1
|
O'Connell DA, Carroll RS, Duker AL, Schelhaas AJ, Postell MM, Fawcett PT, Bober MB. Trends in Serum Cytokine Expression in Pediatric Skeletal Dysplasia. JBMR Plus 2023; 7:e10816. [PMID: 38130766 PMCID: PMC10731102 DOI: 10.1002/jbm4.10816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 08/18/2023] [Indexed: 12/23/2023] Open
Abstract
The skeletal dysplasias are a heterogeneous group of genetic conditions caused by abnormalities of growth, development, and maintenance of bone and cartilage. Little is known about the roles that cytokines play in the inflammatory and non-inflammatory pathophysiology of skeletal dysplasia. We sought to test our hypothesis that cytokines would be differentially expressed in children with skeletal dysplasia as compared to typically growing controls. Cytokine levels were analyzed using the Cytokine Human Magnetic 25-Plex Panel (Invitrogen, Waltham, MA, USA); 136 growing individuals with skeletal dysplasia and compared to a cohort of 275 healthy pediatric control subjects. We focused on the expression of 12 cytokines across nine dysplasia cohorts. The most common skeletal dysplasia diagnoses were: achondroplasia (58), osteogenesis imperfecta (19), type II collagenopathies (11), multiple epiphyseal dysplasia (MED: 9), diastrophic dysplasia (8), metatropic dysplasia (8), and microcephalic osteodysplastic primordial dwarfism type II (MOPDII: 8). Of the 108 specific observations made, 45 (41.7%) demonstrated statistically significant differences of expression between controls and individuals with skeletal dysplasia. Four of the 12 analyzed cytokines demonstrated elevated expression above control levels in all of the dysplasia cohorts (interleukin 12 [IL-12], IL-13, interferon γ-induced protein 10 kDa [IP-10], regulated on activation, normal T cell expressed and secreted [RANTES]) and two demonstrated expression below control levels across all dysplasia cohorts (monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein-1β [MIP-1β]). The highest levels of overexpression were seen in MOPDII, with expression levels of IP-10 being increased 3.8-fold (p < 0.0001). The lowest statistically significant levels of expressions were in type II collagenopathies, with expression levels of MCP-1 being expressed 0.43-fold lower (p < 0.005). With this data, we hope to lay the groundwork for future directions in dysplasia research that will enhance our understanding of these complex signaling pathways. Looking forward, validating these early trends in cytokine expression, and associating the observed variations with trends in the progression of dysplasia may offer new candidates for clinical biomarkers or even new therapeutics. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Ricki S. Carroll
- Thomas Jefferson UniversityPhiladelphiaPAUSA
- Nemours Children's Hospital, DelawareWilmingtonDEUSA
| | | | | | | | | | - Michael B. Bober
- Thomas Jefferson UniversityPhiladelphiaPAUSA
- Nemours Children's Hospital, DelawareWilmingtonDEUSA
| |
Collapse
|
2
|
Seifi M, Motamed S, Rouientan A, Bohlouli M. The Promise of Regenerative Medicine in the Reconstruction of Auricular Cartilage Deformities. ASAIO J 2023; 69:967-976. [PMID: 37578994 DOI: 10.1097/mat.0000000000002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
There are many physiologic and psychologic challenges associated with ear cartilage deformities which are incredibly distasteful to patients, particularly children. The development of regenerative medicine (RM) sciences has opened up a new window for the reconstruction of auricular cartilage because it allows the creation of a structure similar to the auricular in appearance and function. As part of this review, we discuss the role that each RM tool, including tissue engineering, cells, and biomolecules, plays in developing engineered auricular tissue. In previous studies, it was shown that the simultaneous use of natural and synthetic biomaterials as well as three-dimensional printing techniques could improve the biological and mechanical properties of this tissue. Another critical issue is using stem cells and differentiated cartilage cells to produce tissue-specific cellular structures and extracellular matrix. Also, the importance of choosing a suitable animal model in terms of handling and care facilities, physiologic similarities to humans, and breed uniformity in the preclinical assessments have been highlighted. Then, the clinical trials registered on the clinicaltrials.gov website, and the commercialized product, called AuriNovo, have been comprehensively explained. Overall, it is important to provide engineered auricular cartilage structures with acceptable safety and efficacy compared with standard methods, autologous cartilage transplantation, and prosthetic reconstruction in RM.
Collapse
Affiliation(s)
- Mehrdad Seifi
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of General Surgery, School of Medicine, Kermanshah University of Medical Sciences, Tehran, Iran
| | - Sadrollah Motamed
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Rouientan
- From the Department of Plastic Surgery, School of Medicine Panzdahe Khordad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Bohlouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
He S, Deng H, Li P, Hu J, Yang Y, Xu Z, Liu S, Guo W, Guo Q. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207715. [PMID: 37518822 PMCID: PMC10520688 DOI: 10.1002/advs.202207715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.
Collapse
Affiliation(s)
- Songlin He
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Haotian Deng
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Peiqi Li
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Jingjing Hu
- Department of GastroenterologyInstitute of GeriatricsChinese PLA General HospitalBeijing100853China
| | - Yongkang Yang
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ziheng Xu
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Shuyun Liu
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Weimin Guo
- Department of Orthopaedic SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Quanyi Guo
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| |
Collapse
|
4
|
Bratengeier C, Bakker AD, Liszka A, Schilcher J, Fahlgren A. The release of osteoclast-stimulating factors on supraphysiological loading by osteoprogenitors coincides with expression of genes associated with inflammation and cytoskeletal arrangement. Sci Rep 2022; 12:21578. [PMID: 36517534 PMCID: PMC9751069 DOI: 10.1038/s41598-022-25567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Supraphysiological loading induced by unstable orthopedic implants initiates osteoclast formation, which results in bone degradation. We aimed to investigate which mechanosensitive cells in the peri-implant environment produce osteoclast-stimulating factors and how the production of these factors is stimulated by supraphysiological loading. The release of osteoclast-stimulating factors by different types of isolated bone marrow-derived hematopoietic and mesenchymal stem cells from six osteoarthritic patients was analyzed after one hour of supraphysiological loading (3.0 ± 0.2 Pa, 1 Hz) by adding their conditioned medium to osteoclast precursors. Monocytes produced factors that enhanced osteoclastogenesis by 1.6 ± 0.07-fold and mesenchymal stem cells by 1.4 ± 0.07-fold. Medium from osteoprogenitors and pre-osteoblasts enhanced osteoclastogenesis by 1.3 ± 0.09-fold and 1.4 ± 0.03-fold, respectively, where medium from four patients elicited a response and two did not. Next generation sequencing analysis of osteoprogenitors revealed that genes encoding for inflammation-related pathways and cytoskeletal rearrangements were regulated differently between responders and non-responders. Our data suggest that released osteoclast-stimulating soluble factors by progenitor cells in the bone marrow after supraphysiological loading may be related to cytoskeletal arrangement in an inflammatory environment. This connection could be relevant to better understand the aseptic loosening process of orthopedic implants.
Collapse
Affiliation(s)
- Cornelia Bratengeier
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden.
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Aneta Liszka
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Jörg Schilcher
- Department of Orthopedics and Department of Biomedical and Clinical Sciences, Faculty of Health Sciences and the Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Anna Fahlgren
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
5
|
Lu T, Wang J, Yuan X, Tang C, Wang X, He F, Ye J. Zinc-doped calcium silicate additive accelerates early angiogenesis and bone regeneration of calcium phosphate cement by double bioactive ions stimulation and immunoregulation. BIOMATERIALS ADVANCES 2022; 141:213120. [PMID: 36122428 DOI: 10.1016/j.bioadv.2022.213120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Calcium phosphate cement (CPC), a popular injectable bone defect repairing material, has deficiencies in stimulating osteogenesis and angiogenesis. To overcome the weaknesses of CPC, zinc-doped calcium silicate (Zn-CS) which can release bioactive silicon (Si) and zinc (Zn) ions was introduced to CPC. The physicochemical and biological properties of CPC and its composites were evaluated. Firstly, the most effective addition content of calcium silicate (CaSiO3, CS) in promoting the in vitro osteogenesis was first sorted out. On this basis, the most effective Zn doping content in CS for improving osteogenic differentiation of CPC-based composites was screened out. Finally, the immunoregulation of CS/CPC and Zn-CS/CPC in promoting angiogenesis and osteogenesis was studied. The results showed that the most effective incorporation content of CS was 10 wt%. Zn at a doping content of 30 mol% in CS (30Zn-CS) further enhanced the osteogenic capacity of CS/CPC and simultaneously maintained excellent proangiogenic activity. CS/CPC and 30Zn-CS/CPC promoted the recruitment of macrophages and enhanced M2 polarization while inhibiting M1 polarization, which was beneficial to the early vascularization as well as subsequent new bone formation. When implanted into the femoral condylar defects of rabbits, 30Zn-CS/CPC showed high in vivo materials degradation rate, angiogenesis and osteogenesis, due to the synergistic effects of Si and Zn on bio-stimulation and immunoregulation. This study shed light on the synergistic effects of Si and Zn on regulating the angiogenic, osteogenic, and immunoregulatory activity, and 30Zn-CS/CPC is expected to repair the lacunar bone defects effectively.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Jinchao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Xinyuan Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Chenyu Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Xiaolan Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
6
|
Chen K, Gao H, Yao Y. Prospects of cell chemotactic factors in bone and cartilage tissue engineering. Expert Opin Biol Ther 2022; 22:883-893. [PMID: 35668707 DOI: 10.1080/14712598.2022.2087471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ke Chen
- Department of Joint Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials
| | - Hui Gao
- Department of Joint Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials
| | - Yongchang Yao
- Department of Joint Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials
| |
Collapse
|
7
|
Lu T, Zhang J, Yuan X, Tang C, Wang X, Zhang Y, Xiong K, Ye J. Enhanced osteogenesis and angiogenesis of calcium phosphate cement incorporated with zinc silicate by synergy effect of zinc and silicon ions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112490. [PMID: 34857276 DOI: 10.1016/j.msec.2021.112490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022]
Abstract
Calcium phosphate cement (CPC) with good injectability and osteoconductivity plays important roles in bone grafting application. Much attention has been paid to achieve multifunctionality through incorporating trace elements into CPC. Silicon and zinc can be used as additives to endow CPC with biological functions of osteogenesis, angiogenesis and anti-osteoclastogenesis. In this study, zinc and silicate ions were co-incorporated into CPC through mixing with submicron zinc silicate (Zn2SiO4, ZS) to obtain zinc silicate-modified CPCs (ZS/CPCs) with different contents. The results revealed that the addition of ZS increased the compressive strength, prolonged the setting time, and densified the structure of CPC. Low addition content of ZS facilitated the formation of surface apatite layer in the early mineralization stage. Incorporating ZS significantly induced osteogenesis of mouse bone marrow stromal cells (mBMSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs), and moreover, restricted osteoclastogenesis of Raw 264.7 in vitro. Silicate and zinc ions could be steadily released from ZS/CPCs into the culture medium. With the synergistic effect of silicate and zinc ions, ZS/CPCs provided an appropriate microenvironment for the immune cells to facilitate the osteogenesis of mBMSCs and angiogenesis of HUVECs further. Taken together, it can be concluded that incorporating ZS is an effective way to endow CPC with multifunctionality and better bone regeneration for bone defect repair.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Jing Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Medprin Regenerative Medical Technologies Co., Ltd, Guangzhou 510663, China
| | - Xinyuan Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Chenyu Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Xiaolan Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kun Xiong
- State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| |
Collapse
|
8
|
Oliveira CS, Leeuwenburgh S, Mano JF. New insights into the biomimetic design and biomedical applications of bioengineered bone microenvironments. APL Bioeng 2021; 5:041507. [PMID: 34765857 PMCID: PMC8568480 DOI: 10.1063/5.0065152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
The bone microenvironment is characterized by an intricate interplay between cellular and noncellular components, which controls bone remodeling and repair. Its highly hierarchical architecture and dynamic composition provide a unique microenvironment as source of inspiration for the design of a wide variety of bone tissue engineering strategies. To overcome current limitations associated with the gold standard for the treatment of bone fractures and defects, bioengineered bone microenvironments have the potential to orchestrate the process of bone regeneration in a self-regulated manner. However, successful approaches require a strategic combination of osteogenic, vasculogenic, and immunomodulatory factors through a synergic coordination between bone cells, bone-forming factors, and biomaterials. Herein, we provide an overview of (i) current three-dimensional strategies that mimic the bone microenvironment and (ii) potential applications of bioengineered microenvironments. These strategies range from simple to highly complex, aiming to recreate the architecture and spatial organization of cell-cell, cell-matrix, and cell-soluble factor interactions resembling the in vivo microenvironment. While several bone microenvironment-mimicking strategies with biophysical and biochemical cues have been proposed, approaches that exploit the ability of the cells to self-organize into microenvironments with a high regenerative capacity should become a top priority in the design of strategies toward bone regeneration. These miniaturized bone platforms may recapitulate key characteristics of the bone regenerative process and hold great promise to provide new treatment concepts for the next generation of bone implants.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sander Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - João F. Mano
- Department of Chemistry, CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Lafuente-Gracia L, Borgiani E, Nasello G, Geris L. Towards in silico Models of the Inflammatory Response in Bone Fracture Healing. Front Bioeng Biotechnol 2021; 9:703725. [PMID: 34660547 PMCID: PMC8514728 DOI: 10.3389/fbioe.2021.703725] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
In silico modeling is a powerful strategy to investigate the biological events occurring at tissue, cellular and subcellular level during bone fracture healing. However, most current models do not consider the impact of the inflammatory response on the later stages of bone repair. Indeed, as initiator of the healing process, this early phase can alter the regenerative outcome: if the inflammatory response is too strongly down- or upregulated, the fracture can result in a non-union. This review covers the fundamental information on fracture healing, in silico modeling and experimental validation. It starts with a description of the biology of fracture healing, paying particular attention to the inflammatory phase and its cellular and subcellular components. We then discuss the current state-of-the-art regarding in silico models of the immune response in different tissues as well as the bone regeneration process at the later stages of fracture healing. Combining the aforementioned biological and computational state-of-the-art, continuous, discrete and hybrid modeling technologies are discussed in light of their suitability to capture adequately the multiscale course of the inflammatory phase and its overall role in the healing outcome. Both in the establishment of models as in their validation step, experimental data is required. Hence, this review provides an overview of the different in vitro and in vivo set-ups that can be used to quantify cell- and tissue-scale properties and provide necessary input for model credibility assessment. In conclusion, this review aims to provide hands-on guidance for scientists interested in building in silico models as an additional tool to investigate the critical role of the inflammatory phase in bone regeneration.
Collapse
Affiliation(s)
- Laura Lafuente-Gracia
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Edoardo Borgiani
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico Medicine, University of Liège, Liège, Belgium
| | - Gabriele Nasello
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus: Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Research Unit, GIGA in silico Medicine, University of Liège, Liège, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Deng Y, Ma F, Ruiz-Ortega L, Peng Y, Tian Y, He W, Tang B. Fabrication of strontium Eucommia ulmoides polysaccharides and in vitro evaluation of their osteoimmunomodulatory property. Int J Biol Macromol 2019; 140:727-735. [DOI: 10.1016/j.ijbiomac.2019.08.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
|
11
|
Deng L, Li Y, Zhang H. In vitro and in vivo assessment of glucose cross-linked gelatin/zein nanofibrous scaffolds for cranial bone defects regeneration. J Biomed Mater Res B Appl Biomater 2019; 108:1505-1517. [PMID: 31609542 DOI: 10.1002/jbm.b.34498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/07/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to evaluate the glucose cross-linked gelatin/zein scaffolds for bone regeneration in vitro and in vivo. The nanofibrous scaffolds exhibited fast mineralization in the concentrated simulated body fluid with the deposited octacalcium phosphate and dicalcium phosphate dehydrate. The nanofibrous scaffolds exhibited no cytotoxic effect on MC3T3e1 cells in a CCK-8 test. Additionally, scanning electron microscope and confocal laser scanning microscopy images revealed that all the scaffolds were biocompatible and showed excellent support for MC3T3e1 cells. In the osteogenesis characterizations, Alizarin Red staining experiments indicated the improved calcium deposits on the cross-linked scaffolds, while the alkaline phosphatase activity showed no difference. Furthermore, the in vivo cranial bone regeneration results suggested that the cross-linked gelatin/zein scaffolds presented a strong positive effect on the cranial bone regeneration with the increased new bone volume and connective tissue formation, but the incorporation of zein in the gelatin scaffolds did not favor the bone regeneration. Moreover, the cross-linked gelatin scaffold retarded the bone resorption as indicated by the higher levels of IFN-γ and lower levels of IL-6, which restricted the differentiation of osteoclasts.
Collapse
Affiliation(s)
- Lingli Deng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|