1
|
Wang S, Mu J, Wu Q, Chen L, Yin X. Circulating plasma protein identified as a therapeutic target for intracranial aneurysm through Mendelian Randomization analysis. J Clin Neurosci 2024; 132:110998. [PMID: 39721116 DOI: 10.1016/j.jocn.2024.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Intracranial aneurysms are the main cause of subarachnoid hemorrhage (SAH), a severe stroke with devastating effects. However, there are no existing medications for intracranial aneurysms (IAs) and novel therapeutic targets are required. METHODS We performed a summary data-based Mendelian Randomization (MR) analysis to explore the causal association between circulating plasma proteins and the risk of IAs and SAH. Colocalization analysis was conducted to identify shared causal variants between circulating plasma proteins and IAs, as well as SAH. Finally, mediation MR analyses were conducted to clarify the role of potential plasma proteins in aneurysm formation. RESULTS Proteome-wide MR analysis showed that FGF5 (fibroblast growth factor 5) had a causal effect on IA and SAH risk (Pfdr < 0.05). Moreover, genetic variants affecting FGF5 expression levels showed strong evidence of colocalization with IA risk (PPH4 = 0.993) and SAH risk (PPH = 0.988), suggesting that this protein represents a potential direct target for IA intervention. Mediation analysis using two-step MR showed that systolic blood pressure and diastolic blood pressure mediate the effects of FGF5 on IA and SAH. CONCLUSION Our investigation identified a causal connection between FGF5 and IAs.
Collapse
Affiliation(s)
- Songquan Wang
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jiali Mu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, PR China
| | - Quansheng Wu
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
2
|
Uruski P, Mikuła-Pietrasik J, Tykarski A, Książek K. Serum from Hypertensive Patients Induces Cancer-Supporting Phenotype of Vascular Endothelium In Vitro. Biomolecules 2024; 14:1374. [PMID: 39595551 PMCID: PMC11592052 DOI: 10.3390/biom14111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Large-scale epidemiological studies have established a bidirectional association between hypertension and cancer. However, the underlying mechanisms explaining this connection remain unclear. In our study, we investigated whether serum from patients with hypertension (HT) could enhance the aggressiveness of cancer cells in vitro through alterations in endothelial cell phenotype. METHODS Experiments were performed using EAhy926 endothelial cells and ovarian (SKOV-3), colorectal (SW480), pancreatic (PSN-1), breast (MCF-7), and lung (A549) cancer cell lines. RESULTS This study showed that conditioned medium (CM) produced by EAhy926 cells, when exposed to serum from patients with untreated hypertension (HT-CM), promotes the proliferation, migration, and invasion of every cancer cell line tested. In addition, endothelial cells subjected to HT serum promote the adhesion of all cancer cell types except PSN-1. An intensified transendothelial invasion of cancer cells was accompanied by decreased expression of junctional proteins (connexin 43, E-cadherin, occluding, desmoglein) in HT serum-treated endothelial cells. Quantitative analysis of the secretome of endothelial cells subjected to HT serum showed that they secrete increased amounts of CCL2, CXCL1, CXCL8, bFGF, HGF, IL-6, PAI-1, and TGF-β1. Moreover, cancer cells exposed to HT-CM display increased mRNA expression for several pro-cancerogenic agents, including CXCL8, tPA, and VEGF. CONCLUSIONS Our report shows that hypertension may potentiate cancer cell aggressiveness by modulating endothelial cell phenotype. Further tests with antihypertensive drugs are required to assess whether effective treatment of hypertension can mitigate its cancer-promoting potential.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland; (P.U.); (A.T.)
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Święcickiego 4 Str., 60-781 Poznan, Poland;
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Str., 61-848 Poznan, Poland; (P.U.); (A.T.)
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznan University of Medical Sciences, Święcickiego 4 Str., 60-781 Poznan, Poland;
| |
Collapse
|
3
|
Zhang Q, Ding F, Zhang C, Han X, Cheng H. Circ_0001715 Functions as a miR-1249-3p Sponge to Accelerate the Progression of Non-small Cell Lung Cancer via Upregulating the Level of FGF5. Biochem Genet 2023; 61:1807-1826. [PMID: 36808266 DOI: 10.1007/s10528-023-10344-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Circular RNAs (circRNAs) have been widely involved in the malignant development of human cancers. Circ_0001715 was aberrantly upregulated in non-small cell lung cancer (NSCLC). However, circ_0001715 function has never been researched. This study was designed to investigate the role and mechanism of circ_0001715 in NSCLC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to examine the levels of circ_0001715, microRNA-1249-3p (miR-1249-3p) and Fibroblast Growth Factor 5 (FGF5). The proliferation detection was conducted using colony formation assay and EdU assay. Cell apoptosis was analyzed via flow cytometry. Wound healing assay and transwell assay were used for determination of migration and invasion, respectively. The protein levels were measured through western blot. Target analysis was carried out via dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft tumor model was established in mice for in vivo research. The significant upregulation of circ_0001715 was detected in NSCLC samples and cells. Circ_0001715 knockdown induced the inhibitory effects on proliferation, migration and invasion but the promoting effect on apoptosis of NSCLC cells. Circ_0001715 could interact with miR-1249-3p. The regulatory role of circ_0001715 was achieved by sponging miR-1249-3p. Furthermore, miR-1249-3p targeted FGF5 and miR-1249-3p acted as a cancer inhibitor by targeting FGF5. Moreover, circ_0001715 upregulated the FGF5 level via targeting miR-1249-3p. In vivo assay showed that circ_0001715 promoted the NSCLC progression through the miR-1249-3p/FGF5 axis. The current evidence elucidated that circ_0001715 served as an oncogenic regulator in NSCLC progression by depending on the miR-1249-3p/FGF5 axis.
Collapse
Affiliation(s)
- Quanjin Zhang
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China
| | - Feng Ding
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China
| | - Congcong Zhang
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China
| | - Xu Han
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China
| | - Hui Cheng
- Pediatric Cardiothoracic Surgery, Huaibei People's Hospital, 66 Huaihai Xi Lu, Huaibei, 235000, Anhui, China.
| |
Collapse
|
4
|
Cannon-Albright LA, Teerlink CC, Stevens J, Facelli JC, Carr SR, Allen-Brady K, Puri S, Bailey-Wilson JE, Musolf AM, Akerley W. A rare FGF5 candidate variant (rs112475347) for predisposition to nonsquamous, nonsmall-cell lung cancer. Int J Cancer 2023; 153:364-372. [PMID: 36916144 PMCID: PMC10182245 DOI: 10.1002/ijc.34510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
A unique approach with rare resources was used to identify candidate variants predisposing to familial nonsquamous nonsmall-cell lung cancers (NSNSCLC). We analyzed sequence data from NSNSCLC-affected cousin pairs belonging to high-risk lung cancer pedigrees identified in a genealogy of Utah linked to statewide cancer records to identify rare, shared candidate predisposition variants. Variants were tested for association with lung cancer risk in UK Biobank. Evidence for linkage with lung cancer was also reviewed in families from the Genetic Epidemiology of Lung Cancer Consortium. Protein prediction modeling compared the mutation with reference. We sequenced NSNSCLC-affected cousin pairs from eight high-risk lung cancer pedigrees and identified 66 rare candidate variants shared in the cousin pairs. One variant in the FGF5 gene also showed significant association with lung cancer in UKBiobank. This variant was observed in 3/163 additional sampled Utah lung cancer cases, 2 of whom were related in another independent pedigree. Modeling of the predicted protein predicted a second binding site for SO4 that may indicate binding differences. This unique study identified multiple candidate predisposition variants for NSNSCLC, including a rare variant in FGF5 that was significantly associated with lung cancer risk and that segregated with lung cancer in the two pedigrees in which it was observed. FGF5 is an oncogenic factor in several human cancers, and the mutation found here (W81C) changes the binding ability of heparan sulfate to FGF5, which might lead to its deregulation. These results support FGF5 as a potential NSNSCLC predisposition gene and present additional candidate predisposition variants.
Collapse
Affiliation(s)
- Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Craig C Teerlink
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Jeff Stevens
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Julio C Facelli
- Department of BioMedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Clinical and Translational Science Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Shamus R Carr
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristina Allen-Brady
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sonam Puri
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Medical Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joan E Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
| | - Anthony M Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, USA
| | - Wallace Akerley
- Huntsman Cancer Institute, Salt Lake City, Utah, USA
- Medical Oncology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Peng SL, Wang R, Zhou YL, Wei W, Zhong GH, Huang XT, Yang S, Liu QD, Liu ZG. Insight of a Metabolic Prognostic Model to Identify Tumor Environment and Drug Vulnerability for Lung Adenocarcinoma. Front Immunol 2022; 13:872910. [PMID: 35812404 PMCID: PMC9262104 DOI: 10.3389/fimmu.2022.872910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic reprogramming is a novel method for the treatment of malignant tumors. The exploration of metabolism procedures between radiosensitive and radioresistant tumors may provide novel perspectives for lung adenocarcinoma (LUAD) patients after radiation therapy. In our study, metabolic reprogramming and immune response changes were found between radioresistant cell line (A549RR) and its parent cells (A549) using gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Nucleotide/amino acid, lipid, and glucose metabolic process, including Alanine, aspartate and glutamate metabolism, Tryptophan/Tyrosine metabolism, Butanoate metabolism, Purine/Pyrimidine metabolism, were screened out. Then molecular signatures database and The Cancer Genome Atlas Program (TCGA) lung adenocarcinoma datasets were used to identify metabolism-related genes (MRGs) between radiosensitive and radioresistant lung adenocarcinoma (LUAD) cells. A metabolism-based prognostic model, receiver operating characteristic (ROC) curve and nomogram were constructed using Metabolism Score calculated by 14 metabolism-related genes (MRGs). Three independent public datasets, (GSE72094, GSE3141, GSE8894) and one immunotherapy cohort (IMvigor210) were used as external validation cohorts. Expression of 14 hub genes in cells, normal and LUAD specimens were explored by Human Protein Atlas, TIMER2.0 and RT-qPCR. Patients with low-Metabolism Scores were correlated with longer survival times, higher response rates to immune checkpoint inhibitors (ICIs), different immune cell infiltrations and drug vulnerability. Our study demonstrated a comprehensive landscape between radiosensitive and radioresistant LUAD, and provide novel targets for NSCLC, especially those patients received radiation therapy. Moreover, this metabolism-based prognostic model may help to investigate connections between radiosensitivity, immune response, metabolic reprogramming, and patients’ prognosis.
Collapse
Affiliation(s)
- Shun-Li Peng
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Rong Wang
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yu-Ling Zhou
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Wei Wei
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Gui-Hua Zhong
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiao-Tao Huang
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shuai Yang
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiao-Dan Liu
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhi-Gang Liu
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- *Correspondence: Zhi-Gang Liu, ,
| |
Collapse
|
6
|
Zhao Z, Yin W, Peng X, Cai Q, He B, Shi S, Peng W, Tu G, Li Y, Li D, Tao Y, Peng M, Wang X, Yu F. A Machine-Learning Approach to Developing a Predictive Signature Based on Transcriptome Profiling of Ground-Glass Opacities for Accurate Classification and Exploring the Immune Microenvironment of Early-Stage LUAD. Front Immunol 2022; 13:872387. [PMID: 35693786 PMCID: PMC9178173 DOI: 10.3389/fimmu.2022.872387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Screening for early-stage lung cancer with low-dose computed tomography is recommended for high-risk populations; consequently, the incidence of pure ground-glass opacity (pGGO) is increasing. Ground-glass opacity (GGO) is considered the appearance of early lung cancer, and there remains an unmet clinical need to understand the pathology of small GGO (<1 cm in diameter). The objective of this study was to use the transcriptome profiling of pGGO specimens <1 cm in diameter to construct a pGGO-related gene risk signature to predict the prognosis of early-stage lung adenocarcinoma (LUAD) and explore the immune microenvironment of GGO. pGGO-related differentially expressed genes (DEGs) were screened to identify prognostic marker genes with two machine learning algorithms. A 15-gene risk signature was constructed from the DEGs that were shared between the algorithms. Risk scores were calculated using the regression coefficients for the pGGO-related DEGs. Patients with Stage I/II LUAD or Stage IA LUAD and high-risk scores had a worse prognosis than patients with low-risk scores. The prognosis of high-risk patients with Stage IA LUAD was almost identical to that of patients with Stage II LUAD, suggesting that treatment strategies for patients with Stage II LUAD may be beneficial in high-risk patients with Stage IA LUAD. pGGO-related DEGs were mainly enriched in immune-related pathways. Patients with high-risk scores and high tumor mutation burden had a worse prognosis and may benefit from immunotherapy. A nomogram was constructed to facilitate the clinical application of the 15-gene risk signature. Receiver operating characteristic curves and decision curve analysis validated the predictive ability of the nomogram in patients with Stage I LUAD in the TCGA-LUAD cohort and GEO datasets.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
| | | | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- National Health Council (NHC) Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xiang Wang, ; Muyun Peng, ; Fenglei Yu,
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xiang Wang, ; Muyun Peng, ; Fenglei Yu,
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xiang Wang, ; Muyun Peng, ; Fenglei Yu,
| |
Collapse
|
7
|
Wu X, Li M, Li Y, Deng Y, Ke S, Li F, Wang Y, Zhou S. Fibroblast growth factor 11 (FGF11) promotes non-small cell lung cancer (NSCLC) progression by regulating hypoxia signaling pathway. J Transl Med 2021; 19:353. [PMID: 34404435 PMCID: PMC8369785 DOI: 10.1186/s12967-021-03018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/31/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Accumulating evidence highlights the critical roles of fibroblast growth factors (FGFs) in regulating the progression of multiple human cancers, including non-small cell lung cancer (NSCLC). In this study, we investigated the role of FGF11 in the progression of NSCLC. METHODS Previously published transcriptomic data (GSE75037 and GSE81089) were used to compare FGF11 expression level between NSCLC tumor tissues and adjacent normal tissues. 100 cases of NSCLC tumor tissues and 30 cases of matched adjacent normal tissues were used to validate FGF11 expression at mRNA and protein level by qPCR and immunohistochemistry. Bioinformatics analysis and dual luciferase reporter analysis were performed to confirm the regulatory effect of miR-525-5p on FGF11 expression. CCK-8 assay and transwell migration assay were employed to examine cellular proliferation, migration and invasion. Gene set enrichment analysis (GSEA) was performed to identify the signaling pathway associated with FGF11 expression. Finally, the functional role of FGF11 in NSCLC tumor growth was evaluated by in vivo study. RESULTS FGF11 was upregulated in NSCLC tumor tissues and tumor cell lines. High FGF11 expression was associated with a poor prognosis in NSCLC patients. In vitro loss- and gain-of function experiments demonstrated that FGF11 knockdown inhibited, whereas FGF11 overexpression promoted the proliferation, migration and invasion of NSCLC cells. Dual luciferase reporter assay confirmed that FGF11 was downregulated by miR-525-5p, and the effect of FGF11 on cell proliferation, migration and invasion could be interfered by miR-525-5p. GSEA analysis further revealed that FGF11 expression was enriched with genes in hypoxia signaling pathway and the oncogenic function of FGF11 could be suppressed by knocking down HIF-1α in NSCLC cells. Moreover, FGF11 knockdown suppressed NSCLC tumor growth whereas FGF11 overexpression promoted tumor growth in vivo. CONCLUSIONS Our study showed that FGF11 functions as an oncogene in tumor NSCLC progression. miR-525-5p seems to negatively regulate FGF11 and the oncogenic role of FGF11 is dependent on the upregulation of HIF-1α. Our study suggests that targeting FGF11 and HIF-1α may serve as novel strategies for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Thoracic Surgery, Ersity of Science and Technology, Tongji Hospital, Tongji Medical Collage of Huazhong Univ, 430030, Wuhan, Hubei, China
| | - Minjie Li
- Department of Thoracic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, 361004, Fujian, China
| | - Ying Li
- Department of Nuclear Medicine, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yu Deng
- Department of Thoracic Surgery, Ersity of Science and Technology, Tongji Hospital, Tongji Medical Collage of Huazhong Univ, 430030, Wuhan, Hubei, China
| | - Shun Ke
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Fan Li
- Department of Thoracic Surgery, Ersity of Science and Technology, Tongji Hospital, Tongji Medical Collage of Huazhong Univ, 430030, Wuhan, Hubei, China
| | - Yujin Wang
- Department of Radiology, Tongji Hospital, Tongji Medical Collage of Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Shuchang Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical Collage of Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Zhou P, Irving A, Wu H, Luo J, Aguirre J, Costa M, Khamsuree M, Gerads N, Liu W. Validation of MicroRNA-188-5p Inhibition Power on Tumor Cell Proliferation in Papillary Thyroid Carcinoma. Cell Transplant 2021; 29:963689720918300. [PMID: 32425116 PMCID: PMC7586257 DOI: 10.1177/0963689720918300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Given the crucial role of microRNAs in the cellular proliferation of various types of cancers, we aimed to analyze the expression and function of a cellular proliferation-associated miR-188-5p in papillary thyroid carcinoma (PTC). Here we demonstrate that miR-188-5p is downregulated in PTC tumor tissues compared with the associated noncancerous tissues. We also validate that the miR-188-5p overexpression suppressed the PTC cancer cell proliferation. In addition, fibroblast growth factor 5 (FGF5) is observed to be downregulated in the PTC tumor tissues compared with the associated noncancerous tissues. Subsequently, FGF5 is identified as the direct functional target of miR-188-5p. Moreover, the silencing of FGF5 was found to inhibit PTC cell proliferation, which is the same pattern as miR-188-5p overexpression. These results suggest that miR-188-5p-associated silencing of FGF5 inhibits tumor cell proliferation in PTC. It also highlights the importance of further evaluating miR-188-5p as a potential biomarker and therapy target in PTC.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Hainan Medical College, Hainan, China
| | - Andrew Irving
- Department of Life Science, Dell Medical School of the University of Texas at Austin, Austin, TX, USA
| | - Huifang Wu
- Medical Department, The Second Hospital of Wuhan Iron and Steel Group, Wuhan, China
| | - Juan Luo
- Medical Department, The Second Hospital of Wuhan Iron and Steel Group, Wuhan, China
| | - Johana Aguirre
- Department of Pathology, The University of São Paulo Medical School, São Paulo, Brazil
| | - Mariana Costa
- Department of Pathology, The University of São Paulo Medical School, São Paulo, Brazil
| | - Monny Khamsuree
- Department of Biology, The University of Tübingen, Maryland, Tübingen, Germany
| | - Natascha Gerads
- Department of Biology, The University of Tübingen, Maryland, Tübingen, Germany
| | - Weibang Liu
- Medical Department, The Second Hospital of Wuhan Iron and Steel Group, Wuhan, China
- Weibang Liu, Medical Department, The Second Hospital of Wuhan Iron and Steel Group, Wuhan, China.
| |
Collapse
|
9
|
FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers (Basel) 2021; 13:cancers13061360. [PMID: 33802841 PMCID: PMC8002748 DOI: 10.3390/cancers13061360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary As the most common primary liver cancer, HCC is a tricky cancer resistant to systemic therapies. The fibroblast growth factor family and its receptors are gaining more and more attention in various cancers. Noticing an explosion in the number of studies about aberrant FGF/FGFR signaling in HCC being studied, we were encouraged to summarize them. This review discusses how FGF/FGFR signaling influences HCC development and its implications in HCC prediction and target treatment, and combination treatment. Abstract Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, ranking third in cancer deaths worldwide. Over the last decade, several studies have emphasized the development of tyrosine kinase inhibitors (TKIs) to target the aberrant pathways in HCC. However, the outcomes are far from satisfactory due to the increasing resistance and adverse effects. The family of fibroblast growth factor (FGF) and its receptors (FGFR) are involved in various biological processes, including embryogenesis, morphogenesis, wound repair, and cell growth. The aberrant FGF/FGFR signaling is also observed in multiple cancers, including HCC. Anti-FGF/FGFR provides delightful benefits for cancer patients, especially those with FGF signaling alteration. More and more multi-kinase inhibitors targeting FGF signaling, pan-FGFR inhibitors, and selective FGFR inhibitors are now under preclinical and clinical investigation. This review summarizes the aberrant FGF/FGFR signaling in HCC initiating, development and treatment status, and provide new insights into the treatment of HCC.
Collapse
|
10
|
Specific inhibition of FGF5-induced cell proliferation by RNA aptamers. Sci Rep 2021; 11:2976. [PMID: 33536494 PMCID: PMC7858594 DOI: 10.1038/s41598-021-82350-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/19/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 5 (FGF5) is a crucial regulator of hair growth and an oncogenic factor in several human cancers. To generate FGF5 inhibitors, we performed Systematic Evolution of Ligands by EXponential enrichment and obtained novel RNA aptamers that have high affinity to human FGF5. These aptamers inhibited FGF5-induced cell proliferation, but did not inhibit FGF2-induced cell proliferation. Surface plasmon resonance demonstrated that one of the aptamers, F5f1, binds to FGF5 tightly (Kd = 0.7 ± 0.2 nM), but did not fully to FGF1, FGF2, FGF4, FGF6, or FGFR1. Based on sequence and secondary structure similarities of the aptamers, we generated the truncated aptamer, F5f1_56, which has higher affinity (Kd = 0.118 ± 0.003 nM) than the original F5f1. Since the aptamers have high affinity and specificity to FGF5 and inhibit FGF5-induced cell proliferation, they may be candidates for therapeutic use with FGF5-related diseases or hair disorders.
Collapse
|
11
|
Zhao T, Qian K, Zhang Y. High Expression of FGF5 Is an Independent Prognostic Factor for Poor Overall Survival and Relapse-Free Survival in Lung Adenocarcinoma. J Comput Biol 2019; 27:948-957. [PMID: 31553229 DOI: 10.1089/cmb.2019.0241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is not only a serious disease but also a public problem threatening human health all over the world. Nonsmall cell lung cancer-which accounts for the majority of lung cancer-is mainly composed of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). FGF5 is a gene located in q21.21. In the past years, research on FGF5 is mainly focused on hair length and hereditary spherocytosis. In our study, bioinformatics analysis of FGF5 was performed through multiple databases. Expression of FGF5 was compared between tumor and normal tissues, association between gene expression and clinical outcomes was investigated in LUAD and LUSC separately, and potential signaling pathways were predicted. FGF5 expression was upregulated in lung cancer tissues compared with normal tissues. What is more, the high FGF5 expression group had significantly lower proportions of lymph node negative (N0) patients (77/144, 53.5%, vs. 253/358, 70.7%, p = 0.000), and is associated with worse overall survival (OS) (p < 0.0001) and relapse-free survival (RFS) (p = 0.024) in LUAD patients, which could not be seen in LUSC. The following analysis confirmed that high FGF5 expression could be an independent prognostic factor for poor OS (HR: 0.431, 95% CI: 0.312-0.597, p = 0.001) and RFS (HR: 0.678, 95% CI: 0.471-0.977, p = 0.037) in LUAD, but not in LUSC. Coexpression genes related to FGF5 were explored and potential pathways were investigated for further research. FGF5 is a tumor-associated gene that upregulated in lung cancer tissues, and could be an independent prognostic factor that have potential value for further research.
Collapse
Affiliation(s)
- Teng Zhao
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Kun Qian
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|