1
|
Devendrapandi G, I Sahay M, Padmanaban D, Panneerselvam A, Palraj R, Thanikasalam R, kuppan S, Sadaiyandi V, Balu R, Rajendiran N. Biogenic Synthesis of Gold Nanoparticles using Bael Fruit Juice and its efficacy against human A-549 lung cancer cell line. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
2
|
Kermani M, Mostafapour A, Sabouri Z, Gheibihayat SM, Darroudi M. The photocatalytic, cytotoxicity, and antibacterial properties of zinc oxide nanoparticles synthesized using Trigonella foenum-graecum L extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19313-19325. [PMID: 36229728 DOI: 10.1007/s11356-022-23518-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In this study, the manufacture of zinc oxide nanoparticles (ZnO-NPs) was completed via the sol-gel method with Trigonella foenum-graecum L extract for the first time to function as the stabilizing and reducing agent. The obtained product was investigated by various analyzing procedures such as TGA/DTG, FT-IR, UV-Vis, XRD, and EDX/FESEM. The calcination of our product was conducted at temperatures of 400, 500, and 600 °C. In conformity to the XRD pattern, heightening the temperature of calcination caused an enlargement in the size of nanoparticles. The photocatalytic performance of ZnO-NPs was evaluated to degrade methylene blue and Eriochrome black T (EBT) dyes under UV light, which resulted in a degradation percentage of about 96% and 94%, after 90 min, respectively. There has been some evidence suggesting that the green synthesis of ZnO-NPs has increased their use in medicine. The outcomes of examining the cytotoxicity effect of this product against the Huh-7 cell line by the performance of the MTT assay were indicative of an IC50 of around 62.5 µg/mL. Finally, according to the results of the broth microdilution method, which was performed to assess the antibacterial activity of ZnO-NPs towards gram-positive and gram-negative bacteria, the value of MIC was in the range of 31 to 125 µg/mL. The obtained results from biological studies confirm the antibacterial and anticancer properties of ZnO-NPs, which are promising for applying NPs in medical fields.
Collapse
Affiliation(s)
- Mahmood Kermani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mostafapour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabouri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Darroudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
3
|
Rajeshkumar S, Santhoshkumar J, Vanaja M, Sivaperumal P, Ponnanikajamideen M, Ali D, Arunachalam K. Evaluation of Zebrafish Toxicology and Biomedical Potential of Aeromonas hydrophila Mediated Copper Sulfide Nanoparticles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7969825. [PMID: 35126821 PMCID: PMC8816573 DOI: 10.1155/2022/7969825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
The present study deals with extracellular synthesis and characterization of copper sulfide (CuS) nanoparticles using Aeromonas hydrophila, and the biological applications of the synthesized CuS like antibacterial, anti-inflammatory, and antioxidant activity were reported. Further, the toxicological effects of the CuS were evaluated using zebrafish as an animal model. The primary step of the synthesis was carried out by adding the precursor copper sulfates to the culture supernatant of Aeromonas hydrophila. The UV-visible spectrophotometer was used to characterize the synthesized nanoparticles, and the peak was obtained at 307 nm through the reduction process. Fourier transform infrared spectroscopy (FTIR) was involved to find out the functional groups (carboxylic acid, alcohols, alkanes, and nitro compounds) associated with copper sulfide nanoparticles (CuS-NPs). Atomic force microscopy (AFM) was used to characterize the CuS topographically, and a scanning electron microscope (SEM) revealed about 200 nm sized CuS nanoparticles with agglomerated structures. Overall, the characterized nanoparticles can be considered as a potential candidate with therapeutic proficiencies as antibacterial, antioxidant, and anti-inflammatory mediator/agents.
Collapse
Affiliation(s)
- S. Rajeshkumar
- Centre for Transdisciplinary Research, Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai 600077, India
| | - J. Santhoshkumar
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), 602105, Chennai, India
| | - M. Vanaja
- SPKCES, Manonmaniam Sundaranar University, Alwarkurichi, 627410 Tamil Nadu, India
| | - P. Sivaperumal
- Centre for Transdisciplinary Research, Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai 600077, India
| | - M. Ponnanikajamideen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Centre, Jackson, Mississippi, USA
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Kalirajan Arunachalam
- Department of Science and Mathematics, School of Science, Engineering and Technology, Mulungushi University, Kabwe 80415, Zambia
| |
Collapse
|
4
|
Laser conversion of biomass into porous carbon composite under ambient condition for pH-Universal electrochemical hydrogen evolution reaction. J Colloid Interface Sci 2021; 604:885-893. [PMID: 34311263 DOI: 10.1016/j.jcis.2021.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
It is highly desirable to develop durable and advanced electrocatalysts for pH-universal hydrogen evolution reaction (HER). While it makes much progress so far, the development of an environmental-friendly and cost-effective method to upgrade earth-abundant biomass into high value-added products still remains a major challenge. Thermal pyrolysis method which requires high pyrolysis temperature and long synthesis period is considered as a general method for preparation of carbon-based electrocatalysts. In view of this, ruthenium, nitrogen co-doped porous carbon (Ru@CN) is synthesized by laser conversion method at room temperature using cheap and renewable biomass honey as green carbon source. By controlling the loading of Ru and laser power, the electrocatalytic activities of as-prepared electrocatalysts can be adjusted effectively. Because of the advantage of rich Ru0 and Ru-N sites, the synthesized 0.04-Ru@CN-6 with Ru loading amount of 2.66 wt% exhibits a preferable electrocatalytic activity toward HER under all-pH conditions. Especially in alkaline solution, the optimal 0.04-Ru@CN-6 exhibits a small overpotential (11 mV) at 10 mA cm-2 current density, which is even much better than commercial 20 wt% Pt/C (37 mV). This strategy reported here may be a feasible and unique approach to synthesis and design of high-performance as well as cost-effective all-pH HER electrocatalyst.
Collapse
|
5
|
Ali Dheyab M, Abdul Aziz A, Jameel MS, Moradi Khaniabadi P. Recent Advances in Synthesis, Medical Applications and Challenges for Gold-Coated Iron Oxide: Comprehensive Study. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2147. [PMID: 34443977 PMCID: PMC8399645 DOI: 10.3390/nano11082147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023]
Abstract
Combining iron oxide nanoparticles (Fe3O4 NPs) and gold nanoparticles (Au NPs) in one nanostructure is a promising technique for various applications. Fe3O4 NPs have special supermagnetic attributes that allow them to be applied in different areas, and Au NPs stand out in biomaterials due to their oxidation resistance, chemical stability, and unique optical properties. Recent studies have generally defined the physicochemical properties of nanostructures without concentrating on a particular formation strategy. This detailed review provides a summary of the latest research on the formation strategy and applications of Fe3O4@Au. The diverse methods of synthesis of Fe3O4@Au NPs with different basic organic and inorganic improvements are introduced. The role and applicability of Au coating on the surface of Fe3O4 NPs schemes were explored. The 40 most relevant publications were identified and reviewed. The versatility of combining Fe3O4@Au NPs as an option for medical application is proven in catalysis, hyperthermia, biomedical imaging, drug delivery and protein separation.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Azlan Abdul Aziz
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Mahmood S. Jameel
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
- Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, P.O. Box 35, Al Khod, Muscat 123, Oman;
| |
Collapse
|
6
|
Wang Y, Shi Z, Sun Y, Wu X, Li S, Dong S, Lan T. Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carrier and drug delivery research. Des Monomers Polym 2020; 23:197-206. [PMID: 33177950 PMCID: PMC7594732 DOI: 10.1080/15685551.2020.1837442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Currently, magnetic applications have great potential for development in the field of drug carriers. In this paper, Fe3O4-PVA@SH, an amphiphilic magnetically targeting drug carrier, was prepared by using Fe3O4 and PVA with thiohydrazide-iminopropyltriethoxysilane(TIPTS). The loading capacity of Fe3O4-PVA@SH on Aspirin and the drug release kinetics of loaded drugs were studied. The obtained Fe3O4-PVA@SH exhibits excellent drug release properties in simulating the human body fluid environment (pH 7.2). Since magnetically targeting drug carriers are readily available and have excellent biocompatibility and the characteristics of drug release. This work’s development, preparing amphiphilic magnetically targeting drug carriers in drug delivery and other fields, has great significance.
Collapse
Affiliation(s)
- Yazhen Wang
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China.,Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China.,College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Zhen Shi
- College of Materials Science and Engineering, Qiqihar University, Qiqihar, China.,Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Yu Sun
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Xueying Wu
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Shuang Li
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Shaobo Dong
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| | - Tianyu Lan
- Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar, China
| |
Collapse
|
7
|
Li X, Weng C, Wang J, Yang W, Lu Q, Yan X, Sakran MA, Hong J, Zhu W, Zhou X. A label-free electrochemical magnetic aptasensor based on exonuclease III-assisted signal amplification for determination of carcinoembryonic antigen. Mikrochim Acta 2020; 187:492. [PMID: 32770422 DOI: 10.1007/s00604-020-04457-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
A novel label-free and exonuclease III (Exo III)-assisted signal amplification electrochemical aptasensor was constructed for the determination of carcinoembryonic antigen (CEA) via magnetic field-induced self-assembly of magnetic biocomposites (Fe3O4@Au NPs-S1-S2-S3). The magnetic biocomposites were acquired by modifying double-stranded DNA (S1-S2-S3) on the surface of Fe3O4@Au nanoparticles (Fe3O4@Au NPs). Among them, Fe3O4@Au NPs were used as carriers for magnetic separation, thiolated single-stranded DNA (S1) provided signal sequence, CEA aptamer (S2) worked as a recognition element, and complementary strand (S3) was used to form double strands. In the presence of CEA, S2 bonded with CEA competitively; the exposed S1 could not be cleaved since Exo III was inactive against ssDNA. The G-quadruplex/hemin complexes finally formed with the existence of K+, and the high electrochemical signal of G-quadruplex/hemin complexes was recorded by differential pulse voltammetry (DPV) at - 0.6 V. Conversely, in the absence of CEA, dsDNA was cleaved from the 3' blunt end by Exo III; the disappearance of G-rich sequence blocked the generation of the signal. This method exhibited good selectivity and sensitivity for the determination of CEA; the linear range was from 0.1 to 200 ng mL-1 and the limit of detection was 0.4 pg mL-1. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chenyuan Weng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jing Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Qiaoyun Lu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xiaoqiang Yan
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Marwan Ahmad Sakran
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Junli Hong
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
8
|
Bahrami-Teimoori B, Pourianfar HR, Akhlaghi M, Tanhaeian A, Rezayi M. Biosynthesis and antibiotic activity of silver nanoparticles using different sources: Glass industrial sewage-adapted Bacillus sp. and herbaceous Amaranthus sp. Biotechnol Appl Biochem 2019; 66:900-910. [PMID: 31400027 DOI: 10.1002/bab.1803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Synergistic effects of metallic nanoparticles (NPs) with commonly used antibiotics have encouraged the exploration of novel biological entities, including bacteria and weed plants. The present study for the first time reports the capability of an extracellular fraction of Bacillus sp. isolated from effluents of a glass-manufacturing unit to biosynthesis silver nanoparticles (AgNPs) without hazardous materials. Besides, the biosynthesis of AgNPs using an aqueous extract of herbaceous weed plant (Amaranthus sp.), as a low-cost natural source, has been addressed in this study. Our findings confirmed the fabrication of microbial and plant-sourced AgNPs, being thoroughly characterized by UV-vis, transmission electron microscopy, X-ray diffraction, dynamic light scattering, energy dispersive X-ray spectroscopy, and zeta potential measurements. Further, biological activities of the plant- and bacterium-derived AgNPs were investigated against several pathogenic bacteria, in combination with streptomycin. The antibacterial effectiveness of the antibiotic coated with 400 µg/disk of AgNPs increased over 50% toward all the pathogenic bacteria. The data presented here demonstrate that both industrial wastewater-adapted Bacillus sp. and wild-growing Amaranthus sp. are efficient natural sources with excellent capabilities for creating biologically active AgNPs, which would be of considerable interest for circumventing bacterial resistance to current antibiotics.
Collapse
Affiliation(s)
- Bahram Bahrami-Teimoori
- Research Department of Industrial Fungi Biotechnology, Research Institute for Industrial Biotechnology, Academic Centre for Education, Culture and Research (ACECR)-Khorasan Razavi Province Branch, Mashhad, Iran
| | - Hamid R Pourianfar
- Research Department of Industrial Fungi Biotechnology, Research Institute for Industrial Biotechnology, Academic Centre for Education, Culture and Research (ACECR)-Khorasan Razavi Province Branch, Mashhad, Iran
| | - Mahdi Akhlaghi
- Research Department of Industrial Fungi Biotechnology, Research Institute for Industrial Biotechnology, Academic Centre for Education, Culture and Research (ACECR)-Khorasan Razavi Province Branch, Mashhad, Iran
| | - Abbas Tanhaeian
- Department of Agricultural Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Abbasi BA, Iqbal J, Mahmood T, Qyyum A, Kanwal S. Biofabrication of iron oxide nanoparticles by leaf extract ofRhamnus virgata: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4947] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Javed Iqbal
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Tariq Mahmood
- Department of Plant SciencesQuaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Abdul Qyyum
- School of Physics and Information TechnologyShaanxi Normal University Changan South Road 199 Xian 710062 China
| | - Sobia Kanwal
- Department of ZoologyUniversity of Gujrat Sub‐Campus Rawalpindi Pakistan
| |
Collapse
|
10
|
Fernández-Barahona I, Muñoz-Hernando M, Herranz F. Microwave-Driven Synthesis of Iron-Oxide Nanoparticles for Molecular Imaging. Molecules 2019; 24:E1224. [PMID: 30925778 PMCID: PMC6479367 DOI: 10.3390/molecules24071224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Here, we present a comprehensive review on the use of microwave chemistry for the synthesis of iron-oxide nanoparticles focused on molecular imaging. We provide a brief introduction on molecular imaging, the applications of iron oxide in biomedicine, and traditional methods for the synthesis of these nanoparticles. The review then focuses on the different examples published where the use of microwaves is key for the production of nanoparticles. We study how the different parameters modulate nanoparticle properties, particularly for imaging applications. Finally, we explore principal applications in imaging of microwave-produced iron-oxide nanoparticles.
Collapse
Affiliation(s)
- Irene Fernández-Barahona
- NanoMedMol Group, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (CSIC) and CIBERES, C/Juan de la Cierva 3, 28006 Madrid, Spain.
- Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de ramón y Cajal, 28040 Madrid, Spain.
| | - Maria Muñoz-Hernando
- NanoMedMol Group, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (CSIC) and CIBERES, C/Juan de la Cierva 3, 28006 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/Melchor Fernández-Almagro 3, 28029 Madrid, Spain.
| | - Fernando Herranz
- NanoMedMol Group, Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (CSIC) and CIBERES, C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|