1
|
Ren F, Ma Y, Zhang K, Luo Y, Pan R, Zhang J, Kan C, Hou N, Han F, Sun X. Exploring the multi-targeting phytoestrogen potential of Calycosin for cancer treatment: A review. Medicine (Baltimore) 2024; 103:e38023. [PMID: 38701310 PMCID: PMC11062656 DOI: 10.1097/md.0000000000038023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Cancer remains a significant challenge in the field of oncology, with the search for novel and effective treatments ongoing. Calycosin (CA), a phytoestrogen derived from traditional Chinese medicine, has garnered attention as a promising candidate. With its high targeting and low toxicity profile, CA has demonstrated medicinal potential across various diseases, including cancers, inflammation, and cardiovascular disease. Studies have revealed that CA possesses inhibitory effects against a diverse array of cancers. The underlying mechanism of action involves a reduction in tumor cell proliferation, induction of tumor cell apoptosis, and suppression of tumor cell migration and invasion. Furthermore, CA has been shown to enhance the efficacy of certain chemotherapeutic drugs, making it a potential component in treating malignant tumors. Given its high efficacy, low toxicity, and multi-targeting characteristics, CA holds considerable promise as a therapeutic agent for cancer treatment. The objective of this review is to present a synthesis of the current understanding of the antitumor mechanism of CA and its research progress.
Collapse
Affiliation(s)
- Fangbing Ren
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Youhong Luo
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ruiyan Pan
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
2
|
Sohel M, Zahra Shova FT, shuvo S, Mahjabin T, Mojnu Mia M, Halder D, Islam H, Roman Mogal M, Biswas P, Saha HR, Sarkar BC, Mamun AA. Unveiling the potential anti-cancer activity of calycosin against multivarious cancers with molecular insights: A promising frontier in cancer research. Cancer Med 2024; 13:e6924. [PMID: 38230908 PMCID: PMC10905684 DOI: 10.1002/cam4.6924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Calycosin may be a potential candidate regarding chemotherapeutic agent, because already some studies against multivarious cancer have been made with this natural compound. AIM This review elucidated a brief overview of previous studies on calycosin potential effects on various cancers and its potential mechanism of action. METHODOLOGY Data retrieved by systematic searches of Google Scholar, PubMed, Science Direct, Web of Science, and Scopus by using keywords including calycosin, cancer types, anti-cancer mechanism, synergistic, and pharmacokinetic and commonly used tools are BioRender, ChemDraw Professional 16.0, and ADMETlab 2.0. RESULTS Based on our review, calycosin is available in nature and effective against around 15 different types of cancer. Generally, the anti-cancer mechanism of this compound is mediated through a variety of processes, including regulation of apoptotic pathways, cell cycle, angiogenesis and metastasis, oncogenes, enzymatic pathways, and signal transduction process. These study conducted in various study models, including in silico, in vitro, preclinical and clinical models. The molecular framework behind the anti-cancer effect is targeting some oncogenic and therapeutic proteins and multiple signaling cascades. Therapies based on nano-formulated calycosin may make excellent nanocarriers for the delivery of this compound to targeted tissue as well as particular organ. This natural compound becomes very effective when combined with other natural compounds and some standard drugs. Moreover, proper use of this compound can reverse resistance to existing anti-cancer drugs through a variety of strategies. Calycosin showed better pharmacokinetic properties with less toxicity in human bodies. CONCLUSION Calycosin exhibits excellent potential as a therapeutic drug against several cancer types and should be consumed until standard chemotherapeutics are available in pharma markets.
Collapse
Affiliation(s)
- Md Sohel
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Fatema Tuj Zahra Shova
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Shahporan shuvo
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Taiyara Mahjabin
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Mojnu Mia
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Dibyendu Halder
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Hafizul Islam
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Roman Mogal
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and TechnologyJashore University of Science and Technology (JUST)JashoreBangladesh
| | - Hasi Rani Saha
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | | | - Abdullah Al Mamun
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
3
|
Deng M, Chen H, Long J, Song J, Xie L, Li X. Calycosin: a Review of its Pharmacological Effects and Application Prospects. Expert Rev Anti Infect Ther 2020; 19:911-925. [PMID: 33346681 DOI: 10.1080/14787210.2021.1863145] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Calycosin (CA), a typical phytoestrogen extracted from root of Astragalus membranaceus. On the basis of summarizing the pharmacological and pharmacokinetic studies of CA in recent years, we hope to provide useful information for CA about treating different diseases and to make suggestions for future research.Areas covered: We collected relevant information (January 2014 to March 2020) on CA via the Internet database. Keywords searched includ pharmacology, pharmacokinetics and toxicology, and the number of effective references was 118. CA is a phytoestrogen with wide range of pharmacological activities. By affecting PI3K/Akt/mTOR, WDR7-7-GPR30, Rab27B-β-catenin-VEGF, etc. signaling pathway, CA showed the effect of anticancer, anti-inflammatory, anti-osteoporosis, neuroprotection, hepatoprotection, etc. Therefore, CA is prospective to be used in the treatment of many diseases.Expert opinion: Research shows that CA has a therapeutic effect on a variety of diseases. We think CA is a promising natural medicine. Therefore, we propose that the research directions of CA in the future include the following. Carrying out clinical research trials in order to find the most suitable medicinal concentration for different diseases; Exploring the synergistic mechanism of CA in combination with other drugs; Exploring ways to increase the blood circulation concentration of CA.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
4
|
Tian W, Wang ZW, Yuan BM, Bao YG. Calycosin induces apoptosis via p38‑MAPK pathway‑mediated activation of the mitochondrial apoptotic pathway in human osteosarcoma 143B cells. Mol Med Rep 2020; 22:3962-3968. [PMID: 32901836 PMCID: PMC7533496 DOI: 10.3892/mmr.2020.11471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/28/2020] [Indexed: 12/30/2022] Open
Abstract
Previous studies have demonstrated that calycosin is a natural phytoestrogen with a similar structure to estrogen, which can inhibit cell proliferation and induce apoptosis in a variety of tumors. Calycosin exerts potential pharmacological effects on osteosarcoma cells by inducing apoptosis. The aim of the present study was to elucidate the specific molecular mechanism of calycosin-induced apoptosis in osteosarcoma cells. Cell proliferation was determined by an MTT assay. Annexin V/PI and JC-1 staining were used to detect apoptosis and mitochondrial dysfunction, respectively, by flow cytometry. Western blot analysis was used to detect the expression of caspases or mitochondrial proteins. The results revealed that calycosin reduced the cell viability of human osteosarcoma 143B cells, induced apoptosis and increased the loss of mitochondrial membrane potential (MMP). In addition, calycosin increased the expression of the proapoptotic antiapoptotic proteins cleaved caspase-3, cleaved caspase-9, cleaved poly(ADP-ribose) polymerase and Bcl-2-associated X protein (Bax), and decreased the expression of the antiapoptotic proapoptotic protein B-cell lymphoma-2 (Bcl-2), thus altering the Bax/Bcl-2 ratio. In addition, the expression levels of cytochrome c were markedly decreased in the mitochondria and increased in the cytoplasm following calycosin treatment. Furthermore, calycosin treatment induced p38-mitogen-activated protein kinase (MAPK) phosphorylation, whereas the p38-MAPK inhibitor BIRB 796 markedly reversed cell viability, apoptosis and loss of MMP in 143B cells. These results suggested that calycosin inhibited osteosarcoma 143B cell growth via p38-MAPK regulation of mitochondrial-dependent intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Wei Tian
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Zhi-Wei Wang
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Bao-Ming Yuan
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| | - Yong-Ge Bao
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for The Nationalities, Tongliao, Inner Mongolia 028007, P.R. China
| |
Collapse
|
5
|
Liu X, Sun X, Deng X, Lv X, Wang J. Calycosin enhances the bactericidal efficacy of polymyxin B by inhibiting MCR-1 in vitro. J Appl Microbiol 2020; 129:532-540. [PMID: 32160376 DOI: 10.1111/jam.14635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 03/06/2020] [Indexed: 01/09/2023]
Abstract
AIM To examine the synergistic effect of calycosin combined with polymyxin B against various mcr-1-positive bacterial strains. METHODS AND RESULTS In this study, we found a potential inhibitor of MCR-1, calycosin, that could significantly restore the antibacterial activity of polymyxin B. The synergistic effect of calycosin combined with polymyxin B against various mcr-1-positive bacterial strains was confirmed by checkerboard minimum inhibitory concentration assays, time-kill curve assays and disk diffusion assays. The fractional inhibitory concentration indexes ranged from 0·15 ± 0·03 to 0·28 ± 0·05, and the zones of inhibition increased from 13·33 ± 0·47 to 17·67 ± 0·47 mm with the combined therapy of calycosin and polymyxin B. In addition, the combined therapy significantly reduced the number of bacteria in the medium. However, at the concentrations required for the synergistic effect with polymyxin B, calycosin alone showed no effect on bacterial growth or MCR-1 production. Calycosin treatment exhibited no cytotoxicity to HeLa cells or A549 cells at calycosin concentrations below 32 µg ml-1 . CONCLUSIONS Therefore, our results suggested that calycosin could be used as a potential MCR-1 inhibitor to restore the bactericidal effect of polymyxin B without affecting bacterial viability or existing cytotoxicity. SIGNIFICANCE AND IMPACT OF THE STUDY The synergistic effect of calycosin combined with polymyxin B against various mcr-1-positive bacterial strains paves the way for future pharmaceutical applications of calycosin in fighting mcr-1-positive bacterial infections.
Collapse
Affiliation(s)
- X Liu
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Sun
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Deng
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Lv
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China
| | - J Wang
- Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China.,Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Tan J, Qin X, Liu B, Mo H, Wu Z, Yuan Z. Integrative findings indicate anti-tumor biotargets and molecular mechanisms of calycosin against osteosarcoma. Biomed Pharmacother 2020; 126:110096. [PMID: 32179199 DOI: 10.1016/j.biopha.2020.110096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
Calycosin is reportedly evidenced with pharmacologically treating bone cells. However, the comprehensive anti-osteosarcoma (OS) mechanisms of calycosin have not been uncovered. By using a systemic method of network pharmacology, the present study aimed to reveal potential anti-OS biotargets and molecular mechanisms played by calycosin. Moreover, human and animal experiments were conducted to verify the core biotargets of calycosin against OS. As results, all primary and core biotargets, biological processes, molecular pathways of calycosin against OS were revealed. Additionally, top 20 biological processes and pathways of calycosin against OS were identified. In human study, the OS sections resulted in reduced expressions of tumor protein p53 (TP53), Caspase-3 (CASP3), and elevated X-linked inhibitor of apoptosis protein (XIAP) expression in comparison with OS-free controls. As shown in cell culture study, calycosin-treated OS cells showed reduced cell proliferation, and promoted cell apoptosis. In TUNEL stains, calycosin resulted in elevated apoptotic cells. As showed in immunostaining, calycosin-treated OS cells exhibited intracellular up-regulation of TP53, CASP3 expressions, and decreased XIAP expressions. Taken together, the biological informational findings manifest the candidate and core biotargets, molecular functions and pathways of calycosin against OS. Attractively, these core biotargets may be used for effectively detecting and treating human OS.
Collapse
Affiliation(s)
- Jiachang Tan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Xiong Qin
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Bin Liu
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Hao Mo
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Zhenjie Wu
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China.
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China.
| |
Collapse
|
7
|
Wu ML, Lin YP, Wei YL, Du HJ, Ying XQ, Tan WZ, Tang BE. Calycosin Influences the Metabolism of Five Probe Drugs in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:429-434. [PMID: 32099327 PMCID: PMC6996205 DOI: 10.2147/dddt.s236221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/17/2019] [Indexed: 01/04/2023]
Abstract
Background Calycosin (CAL), a type of O-methylated isoflavone extracted from the herb Astralagusmembranaceus (AM), is a bioactive chemical with antioxidative, antiphlogistic and antineoplastic activities commonly used in traditional alternative Chinese medicine. AM has been shown to confer health benefits as an adjuvant in the treatment of a variety of diseases. Aim The main objective of this study was to determine whether CAL influences the cytochrome P450 (CYP450) system involved in drug metabolism. Methods Midazolam, tolbutamide, omeprazole, metoprolol and phenacetin were selected as probe drugs. Rats were randomly divided into three groups, specifically, 5% Carboxymethyl cellulose (CMC) for 8 days (Control), 5% CMC for 7 days + CAL for 1 day (single CAL) and CAL for 8 days (conc CAL), and metabolism of the five probe drugs evaluated using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Results No significant differences were observed for omeprazole and midazolam, compared to the control group. Tmax and t1/2 values of only one probe drug, phenacetin, in the conc CAL group were significantly different from those of the control group (Tmax h: 0.50±0.00 vs 0.23±0.15; control vs conc CAL). Cmax of tolbutamide was decreased about two-fold in the conc CAL treatment group (conc vs control: 219.48 vs 429.56, P<0.001). Conclusion Calycosin inhibits the catalytic activities of CYP1A2, CYP2D6 and CYP2C9. Accordingly, we recommend caution, particularly when combining CAL as a modality therapy with drugs metabolized by CYP1A2, CYP2D6 and CYP2C9, to reduce the potential risks of drug accumulation or ineffective treatment.
Collapse
Affiliation(s)
- Mei-Ling Wu
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Yi-Ping Lin
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Yan-Li Wei
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Hong-Jian Du
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Xiao-Qian Ying
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Wen-Zhuang Tan
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| | - Bi-E Tang
- Faculty of Medicine, Jinhua Polytechnic, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Qiu R, Li X, Qin K, Chen X, Wang R, Dai Y, Deng L, Ye Y. Antimetastatic effects of calycosin on osteosarcoma and the underlying mechanism. Biofactors 2019; 45:975-982. [PMID: 31322783 DOI: 10.1002/biof.1545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) refers to a malignant tumor with potential invasiveness and metastasis; however, the current chemotherapy of OS is lacking. Thus, the alternative drug for treating OS is urgent to explore. Calycosin (CC) is evidenced in our previous study to play the anti-OS benefits for suppressing cancer cell proliferation. Consequently, further investigation of CC-medicated anti-invasive and metastatic effects against OS is needed. In the current study, the clinical samples of OS patients were collected for biological and staining assays, such as enzyme-linked immunosorbent assay and polymerase chain reaction. Meanwhile, the cell line and tumor-bearing nude mice were employed in assessing antimetastatic effects of CC against OS through biochemical tests and immunoassays. As a result, the OS patients exhibited upregulated neoplastic expressions of matrix metalloproteinase 2 (MMP2) and proliferating cell nuclear antigen (PCNA), cellular mRNAs and proteins of inhibitor of nuclear factor kappa-B alpha (IκBα), and epithelial cell transforming sequence 2 (ECT2). In cell-line study, CC-treated human OS cells exhibited induced cell apoptosis, reduced cell proliferation, and cellular MMP2 and PCNA concentration, inhibited cell migration, lowered expressions of IκBα ECT2 mRNAs, and proteins. In tumor-bearing nude mice study, CC-treated mice resulted in the dose-dependent reductions of tumor weights and intracellular MMP2 contents. As shown in further assays, neoplastic expressions of interleukin 6 protein, IκBα, ECT2 mRNAs, and proteins were downregulated dose-dependently in CC-treated tumor-bearing mice. In conclusion, these investigative findings suggest that CC may play the potential anti-invasive benefits against OS through suppressing metastasis-associated IκBα/ECT2 molecular pathway.
Collapse
Affiliation(s)
- Rubiao Qiu
- Department of Pediatric Surgery, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xueyu Li
- Reproductive Center, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Kaibing Qin
- Department of Orthopedics, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, Guangxi Zhuang Autonomous Region, China
| | - Xiong Chen
- Department of Pediatric Surgery, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ruyue Wang
- Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yan Dai
- Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Li Deng
- Department of Pediatric Surgery, Guangxi Maternal and Child Health Hospital, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yu Ye
- Emergency Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|