that increase AD risk, including diabetes, atherosclerosis, and traumatic brain injury. Thrombin, a main driver of the coagulation cascade, has been identified as important to pathological events in AD and other neurodegenerative diseases. Furthermore, recent evidence suggests that coagulation cascade-associated proteins act as drivers of inflammation in the AD brain, and studies in both human populations and animal models support the view that abnormalities in thrombin generation promote AD pathology. Thrombin drives neuroinflammation through its pro-inflammatory activation of microglia, astrocytes, and endothelial cells. Due to the wide-ranging pro-inflammatory effects of thrombin in the brain, inhibiting thrombin could be an effective strategy for interrupting the inflammatory cascade which contributes to neurodegenerative disease progression and, as such, may be a potential therapeutic target for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | | |
Collapse
|
6
|
Zhang Y, Sun L, Wang X, Zhou Q. Integrative analysis of HASMCs gene expression profile revealed the role of thrombin in the pathogenesis of atherosclerosis. BMC Cardiovasc Disord 2023; 23:191. [PMID: 37046189 PMCID: PMC10091598 DOI: 10.1186/s12872-023-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
We explored the effect of thrombin on human aortic smooth muscle cells (HASMCs) and further analyzed its role in the pathogenesis of atherosclerosis (AS). Thrombin-induced differentially expressed genes (DEGs) in HASMCs were identified by analyzing expression profiles from the GEO. Subsequently, enrichment analysis, GSEA, PPI network, and gene-microRNAs networks were interrogated to identify hub genes and associated pathways. Enrichment analysis results indicated that thrombin causes HASMCs to secrete various pro-inflammatory cytokines and chemokines, exacerbating local inflammatory response in AS. Moreover, we identified 9 HUB genes in the PPI network, which are closely related to the inflammatory response and the promotion of the cell cycle. Additionally, we found that thrombin inhibits lipid metabolism and autophagy of HASMCs, potentially contributing to smooth muscle-derived foam cell formation. Our study deepens a mechanistic understanding of the effect of thrombin on HASMCs and provides new insight into treating AS.
Collapse
Affiliation(s)
- Yichen Zhang
- The Second Hospital of Shandong University, Jinan, Shandong Province, China
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lin Sun
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xingsheng Wang
- Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qingbo Zhou
- The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
7
|
Li P, Luo C, Chen X, Huang C. An off-on fluorescence aptasensor for trace thrombin detection based on FRET between CdS QDs and AuNPs. RSC Adv 2022; 12:35763-35769. [PMID: 36545096 PMCID: PMC9749934 DOI: 10.1039/d2ra06891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
An off-on fluorescence aptasensor was developed for trace thrombin detection based on fluorescence resonance energy transfer (FRET) between CdS QDs and gold nanoparticles (AuNPs). Using DNA pairwise hybridization of the aptamer to the complementary DNA (cDNA), the CdS QDs (energy donor) were tightly coupled to the AuNPs (energy acceptor), resulting in the occurrence of FRET and there was a dramatic fluorescence quenching of CdS QDs (turn off). When the thrombin was added to the fluorescence aptasensor, the specific binding of the aptamer to the target formed a G-quadruplex that caused the AuNPs receptor to detach and the DNA duplex to be disassembled. The process would inhibit the FRET which contribute to the recovery of fluorescence (turn on) and an "off-on" fluorescence aptasensor for thrombin detection was constructed accordingly. Under optimal conditions, the fluorescence recovery showed good linearity with the concentration of thrombin in the range of 1.35-54.0 nmol L-1, and the detection limit was 0.38 nmol L-1 (S/N = 3, n = 9). Importantly, the fluorescence aptasensor presented excellent specificity for thrombin, and was successfully applied to the quantitative determination of thrombin in real serum with satisfactory recoveries of 98.60-102.2%.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University Lanxi 321100 China
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
8
|
Zhu M, Xu F, Miao S, Xie C, Li H, Li S, Xia F. Incorporation of a Multi-Valent Aptamer into Electrochemical Biosensors to Achieve an Improved Performance for Thrombin Analysis in Blood Serum. Chempluschem 2022; 87:e202200325. [PMID: 36410784 DOI: 10.1002/cplu.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Indexed: 11/23/2022]
Abstract
The electrochemical aptamer-based (E-AB) biosensor usually has a long reaction time when detecting thrombin. This work reports the design of an E-AB biosensor with dual recognition sites to quickly detect thrombin. Specifically, two specific recognition sites of thrombin were used to design three aptamer sequences (TBA-15, TBA-29 and TBA-U), followed by fabrication of corresponding sensors. First, we tested these three types of biosensors in tris buffer solution, and found that the response time of the TBA-U sensor to the same concentration of thrombin was about 2 hours, which is shorter than TBA-15 and TBA-29 sensors. Then, we also did the same test in 50 % diluted serum with 500 nM thrombin. The response time of the TBA-U sensor was about 2 hours, which is still faster than the 3 hours of TBA-15 sensor and the 5.5 hours for TBA-29 sensor. In addition, in terms of dynamic range and specificity, TBA-U has good performance.
Collapse
Affiliation(s)
- Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chongyu Xie
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Akgönüllü S, Özgür E, Denizli A. Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis. MICROMACHINES 2022; 13:1441. [PMID: 36144064 PMCID: PMC9503788 DOI: 10.3390/mi13091441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Aptamers are important materials for the specific determination of different disease-related biomarkers. Several methods have been enhanced to transform selected target molecule-specific aptamer bindings into measurable signals. A number of specific aptamer-based biosensors have been designed for potential applications in clinical diagnostics. Various methods in combination with a wide variety of nano-scale materials have been employed to develop aptamer-based biosensors to further increase sensitivity and detection limit for related target molecules. In this critical review, we highlight the advantages of aptamers as biorecognition elements in biosensors for target biomolecules. In recent years, it has been demonstrated that electrode material plays an important role in obtaining quick, label-free, simple, stable, and sensitive detection in biological analysis using piezoelectric devices. For this reason, we review the recent progress in growth of aptamer-based QCM biosensors for medical diagnoses, including virus, bacteria, cell, protein, and disease biomarker detection.
Collapse
|
10
|
Shestopal SA, Parunov LA, Olivares P, Chun H, Ovanesov MV, Pettersson JR, Sarafanov AG. Isolated Variable Domains of an Antibody Can Assemble on Blood Coagulation Factor VIII into a Functional Fv-like Complex. Int J Mol Sci 2022; 23:ijms23158134. [PMID: 35897712 PMCID: PMC9330781 DOI: 10.3390/ijms23158134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII functions and is useful in FVIII research. We aimed to investigate the properties of iKM33 enabled with protease-dependent disintegration. Three variants of iKM33 bearing thrombin cleavage sites within the linker were expressed using a baculovirus system and purified by two-step chromatography. All proteins retained strong binding to FVIII by surface plasmon resonance, and upon thrombin cleavage, dissociated into VL and VH as shown by size-exclusion chromatography. However, in FVIII activity and low-density lipoprotein receptor-related protein 1 binding assays, the thrombin-cleaved iKM33 variants were still inhibitory. In a pull-down assay using an FVIII-affinity sorbent, the isolated VH, a mixture of VL and VH, and intact iKM33 were carried over via FVIII analyzed by electrophoresis. We concluded that the isolated VL and VH assembled into scFv-like heterodimer on FVIII, and the isolated VH alone also bound FVIII. We discuss the potential use of both protease-cleavable scFvs and isolated Fv subunits retaining high affinity to the antigens in various practical applications such as therapeutics, diagnostics, and research.
Collapse
|
11
|
The Effect of Activated FXIII, a Transglutaminase, on Vascular Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23105845. [PMID: 35628664 PMCID: PMC9144255 DOI: 10.3390/ijms23105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Plasma factor XIII (pFXIII) is a heterotetramer of FXIII-A and FXIII-B subunits. The cellular form (cFXIII), a dimer of FXIII-A, is present in a number of cell types. Activated FXIII (FXIIIa), a transglutaminase, plays an important role in clot stabilization, wound healing, angiogenesis and maintenance of pregnancy. It has a direct effect on vascular endothelial cells and fibroblasts, which have been implicated in the development of atherosclerotic plaques. Our aim was to explore the effect of FXIIIa on human aortic smooth muscle cells (HAoSMCs), another major cell type in the atherosclerotic plaque. Osteoblastic transformation induced by Pi and Ca2+ failed to elicit the expression of cFXIII in HAoSMCs. EZ4U, CCK-8 and CytoSelect Wound Healing assays were used to investigate cell proliferation and migration. The Sircol Collagen Assay Kit was used to monitor collagen secretion. Thrombospondin-1 (TSP-1) levels were measured by ELISA. Cell-associated TSP-1 was detected by the immunofluorescence technique. The TSP-1 mRNA level was estimated by RT-qPCR. Activated recombinant cFXIII (rFXIIIa) increased cell proliferation and collagen secretion. In parallel, a 67% decrease in TSP-1 concentration in the medium and a 2.5-fold increase in cells were observed. TSP-1 mRNA did not change significantly. These effects of FXIIIa might contribute to the pathogenesis of atherosclerotic plaques.
Collapse
|
12
|
Ukan Ü, Delgado Lagos F, Kempf S, Günther S, Siragusa M, Fisslthaler B, Fleming I. Effect of Thrombin on the Metabolism and Function of Murine Macrophages. Cells 2022; 11:cells11101718. [PMID: 35626753 PMCID: PMC9139186 DOI: 10.3390/cells11101718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Macrophages are plastic and heterogeneous immune cells that adapt pro- or anti-inflammatory phenotypes upon exposure to different stimuli. Even though there has been evidence supporting a crosstalk between coagulation and innate immunity, the way in which protein components of the hemostasis pathway influence macrophages remains unclear. We investigated the effect of thrombin on macrophage polarization. On the basis of gene expression and cytokine secretion, our results suggest that polarization with thrombin induces an anti-inflammatory, M2-like phenotype. In functional studies, thrombin polarization promoted oxLDL phagocytosis by macrophages, and conditioned medium from the same cells increased endothelial cell proliferation. There were, however, clear differences between the classical M2a polarization and the effects of thrombin on gene expression. Finally, the deletion and inactivation of secreted modular Ca2+-binding protein 1 (SMOC1) attenuated phagocytosis by thrombin-stimulated macrophages, a phenomenon revered by the addition of recombinant SMOC1. Manipulation of SMOC1 levels also had a pronounced impact on the expression of TGF-β-signaling-related genes. Taken together, our results show that thrombin induces an anti-inflammatory macrophage phenotype with similarities as well as differences to the classical alternatively activated M2 polarization states, highlighting the importance of tissue levels of SMOC1 in modifying thrombin-induced macrophage polarization.
Collapse
Affiliation(s)
- Ürün Ukan
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany; (Ü.U.); (F.D.L.); (S.K.); (M.S.); (B.F.)
| | - Fredy Delgado Lagos
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany; (Ü.U.); (F.D.L.); (S.K.); (M.S.); (B.F.)
| | - Sebastian Kempf
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany; (Ü.U.); (F.D.L.); (S.K.); (M.S.); (B.F.)
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany; (Ü.U.); (F.D.L.); (S.K.); (M.S.); (B.F.)
| | - Beate Fisslthaler
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany; (Ü.U.); (F.D.L.); (S.K.); (M.S.); (B.F.)
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany; (Ü.U.); (F.D.L.); (S.K.); (M.S.); (B.F.)
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, 60596 Frankfurt am Main, Germany
- CardioPulmonary Institute, Goethe University, 60596 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
13
|
P Karagodin V, I Summerhill V, Yet SF, N Orekhov A. The anti-atherosclerotic effects of natural polysaccharides: from phenomena to the main mechanisms of action. Curr Pharm Des 2022; 28:1823-1832. [PMID: 35585810 DOI: 10.2174/1381612828666220518095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Polysaccharides (PSs) of plant origin have a variety of biological activities, anti-atherosclerotic including, but their use in atherosclerosis therapy is hindered by insufficient knowledge on the cellular and molecular mechanisms of action. In this review, the influence of several natural PSs on the function of macrophages, viral activity, and macrophage cholesterol metabolism has been discussed considering the tight interplay between these aspects in the pathogenesis of atherosclerosis. The anti-atherosclerotic activities of natural PSs related to other mechanisms have been also explored. Directions for further research of anti-atherosclerotic effects of natural PSs have been outlined, the most promising of which can be nutrigenomic studies.
Collapse
Affiliation(s)
- Vasily P Karagodin
- Department of Commodity Research and Expertise, Plekhanov Russian University of Economics, 36 Stremyanny Pereulok, 117997 Moscow, Russia
| | - Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan R.O.C
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia.,Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
14
|
Huang SC, Hsu CC, Fu TC, Chen CPC, Liao MF, Hsu CY, Wang JS. Stepper-Based Training Improves Monocyte-Platelet Aggregation and Thrombin Generation in Nonambulatory Hemiplegic Patients. Med Sci Sports Exerc 2022; 54:821-829. [PMID: 34935707 DOI: 10.1249/mss.0000000000002846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Nonambulatory stroke patients are extremely sedentary, but most available data concerning exercise training in stroke patients are related to ambulatory patients. This study aimed to investigate the efficacy of stepper-based exercise training on cardiopulmonary fitness, monocyte subtypes, and associated monocyte-platelet aggregates (MPA) and thrombin generation (TrG) in nonambulatory hemiplegic patients with ischemic stroke. METHOD Thirty-eight patients were randomized into exercise training (ET, n = 20) and usual care (UC, n = 18) groups. The ET underwent supervised exercise training (60% peak work rate) using a recumbent stepper for two to four sessions per week and 36 sessions in total. In addition, 12 healthy participants were enrolled as healthy controls. Monocyte characteristics, MPA, and plasma TrG kinetics were determined before and after intervention by flow cytometry and calibrated automated thrombogram® (CAT). RESULTS Seventeen and 15 patients completed the protocol in the ET and UC groups. Peak V̇O2 improved in ET (15.7 ± 4.8 vs 18.9 ± 5.3 mL·min-1·kg-1, +20%), so did the phase angle of the hemiplegic limbs. The counts of total MPA and MPA associated with three monocyte subtypes, alongside CD42b expression all declined in ET with subtypes 2 and 1 being the most prominent. Macrophage inflammatory protein 1β (MIP-1 β) level also declined. The TrG kinetics was attenuated after ET by delaying initiation and reducing the rising slope and peak of thrombin production. In UC, no difference was revealed in the pre-post comparison. CONCLUSIONS Stepper-based ET is feasible in nonambulatory hemiplegic patients and is effective in improving aerobic fitness. Moreover, it decreases heteroaggregation of monocytes with platelets, especially in monocyte subtypes 2 and 1. Thrombin generation was also attenuated. Hence, stepper-based ET may be incorporated in the rehabilitation of nonambulatory hemiplegic patients.
Collapse
Affiliation(s)
| | | | | | | | - Ming-Feng Liao
- Department of Neurology, Chang Gung Memorial Hospital, Linkuo, TAIWAN
| | - Chien-Ya Hsu
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Linkou, TAIWAN
| | | |
Collapse
|
15
|
Dukhin OA, Kalinsaya AI, Shpektor AV, Vasilieva EY. [The role of thrombin in the pathogenesis of atherosclerosis and its complications]. KARDIOLOGIIA 2022; 62:73-81. [PMID: 35414364 DOI: 10.18087/cardio.2022.3.n1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Thrombin is a key regulator of the homeostasis system. Also, it actively participates in progression of various systemic diseases, including atherosclerosis. There is a large amount of experimental and clinical data on the involvement of thrombin in the pathogenesis of ischemic heart disease (IHD). Thus, studying thrombin activity regulation is promising. Also, the question whether it is possible to use biomarkers of thrombin activity as predictors of cardiovascular complications in IHD patients is relevant. The present review focuses on major mechanisms of thrombin functioning, its role in development and progression of atherosclerosis, and available tests for evaluation of thrombin functional activity. Major clinical studies are discussed that evaluated the efficacy of thrombin inhibitors and protease-activated receptor antagonists.
Collapse
Affiliation(s)
- O A Dukhin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
| | - A I Kalinsaya
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
| | - A V Shpektor
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - E Yu Vasilieva
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
| |
Collapse
|
16
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
17
|
Xie Y, Zhang H, Huang T. Quantitative proteomics reveal three potential biomarkers for risk assessment of acute myocardial infarction. Bioengineered 2022; 13:4939-4950. [PMID: 35156527 PMCID: PMC8973584 DOI: 10.1080/21655979.2022.2037365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acute myocardial infarction (AMI) is the one of the main cause of death worldwide. Exosomes carry important information about intercellular communication and could be diagnostic marker for many diseases. Here, we aimed to find potential key proteins for the early diagnosis of AMI. A label free proteomics strategy was used to identify the differentially expressed proteins (DEPs) of AMI patients’ plasma exosome. By bioinformatics analysis and enzyme-linked immunosorbent assay to validate the candidate proteins. Compared to healthy control plasma exosome, we totally identified 72 differentially expressed proteins (DEPs) in AMI patients. Also, we found that complement and coagulation cascades was activated by KEGG analysis and GSEA. PLG, C8B and F2 were selected as candidate molecules for further study, and then validated another 40 plasma samples using enzyme-linked immunosorbent assay. Finally, we found that the expression levels of these three proteins (PLG, C8B and F2) were significantly higher than those of healthy controls (P < 0.05). ROC analysis revealed that PLG, C8B and F2 had potential value for AMI early diagnosis. In conclusion, our study identified three potential biomarkers for AMI diagnosis. But there remains a need to further study the mechanism of the biomarkers.
Collapse
Affiliation(s)
| | | | - Tieqiu Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Baicalin Alleviates Thrombin-Induced Inflammation in Vascular Smooth Muscle Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5799308. [PMID: 35097121 PMCID: PMC8799346 DOI: 10.1155/2022/5799308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/27/2021] [Indexed: 11/26/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of the arterial intima. As AS represents the most common type of vascular disease, it affects millions of individuals and is a source of high morbidity and mortality rates worldwide. Overwhelming evidence indicates that AS-related inflammation is mediated by proinflammatory cytokines, chemokines, adhesion molecules and inflammatory signaling pathways, with each of these factors being shown to play critical roles during the entire progression of AS. While a number of drugs have been approved for use in the treatment of AS, their benefits are modest, which underscores the urgency for the development of new drug therapies. In part, these deficits in effective drugs can be attributable to the lack of a clear understanding of the molecular mechanisms of AS. In this study, we investigate the capacity for thrombin to trigger inflammation and induce cell proliferation in vascular smooth muscle cells (VSMCs). We then assessed the effects of baicalin and its potential mechanisms on VSMC inflammation as induced by thrombin. Baicalin, which is a natural bioactive compound of S. baicalensis Georgi (SBG), exerted a protective effect against thrombin-induced VSMC inflammation as resulting from the upregulation of PAR-1. This protection as exerted by baicalin appears to reside in its capacity to produce an inhibitory effect on the thrombin-induced activation of the ERK1/2 pathway. These findings suggest that baicalin may be a promising candidate for the treatment of atherosclerosis.
Collapse
|
19
|
Coagulome and the tumor microenvironment: an actionable interplay. Trends Cancer 2022; 8:369-383. [PMID: 35027336 DOI: 10.1016/j.trecan.2021.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
Human tumors often trigger a hypercoagulable state that promotes hemostatic complications, including venous thromboembolism. The recent application of systems biology to the study of the coagulome highlighted its link to shaping the tumor microenvironment (TME), both within and outside of the vascular space. Addressing this link provides the opportunity to revisit the significance of biomarkers of hemostasis and assess the communication between vasculature and tumor parenchyma, an important topic considering the advent of immune checkpoint inhibitors and vascular normalization strategies. Understanding how the coagulome and TME influence each other offers exciting new prospects for predicting hemostatic complications and boosting the effectiveness of cancer treatment.
Collapse
|
20
|
Ning W, Ma Y, Li S, Wang X, Pan H, Wei C, Zhang S, Bai D, Liu X, Deng Y, Acharya A, Pelekos G, Savkovic V, Li H, Gaus S, Haak R, Schmalz G, Ziebolz D, Ma Y, Xu Y. Shared Molecular Mechanisms between Atherosclerosis and Periodontitis by Analyzing the Transcriptomic Alterations of Peripheral Blood Monocytes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1498431. [PMID: 34899963 PMCID: PMC8664523 DOI: 10.1155/2021/1498431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/12/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study investigated the nature of shared transcriptomic alterations in PBMs from periodontitis and atherosclerosis to unravel molecular mechanisms underpinning their association. METHODS Gene expression data from PBMs from patients with periodontitis and those with atherosclerosis were each downloaded from the GEO database. Differentially expressed genes (DEGs) in periodontitis and atherosclerosis were identified through differential gene expression analysis. The disease-related known genes related to periodontitis and atherosclerosis each were downloaded from the DisGeNET database. A Venn diagram was constructed to identify crosstalk genes from four categories: DEGs expressed in periodontitis, periodontitis-related known genes, DEGs expressed in atherosclerosis, and atherosclerosis-related known genes. A weighted gene coexpression network analysis (WGCNA) was performed to identify significant coexpression modules, and then, coexpressed gene interaction networks belonging to each significant module were constructed to identify the core crosstalk genes. RESULTS Functional enrichment analysis of significant modules obtained by WGCNA analysis showed that several pathways might play the critical crosstalk role in linking both diseases, including bacterial invasion of epithelial cells, platelet activation, and Mitogen-Activated Protein Kinases (MAPK) signaling. By constructing the gene interaction network of significant modules, the core crosstalk genes in each module were identified and included: for GSE23746 dataset, RASGRP2 in the blue module and VAMP7 and SNX3 in the green module, as well as HMGB1 and SUMO1 in the turquoise module were identified; for GSE61490 dataset, SEC61G, PSMB2, SELPLG, and FIBP in the turquoise module were identified. CONCLUSION Exploration of available transcriptomic datasets revealed core crosstalk genes (RASGRP2, VAMP7, SNX3, HMGB1, SUMO1, SEC61G, PSMB2, SELPLG, and FIBP) and significant pathways (bacterial invasion of epithelial cells, platelet activation, and MAPK signaling) as top candidate molecular linkage mechanisms between atherosclerosis and periodontitis.
Collapse
Affiliation(s)
- Wanchen Ning
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xin Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hongying Pan
- School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Chenxuan Wei
- School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Shaochuan Zhang
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dongying Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Xiangqiong Liu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, 218 Anwaixiaoguanbeili Street, Chaoyang, Beijing 100029, China
| | - Aneesha Acharya
- Dr D Y Patil Dental College and Hospital, Dr D Y Patil Vidyapeeth, Pimpri, Pune, India
| | - George Pelekos
- Faculty of Dentistry, University of Hong Kong, Hong KongChina
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Hanluo Li
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Liebigstr. 12, 04103 Leipzig, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103 Leipzig, Germany
| | - Yanbo Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province 271000, China
| |
Collapse
|
21
|
Walter ERH, Cooper SM, Boyle JJ, Long NJ. Enzyme-activated probes in optical imaging: a focus on atherosclerosis. Dalton Trans 2021; 50:14486-14497. [PMID: 34605500 PMCID: PMC8546924 DOI: 10.1039/d1dt02198b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022]
Abstract
Enzyme-activated probes enable complex biological processes to be studied in real-time. A wide range of enzymes are modulated in diseases, including cancer, inflammatory diseases and cardiovascular disease, and have the potential to act as vital diagnostic and prognostic biomarkers to monitor and report on disease progression. In this perspective article, we discuss suitable design characteristics of enzyme-activated fluorescent probes for ex vivo and in vivo optical imaging applications. With a particular focus on atherosclerosis imaging, we highlight recent approaches to report on the activity of cathepsins (K and B), matrix metalloproteinases (MMP-2 and MMP-9), thrombin, heme oxygenase-1 (HO-1) and myeloperoxidase (MPO).
Collapse
Affiliation(s)
- Edward R H Walter
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Saul M Cooper
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Joseph J Boyle
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, UK.
| |
Collapse
|
22
|
Abstract
The serine protease thrombin, a naturally derived enzyme, plays a key role in hemostasis by converting fibrinogen to fibrin and activating coagulation factor XIII whereby the fibrin clot is stabilized. Furthermore, thrombin activates platelets through protease-activated receptors on the platelet surface. Conversely, thrombin also exerts anticoagulant effects, enhancing the protein C activity while complexed with thrombomodulin. During recent years, it has become evident that thrombin has significant effects beyond hemostasis, as it contributes also to modulation of the endothelium, promotes inflammation and angiogenesis, and plays a role in tumor progression. Yet, due to the very short half-life and almost immediate inhibition in fluid phase by antithrombin, thrombin itself remains elusive, and only indirect measurement of thrombin generation is possible. This review provides a description of structure and mechanisms of action of thrombin both in physiological and pathological processes. Furthermore, it summarizes laboratory tests that measure in vivo or ex vivo thrombin generation, and presents knowledge on the value of these biomarkers in bleeding disorders, cardiopulmonary bypass surgery, and thromboembolic risk assessment in different patient populations. Finally, this review outlines further perspectives on using thrombin generation biomarkers for research purposes and in clinical practice.
Collapse
Affiliation(s)
- Julie Brogaard Larsen
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Biochemistry, Thrombosis and Hemostasis Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Reynaud L, Bouchet-Spinelli A, Janot JM, Buhot A, Balme S, Raillon C. Discrimination of α-Thrombin and γ-Thrombin Using Aptamer-Functionalized Nanopore Sensing. Anal Chem 2021; 93:7889-7897. [PMID: 34038092 DOI: 10.1021/acs.analchem.1c00461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein detection and identification at the single-molecule level are major challenges in many biotechnological fields. Solid-state nanopores have raised attention as label-free biosensors with high sensitivity. Here, we use solid-state nanopore sensing to discriminate two closely related proteins, α-thrombin and γ-thrombin. We show that aptamer functionalization improves protein discrimination thanks to a significant difference in the relative current blockade amplitude. To enhance discrimination, we postprocessed the signals using machine learning and training algorithms and we were able to reach an accuracy of 98.8% using seven features and ensemble methods.
Collapse
Affiliation(s)
- Lucile Reynaud
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38054, France
| | | | - Jean-Marc Janot
- Institut Européen des Membranes, IEM, UMR 5635, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34095, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38054, France
| | - Sébastien Balme
- Institut Européen des Membranes, IEM, UMR 5635, Univ. Montpellier, CNRS, ENSCM, Montpellier F-34095, France
| | - Camille Raillon
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble F-38054, France
| |
Collapse
|
24
|
Wang X, Xu Y, Li L, Lu W. Thrombin Aggravates Hypoxia/Reoxygenation Injury of Cardiomyocytes by Activating an Autophagy Pathway-Mediated by SIRT1. Med Sci Monit 2021; 27:e928480. [PMID: 33931577 PMCID: PMC8098101 DOI: 10.12659/msm.928480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/18/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Acute myocardial infarction is the leading cause of mortality among adults worldwide. The present study aimed to investigate the role and mechanism of thrombin and SIRT1 in hypoxia/reoxygenation (H/R) injury. MATERIAL AND METHODS H9c2 cardiomyocytes were used to create an H/R model to simulate in vivo ischemia/reperfusion injury. The MTT assay was used to measure cell viability, qRT-PCR was used to detect the level of SIRT1, thrombin, and PAR-1, and western blot analysis was conducted for evaluation of thrombin, PAR-1, SIRT1, LC3I, LC3II, and Beclin1. ELISA was applied for determination of IL-1ß, IL-6, TNF-alpha, MMP-9, and ICAM-1. After the establishment of the H/R model, superoxide dismutase (SOD) activity was evaluated by the xanthine oxidase method, malondialdehyde content was detected by thiobarbituric acid assay, and reactive oxygen species generation was measured by CM-H2DCFDA. RESULTS The findings showed that thrombin enhanced inflammatory factor secretion and oxidative stress but inhibited cell viability in H/R-injured cardiomyocytes. We also observed that thrombin promoted autophagy in H/R-injured cardiomyocytes. In addition, thrombin enhanced the upregulation of SIRT1 expression by H/R. However, it was found that inhibition of SIRT1 could suppress the effect of thrombin on inflammatory factor secretion, oxidative stress, and cell viability. Moreover, downregulation of SIRT1 suppressed the inhibitory effect of thrombin on autophagy in H/R injury. CONCLUSIONS Thrombin aggravates H/R injury of cardiomyocytes by activating an autophagy pathway mediated by SIRT1. These findings might provide a potential target therapy for the treatment of ischemia/reperfusion injury in future clinical work.
Collapse
Affiliation(s)
- Xiaoning Wang
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yunhe Xu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Lingbo Li
- Changchun Bioxun Biotechnology Limited Liability Company, Changchun, Jilin, P.R. China
| | - Weiwei Lu
- Department of Blood Transfusion, The First Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
25
|
Hong LZ, Xue Q, Shao H. Inflammatory Markers Related to Innate and Adaptive Immunity in Atherosclerosis: Implications for Disease Prediction and Prospective Therapeutics. J Inflamm Res 2021; 14:379-392. [PMID: 33628042 PMCID: PMC7897977 DOI: 10.2147/jir.s294809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence have linked a dysregulated inflammatory setting to the pathogenesis of atherosclerosis, which is a form of chronic vascular inflammation. Various inflammatory biomarkers have been associated with inflammation and are recognized as potential tools to monitor the progression of atherosclerosis. A well-studied inflammatory marker in the context of cardiovascular diseases is C-reactive protein (CRP) or, more accurately, highly sensitive-CRP (hs-CRP), which has been established as an inflammatory biomarker for atherosclerotic events. In addition, a growing body of investigations has attempted to disclose the potential of inflammatory cytokines, enzymes, and genetic polymorphisms related to innate and adaptive immunity as biomarkers for predicting the development of atherosclerosis. In this review article, we clarify both traditional and novel inflammatory biomarkers related to components of the innate and adaptive immune system that may mirror the progression or phases of atherosclerotic inflammation/lesions. Furthermore, the contribution of the inflammatory biomarkers in developing potential therapeutics against atherosclerotic treatment will be discussed.
Collapse
Affiliation(s)
- Ling-Zhi Hong
- Emergency Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, 311700, Zhejiang Province, People’s Republic of China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| |
Collapse
|
26
|
Chen J, Shi W, Xu Y, Zhang H, Chen B. Hirudin prevents vascular endothelial cell apoptosis and permeability enhancement induced by the serum from rat with chronic renal failure through inhibiting RhoA/ROCK signaling pathway. Drug Dev Res 2020; 82:553-561. [PMID: 33345328 DOI: 10.1002/ddr.21773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022]
Abstract
Endothelial cells injury and activation contribute to arteriovenous fistula (AVF) stenosis. Hirudin (Hiru) can inhibit the activity of thrombin, which was reported to enhance endothelial cell permeability and promote vascular inflammatory responses. RhoA/ROCK signaling pathway is also important in regulating vascular endothelial permeability. This study aimed to investigate the role of Hiru on the viability and permeability of human umbilical vein endothelial cells (HUVECs) following stimulation of serum from rat with chronic renal failure (CRF) and illustrated the effects of Hiru on RhoA/ROCK signaling. Wistar rats were randomly divided into control group and CRF group. Serum from each group was collected to stimulate HUVECs. Proliferation capability was estimated with Cell Count Kit-8 (CCK-8) assay. Transwell assay was performed to determine permeability. Cell apoptosis was examined using Tunel staining. Telomere length and telomerase activity were determined by qPCR. Moreover, the expression of RhoA, ROCK1 and ROCK2 was estimated via western blot. Results showed that the serum from CRF rat significantly inhibited cell viability while enhanced cell permeability and apoptosis. Different concentrations of Hiru prevented the above effects caused by CRF serum. Additionally, Hiru recovered the CRF serum-induced decreased telomere length and telomerase activity. Hiru also inhibited the protein expression of RhoA, ROCK1 and ROCK2, which were activated by CRF serum. Moreover, the ROCK inhibitor, Y27632, exhibited similar effects with Hiru. In conclusion, Hiru-restored HUVECs cell viability, telomere length and telomerase activity, suppressed permeability and apoptosis in the presence of CRF serum might depend on inactivating the RhoA/ROCK signaling.
Collapse
Affiliation(s)
- Jing Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Wenbin Shi
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Yan Xu
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Huaming Zhang
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| | - Bo Chen
- Department of Nephrology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang, China
| |
Collapse
|
27
|
Iannucci J, Johnson SL, Majchrzak M, Barlock BJ, Akhlaghi F, Seeram NP, Sen A, Grammas P. Short-term treatment with dabigatran alters protein expression patterns in a late-stage tau-based Alzheimer's disease mouse model. Biochem Biophys Rep 2020; 24:100862. [PMID: 33294639 PMCID: PMC7689047 DOI: 10.1016/j.bbrep.2020.100862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Proteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer's disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510. Aged Tg4510 mice were treated with the direct thrombin inhibitor dabigatran or vehicle for 7 days, brains collected, and western blot and data-independent proteomics using mass spectrometry with SWATH-MS acquisition performed to evaluate proteins related to oxidative stress, intracellular signaling, inflammation, and AD pathology. Dabigatran reduced iNOS, NOX4, and phosphorylation of tau (S396, S416). Additionally, dabigatran treatment increased expression of several signaling proteins related to cell survival and synaptic function. Increasing evidence supports a chronic procoagulant state in AD, highlighting a possible pathogenic role for thrombin. Our data demonstrate that inhibiting thrombin produces alterations in the expression of proteins involved in oxidative stress, inflammation, and AD-related pathology, suggesting that thrombin-mediated signaling affects multiple AD-related pathways providing a potential future therapeutic target. Thrombin inhibition with dabigatran reduces markers of oxidative stress in vivo. Dabigatran treatment reduces tau pathology in vivo. Dabigatran treatment promotes factors related to cell survival, synaptic function.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Shelby L Johnson
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Mark Majchrzak
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Benjamin J Barlock
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
28
|
Shin SJ, Hang HT, Thang BQ, Shimoda T, Sakamoto H, Osaka M, Hiramatsu Y, Yamashiro Y, Yanagisawa H. Role of PAR1-Egr1 in the Initiation of Thoracic Aortic Aneurysm in Fbln4-Deficient Mice. Arterioscler Thromb Vasc Biol 2020; 40:1905-1917. [DOI: 10.1161/atvbaha.120.314560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective:
Remodeling of the extracellular matrix plays a vital role in cardiovascular diseases. Using a mouse model of postnatal ascending aortic aneurysms (termed
Fbln4
SMKO
), we have reported that abnormal mechanosensing led to aneurysm formation in
Fbln4
SMKO
with an upregulation of the mechanosensitive transcription factor, Egr1 (Early growth response 1). However, the role of Egr1 and its upstream regulator(s) in the initiation of aneurysm development and their relationship to an aneurysmal microenvironment are unknown.
Approach and Results:
To investigate the contribution of Egr1 in the aneurysm development, we deleted
Egr1
in
Fbln4
SMKO
mice and generated double knockout mice (
DKO
,
Fbln4
SMKO
;
Egr1
−/−
). Aneurysms were prevented in
DKO
mice (42.8%) and
Fbln4
SMKO
;
Egr1
+/−
mice (26%). Ingenuity Pathway Analysis identified PAR1 (protease-activated receptor 1) as a potential Egr1 upstream gene. Protein and transcript levels of PAR1 were highly increased in
Fbln4
SMKO
aortas at postnatal day 1 before aneurysm formed, together with active thrombin and MMP (matrix metalloproteinase)-9, both of which serve as a PAR1 activator. Concordantly, protein levels of PAR1, Egr1, and thrombin were significantly increased in human thoracic aortic aneurysms. In vitro cyclic stretch assays (1.0 Hz, 20% strain, 8 hours) using mouse primary vascular smooth muscle cells induced marked expression of PAR1 and secretion of prothrombin in response to mechanical stretch. Thrombin was sufficient to induce Egr1 expression in a PAR1-dependent manner.
Conclusions:
We propose that thrombin, MMP-9, and mechanical stimuli in the
Fbln4
SMKO
aorta activate PAR1, leading to the upregulation of Egr1 and initiation of ascending aortic aneurysms.
Collapse
Affiliation(s)
- Seung Jae Shin
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences (S.J.S.), University of Tsukuba, Ibaraki, Japan
| | - Huynh Thuy Hang
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences (H.T.H.), University of Tsukuba, Ibaraki, Japan
| | - Bui Quoc Thang
- Department of Cardiovascular Surgery (B.Q.T., H.S., M.O., Y.H.), University of Tsukuba, Ibaraki, Japan
| | - Tomonari Shimoda
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
- School of Medicine (T.S.), University of Tsukuba, Ibaraki, Japan
| | - Hiroaki Sakamoto
- Department of Cardiovascular Surgery (B.Q.T., H.S., M.O., Y.H.), University of Tsukuba, Ibaraki, Japan
| | - Motoo Osaka
- Department of Cardiovascular Surgery (B.Q.T., H.S., M.O., Y.H.), University of Tsukuba, Ibaraki, Japan
| | - Yuji Hiramatsu
- Department of Cardiovascular Surgery (B.Q.T., H.S., M.O., Y.H.), University of Tsukuba, Ibaraki, Japan
| | - Yoshito Yamashiro
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
| | - Hiromi Yanagisawa
- From the Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA) (S.J.S., H.T.H., T.S., Y.Y., H.Y.), University of Tsukuba, Ibaraki, Japan
- Division of Biomedical Science, Faculty of Medicine (H.Y.), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
Iannucci J, Renehan W, Grammas P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer's Disease. Front Neurosci 2020; 14:762. [PMID: 32792902 PMCID: PMC7393221 DOI: 10.3389/fnins.2020.00762] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The societal burden of Alzheimer’s disease (AD) is staggering, with current estimates suggesting that 50 million people world-wide have AD. Identification of new therapeutic targets is a critical barrier to the development of disease-modifying therapies. A large body of data implicates vascular pathology and cardiovascular risk factors in the development of AD, indicating that there are likely shared pathological mediators. Inflammation plays a role in both cardiovascular disease and AD, and recent evidence has implicated elements of the coagulation system in the regulation of inflammation. In particular, the multifunctional serine protease thrombin has been found to act as a mediator of vascular dysfunction and inflammation in both the periphery and the central nervous system. In the periphery, thrombin contributes to the development of cardiovascular disease, including atherosclerosis and diabetes, by inducing endothelial dysfunction and related inflammation. In the brain, thrombin has been found to act on endothelial cells of the blood brain barrier, microglia, astrocytes, and neurons in a manner that promotes vascular dysfunction, inflammation, and neurodegeneration. Thrombin is elevated in the AD brain, and thrombin signaling has been linked to both tau and amyloid beta, pathological hallmarks of the disease. In AD mouse models, inhibiting thrombin preserves cognition and endothelial function and reduces neuroinflammation. Evidence linking atrial fibrillation with AD and dementia indicates that anticoagulant therapy may reduce the risk of dementia, with targeting thrombin shown to be particularly effective. It is time for “outside-the-box” thinking about how vascular risk factors, such as atherosclerosis and diabetes, as well as the coagulation and inflammatory pathways interact to promote increased AD risk. In this review, we present evidence that thrombin is a convergence point for AD risk factors and as such that thrombin-based therapeutics could target multiple points of AD pathology, including neurodegeneration, vascular activation, and neuroinflammation. The urgent need for disease-modifying drugs in AD demands new thinking about disease pathogenesis and an exploration of novel drug targets, we propose that thrombin inhibition is an innovative tactic in the therapeutic battle against this devastating disease.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - William Renehan
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Paula Grammas
- The George and Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
30
|
Evaluation of Anti-Inflammatory and Atheroprotective Properties of Wheat Gluten Protein Hydrolysates in Primary Human Monocytes. Foods 2020; 9:foods9070854. [PMID: 32630013 PMCID: PMC7404777 DOI: 10.3390/foods9070854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bioactive protein hydrolysates have been identified in several sources as possible agents in the prevention and treatment of many diseases. A wheat gluten (WG) concentrate was hydrolyzed by Alcalase under specific conditions. The resulting hydrolysates were evaluated by in vitro cell-free experiments leading to the identification of one bioactive WG protein hydrolysate (WGPH), which was used at 50 and 100 μg/mL on primary human monocytes. Reactive oxygen species (ROS) and nitrite levels and RT-qPCR and ELISA techniques were used to analyze the functional activity of WGPH. Our results showed that WGPH hydrolyzed in 45 min (WGPH45A) down-regulated gene expression of Interleukin (IL)-1β, IL-6, IL-17, and Interferon gamma (IFNγ) and reduced cytokine release in lipopolysaccharide (LPS)-stimulated monocytes. In addition, WGPH45A down-regulated gene-related to atherosclerotic onset. Our results suggest that WGPH45A has a potent anti-inflammatory and atheroprotective properties, reducing the expression of gene-related inflammation and atherosclerosis that could be instrumental in maintaining cardiovascular homeostasis.
Collapse
|
31
|
Elevated level of circulatory sTLT1 induces inflammation through SYK/MEK/ERK signalling in coronary artery disease. Clin Sci (Lond) 2020; 133:2283-2299. [PMID: 31713591 DOI: 10.1042/cs20190999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/27/2022]
Abstract
The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)-/- mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE-/- mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.
Collapse
|
32
|
Govatati S, Pichavaram P, Janjanam J, Guo L, Virmani R, Rao GN. Myristoylation of LMCD1 Leads to Its Species-Specific Derepression of E2F1 and NFATc1 in the Modulation of CDC6 and IL-33 Expression During Development of Vascular Lesions. Arterioscler Thromb Vasc Biol 2020; 40:1256-1274. [PMID: 32160773 PMCID: PMC7180120 DOI: 10.1161/atvbaha.120.314147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In view of our previous observations on differential expression of LMCD1 (LIM and cysteine-rich domains 1) in human versus rodents, we asked the question whether LMCD1 plays a species-specific role in the development of vascular lesions. Approach and Results: A combination of genetic, molecular, cellular, and disease models were used to test species-specific role of LMCD1 in the pathogenesis of vascular lesions. Here, we report species-specific regulation of LMCD1 expression in mediating vascular smooth muscle cell proliferation and migration during vascular wall remodeling in humans versus mice. Thrombin induced LMCD1 expression in human aortic smooth muscle cells but not mouse aortic smooth muscle cells via activation of Par1 (protease-activated receptor 1)-Gαq/11 (Gα protein q/11)-PLCβ3 (phospholipase Cβ3)-NFATc1 (nuclear factor of activated T cells 1) signaling. Furthermore, although LMCD1 mediates thrombin-induced proliferation and migration of both human aortic smooth muscle cells and mouse aortic smooth muscle cells via influencing E2F1 (E2F transcription factor 1)-mediated CDC6 (cell division cycle 6) expression and NFATc1-mediated IL (interleukin)-33 expression, respectively, in humans, it acts as an activator, and in mice, it acts as a repressor of these transcriptional factors. Interestingly, LMCD1 repressor activity was nullified by N-myristoyltransferase 2-mediated myristoylation in mouse. Besides, we found increased expression of LMCD1 in human stenotic arteries as compared to nonstenotic arteries. On the other hand, LMCD1 expression was decreased in neointimal lesions of mouse injured arteries as compared to noninjured arteries. CONCLUSIONS Together, these observations reveal that LMCD1 acts as an activator and repressor of E2F1 and NFATc1 in humans and mice, respectively, in the induction of CDC6 and IL-33 expression during development of vascular lesions. Based on these findings, LMCD could be a potential target for drug development against restenosis and atherosclerosis in humans.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Co-Repressor Proteins/genetics
- Co-Repressor Proteins/metabolism
- Disease Models, Animal
- E2F1 Transcription Factor/genetics
- E2F1 Transcription Factor/metabolism
- Female
- Gene Expression Regulation
- Humans
- Interleukin-33/genetics
- Interleukin-33/metabolism
- LIM Domain Proteins/genetics
- LIM Domain Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myristic Acid/metabolism
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Processing, Post-Translational
- Signal Transduction
- Species Specificity
- Thrombin/pharmacology
- Vascular Remodeling/drug effects
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health
Science Center, Memphis, TN 38163, USA
| | - Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health
Science Center, Memphis, TN 38163, USA
| | - Jagadeesh Janjanam
- Department of Physiology, University of Tennessee Health
Science Center, Memphis, TN 38163, USA
| | - Liang Guo
- CVPath Institute Inc., Gaithersburg, MD 20878
| | | | - Gadiparthi N. Rao
- Department of Physiology, University of Tennessee Health
Science Center, Memphis, TN 38163, USA
| |
Collapse
|
33
|
Lordan R, Tsoupras A, Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev 2020; 45:100694. [PMID: 32340775 DOI: 10.1016/j.blre.2020.100694] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Platelets are central to inflammation-related manifestations of cardiovascular diseases (CVD) such as atherosclerosis. Platelet-activating factor (PAF), thrombin, thromboxane A2 (TxA2), and adenosine diphosphate (ADP) are some of the key agonists of platelet activation that are at the intersection between a plethora of inflammatory pathways that modulate pro-inflammatory and coagulation processes. The aim of this article is to review the role of platelets and the relationship between their structure, function, and the interactions of their constituents in systemic inflammation and atherosclerosis. Antiplatelet therapies are discussed with a view to primary prevention of CVD by the clinical reduction of platelet reactivity and inflammation. Current antiplatelet therapies are effective in reducing cardiovascular risk but increase bleeding risk. Novel therapeutic antiplatelet approaches beyond current pharmacological modalities that do not increase the risk of bleeding require further investigation. There is potential for specifically designed nutraceuticals that may become safer alternatives to pharmacological antiplatelet agents for the primary prevention of CVD but there is serious concern over their efficacy and regulation, which requires considerably more research.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
34
|
Total, Neutral, and Polar Lipids of Brewing Ingredients, By-Products and Beer: Evaluation of Antithrombotic Activities. Foods 2019; 8:foods8050171. [PMID: 31137500 PMCID: PMC6560433 DOI: 10.3390/foods8050171] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/14/2019] [Accepted: 05/19/2019] [Indexed: 12/25/2022] Open
Abstract
The in vitro antithrombotic properties of polar lipid constituents of malted grain (MG), pelleted hops (PH), brewer’s spent grain (BSG), spent hops (SH), wort, and bottled beer from the same production line were assessed in human platelets. The total lipids (TL) were extracted according to the Bligh and Dyer method and further separated into the total neutral lipids (TNL) and total polar lipids (TPL) extracts by counter-current distribution. The TL, TNL, and TPL extracts of all samples were assessed for their ability to inhibit platelet-activating factor (PAF) and thrombin-induced human platelet aggregation. The raw materials, by-products, wort, and beer lipid extracts all exhibited antithrombotic properties against PAF and thrombin. However, the beer TPL exhibited the lowest IC50 values against PAF-induced (7.8 ± 3.9 µg) and thrombin-induced (4.3 ± 3.0 µg) platelet aggregation indicating that these polar lipids were the most antithrombotic. The lipid extracts tended to be more bioactive against the thrombin pathway. The fatty acid content of all the TPL extracts were assessed using GC-MS. The fatty acid composition of the most bioactive TPL extracts, the wort and the beer, shared similar fatty acid profiles. Indeed, it was noted that fermentation seems to play a role in increasing the antithrombotic properties of polar lipids against PAF and thrombin by moderately altering the polar lipid fatty acid composition. Furthermore, the use of brewing by-products as a source of functional cardioprotective lipids warrants further investigation and valorisation.
Collapse
|