1
|
Qi X, Tester R. Phenylketonuria and dietary carbohydrate – A review. FOOD AND HUMANITY 2024; 2:100208. [DOI: 10.1016/j.foohum.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Rives C, Martin CMP, Evariste L, Polizzi A, Huillet M, Lasserre F, Alquier-Bacquie V, Perrier P, Gomez J, Lippi Y, Naylies C, Levade T, Sabourdy F, Remignon H, Fafournoux P, Chassaing B, Loiseau N, Guillou H, Ellero-Simatos S, Gamet-Payrastre L, Fougerat A. Dietary Amino Acid Source Elicits Sex-Specific Metabolic Response to Diet-Induced NAFLD in Mice. Mol Nutr Food Res 2024; 68:e2300491. [PMID: 37888831 DOI: 10.1002/mnfr.202300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Indexed: 10/28/2023]
Abstract
SCOPE Non-alcoholic fatty liver disease (NAFLD) is a sexually dimorphic disease influenced by dietary factors. Here, the metabolic and hepatic effects of dietary amino acid (AA) source is assessed in Western diet (WD)-induced NAFLD in male and female mice. METHODS AND RESULTS The AA source is either casein or a free AA mixture mimicking the composition of casein. As expected, males fed a casein-based WD display glucose intolerance, fasting hyperglycemia, and insulin-resistance and develop NAFLD associated with changes in hepatic gene expression and microbiota dysbiosis. In contrast, males fed the AA-based WD show no steatosis, a similar gene expression profile as males fed a control diet, and a distinct microbiota composition compared to males fed a casein-based WD. Females are protected against WD-induced liver damage, hepatic gene expression, and gut microbiota changes regardless of the AA source. CONCLUSIONS Free dietary AA intake prevents the unhealthy metabolic outcomes of a WD preferentially in male mice.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Céline Marie Pauline Martin
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Lauris Evariste
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Valérie Alquier-Bacquie
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Prunelle Perrier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Jelskey Gomez
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Thierry Levade
- INSERM U1037, CRCT, Paul Sabatier University, Toulouse, 31059, France
- Biochemistry Laboratory, CHU Toulouse, Toulouse, 31300, France
| | - Frédérique Sabourdy
- INSERM U1037, CRCT, Paul Sabatier University, Toulouse, 31059, France
- Biochemistry Laboratory, CHU Toulouse, Toulouse, 31300, France
| | - Hervé Remignon
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
- INP-ENSAT, Toulouse University, Castanet-Tolosan, 31320, France
| | - Pierre Fafournoux
- INRAE center, Proteostasis Tim, Saint Genes Champanelle, 63122, France
| | - Benoit Chassaing
- INSERM U1016, Team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR10 8104, Paris Cité University, Paris, 75014, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Toulouse University, Toulouse, 31170, France
| |
Collapse
|
3
|
In Vivo Metabolic Responses to Different Formulations of Amino Acid Mixtures for the Treatment of Phenylketonuria (PKU). Int J Mol Sci 2022; 23:ijms23042227. [PMID: 35216344 PMCID: PMC8877664 DOI: 10.3390/ijms23042227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Phenylketonuria (PKU) is a rare autosomal recessive inborn error of metabolism where the mainstay of treatment is a Phe restricted diet consisting of a combination of limited amounts of natural protein with supplementation of Phe-free or low-Phe protein substitutes and special low protein foods. Suboptimal outcomes may be related to the different absorption kinetics of free AAs, which have lower biological efficacy than natural proteins. Physiomimic TechnologyTM is a technology engineered to prolong AA (AA-PT) release allowing physiological absorption and masking the odor and taste of free AAs. The aim of these studies was to assess the impact of AA-PT formulation on selected functional and metabolic parameters both in acute and long-term experimental studies. Adult rats in fasting conditions were randomized in different groups and treated by oral gavage. Acute AA-PT administration resulted in significantly lower BUN at 90 min versus baseline. Both BUN and glycemia were modulated in the same direction as intact casein protein. Long-term treatment with AA-PT significantly reduces the protein expression of the muscle degradation marker Bnip3L (−46%) while significantly increasing the proliferation of market myostatin (+58%). Animals dosed for 15 days with AA-PT had significantly stronger grip strength (+30%) versus baseline. In conclusion, the results suggest that the AA-PT formulation may have beneficial effects on both AA oxidation and catabolism with a direct impact on muscle as well as on other metabolic pathways.
Collapse
|
4
|
Pena MJ, Costa R, Rodrigues I, Martins S, Guimarães JT, Faria A, Calhau C, Rocha JC, Borges N. Unveiling the Metabolic Effects of Glycomacropeptide. Int J Mol Sci 2021; 22:ijms22189731. [PMID: 34575895 PMCID: PMC8470927 DOI: 10.3390/ijms22189731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
For many years, the main nitrogen source for patients with phenylketonuria (PKU) was phenylalanine-free amino acid supplements. Recently, casein glycomacropeptide (GMP) supplements have been prescribed due to its functional and sensorial properties. Nevertheless, many doubts still persist about the metabolic effects of GMP compared to free amino acids (fAA) and intact proteins such as casein (CAS). We endeavour to compare, in rats, the metabolic effects of different nitrogen sources. Twenty-four male Wistar rats were fed equal energy density diets plus CAS (control, n = 8), fAA (n = 8) or GMP (n = 8) for 8 weeks. Food, liquid intake and body weight were measured weekly. Blood biochemical parameters and markers of glycidic metabolism were assessed. Glucagon-like peptide-1 (GLP-1) was analysed by ELISA and immunohistochemistry. Food intake was higher in rats fed CAS compared to fAA or GMP throughout the treatment period. Fluid intake was similar between rats fed fAA and GMP. Body weight was systematically lower in rats fed fAA and GMP compared to those fed CAS, and still, from week 4 onwards, there were differences between fAA and GMP. None of the treatments appeared to induce consistent changes in glycaemia, while insulin levels were significantly higher in GMP. Likewise, the production of GLP-1 was higher in rats fed GMP when compared to fAA. Decreased urea, total protein and triglycerides were seen both in fAA and GMP related to CAS. GMP also reduced albumin and triglycerides in comparison to CAS and fAA, respectively. The chronic consumption of the diets triggers different metabolic responses which may provide clues to further study potential underlying mechanisms.
Collapse
Affiliation(s)
- Maria João Pena
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
| | - Raquel Costa
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ilda Rodrigues
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
| | - Sandra Martins
- Department of Clinical Pathology, São João Hospital Centre, 4200-319 Porto, Portugal;
- Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
| | - João Tiago Guimarães
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (M.J.P.); (R.C.); (I.R.); (J.T.G.)
- Department of Clinical Pathology, São João Hospital Centre, 4200-319 Porto, Portugal;
- Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
| | - Ana Faria
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- CHRC—Comprehensive Health Research Centre, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Conceição Calhau
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Unidade Universitária Lifestyle Medicine da José de Mello Saúde by NOVA Medical School, 1169-056 Lisboa, Portugal
| | - Júlio César Rocha
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (A.F.); (C.C.); (J.C.R.)
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitário de Lisboa Central, 1169-045 Lisboa, Portugal
| | - Nuno Borges
- CINTESIS—Centre for Health Technology and Services Research, 4200-450 Porto, Portugal
- Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, 4150-180 Porto, Portugal
- Correspondence:
| |
Collapse
|
5
|
Pena MJ, Pinto A, de Almeida MF, de Sousa Barbosa C, Ramos PC, Rocha S, Guimas A, Ribeiro R, Martins E, Bandeira A, Dias CC, MacDonald A, Borges N, Rocha JC. Continuous use of glycomacropeptide in the nutritional management of patients with phenylketonuria: a clinical perspective. Orphanet J Rare Dis 2021; 16:84. [PMID: 33581730 PMCID: PMC7881530 DOI: 10.1186/s13023-021-01721-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background In phenylketonuria (PKU), modified casein glycomacropeptide supplements (CGMP-AA) are used as an alternative to the traditional phenylalanine (Phe)-free L-amino acid supplements (L-AA). However, studies focusing on the long-term nutritional status of CGMP-AA are lacking. This retrospective study evaluated the long-term impact of CGMP-AA over a mean of 29 months in 11 patients with a mean age at CGMP-AA onset of 28 years (range 15–43) [8 females; 2 hyperphenylalaninaemia (HPA), 3 mild PKU, 3 classical PKU and 3 late-diagnosed]. Outcome measures included metabolic control, anthropometry, body composition and biochemical parameters. Results CGMP-AA, providing 66% of protein equivalent intake from protein substitute, was associated with no significant change in blood Phe with CGMP-AA compared with baseline (562 ± 289 µmol/L vs 628 ± 317 µmol/L; p = 0.065). In contrast, blood tyrosine significantly increased on CGMP-AA (52.0 ± 19.2 μmol/L vs 61.4 ± 23.8 μmol/L; p = 0.027). Conclusions Biochemical nutritional markers remained unchanged which is an encouraging finding in adults with PKU, many of whom are unable to maintain full adherence with nutritionally fortified protein substitutes. Longitudinal, prospective studies with larger sample sizes are necessary to fully understand the metabolic impact of using CGMP-AA in PKU.
Collapse
Affiliation(s)
- Maria João Pena
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal
| | - Alex Pinto
- Department of Dietetics, Birmingham Children's Hospital, Birmingham, B4 6NH, UK.,Faculty of Health and Human Sciences, University of Plymouth, Plymouth, PL6 8BH, UK
| | - Manuela Ferreira de Almeida
- Centro de Genética Médica, Centro Hospitalar Universitário Do Porto (CHUP), 4099-028, Porto, Portugal.,Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal.,UMIB/ICBAS/UP), Unit for Multidisplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Catarina de Sousa Barbosa
- Centro de Genética Médica, Centro Hospitalar Universitário Do Porto (CHUP), 4099-028, Porto, Portugal.,Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Paula Cristina Ramos
- Centro de Genética Médica, Centro Hospitalar Universitário Do Porto (CHUP), 4099-028, Porto, Portugal.,Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Sara Rocha
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Arlindo Guimas
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Rosa Ribeiro
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal.,UMIB/ICBAS/UP), Unit for Multidisplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Esmeralda Martins
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal.,UMIB/ICBAS/UP), Unit for Multidisplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Anabela Bandeira
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Cláudia Camila Dias
- Center for Health Technology and Services Research (CINTESIS), 4200-450, Porto, Portugal.,Department of Community Medicine, Information and Health Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-450, Porto, Portugal
| | - Anita MacDonald
- Department of Dietetics, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - Nuno Borges
- Center for Health Technology and Services Research (CINTESIS), 4200-450, Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, 4150-180, Porto, Portugal
| | - Júlio César Rocha
- Centro de Genética Médica, Centro Hospitalar Universitário Do Porto (CHUP), 4099-028, Porto, Portugal. .,Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal. .,Center for Health Technology and Services Research (CINTESIS), 4200-450, Porto, Portugal. .,Nutrition and Metabolism, Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.
| |
Collapse
|
6
|
The Impact of the Use of Glycomacropeptide on Satiety and Dietary Intake in Phenylketonuria. Nutrients 2020; 12:nu12092704. [PMID: 32899700 PMCID: PMC7576483 DOI: 10.3390/nu12092704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Protein is the most satiating macronutrient, increasing secretion of gastrointestinal hormones and diet induced thermogenesis. In phenylketonuria (PKU), natural protein is restricted with approximately 80% of intake supplied by a synthetic protein source, which may alter satiety response. Casein glycomacropeptide (CGMP-AA), a carbohydrate containing peptide and alternative protein substitute to amino acids (AA), may enhance satiety mediated by its bioactive properties. Aim: In a three-year longitudinal; prospective study, the effect of AA and two different amounts of CGMP-AA (CGMP-AA only (CGMP100) and a combination of CGMP-AA and AA (CGMP50) on satiety, weight and body mass index (BMI) were compared. Methods: 48 children with PKU completed the study. Median ages of children were: CGMP100; (n = 13), 9.2 years; CGMP50; (n = 16), 7.3 years; and AA (n = 19), 11.1 years. Semi-quantitative dietary assessments and anthropometry (weight, height and BMI) were measured every three months. Results: The macronutrient contribution to total energy intake from protein, carbohydrate and fat was similar across the groups. Adjusting for age and gender, no differences in energy intake, weight, BMI, incidence of overweight or obesity was apparent between the groups. Conclusion: In this three-year longitudinal study, there was no indication to support a relationship between CGMP and satiety, as evidenced by decreased energy intake, thereby preventing overweight or obesity. Satiety is a complex multi-system process that is not fully understood.
Collapse
|