1
|
Yang H, Gao J, Zheng Z, Yu Y, Zhang C. Current insights and future directions of LncRNA Morrbid in disease pathogenesis. Heliyon 2024; 10:e36681. [PMID: 39263145 PMCID: PMC11388785 DOI: 10.1016/j.heliyon.2024.e36681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Non-coding RNAs have emerged as important regulators of gene expression and contributors to many diseases. LncRNA Morrbid, a long non-coding RNA, has been widely studied in recent years. Current literature reports that lncRNA Morrbid is involved in various diseases such as tumors, cardiovascular diseases, inflammatory diseases and metabolic disorder. However, controversial conclusions exist in current studies. As a potential therapeutic target, it is necessary to comprehensively review the current evidence. In this work, we carefully review the literature on Morrbid and discuss each of the hot topics related to lncRNA Morrbid.
Collapse
Affiliation(s)
- Haiqiong Yang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiali Gao
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of pharmacy, Luzhou people's hospital, Luzhou, China
| | - Zaiyong Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Zhou X, Geng H, Shi P, Wang H, Zhang G, Cui Z, Lv S, Bi S. NIR-driven photoelectrochemical-fluorescent dual-mode biosensor based on bipedal DNA walker for ultrasensitive detection of microRNA. Biosens Bioelectron 2024; 247:115916. [PMID: 38104392 DOI: 10.1016/j.bios.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Optical biosensors have become powerful tools for bioanalysis, but most of them are limited by optic damage, autofluorescence, as well as poor penetration ability of ultraviolet (UV) and visible (Vis) light. Herein, a near-infrared light (NIR)-driven photoelectrochemical (PEC)-fluorescence (FL) dual-mode biosensor has been proposed for ultrasensitive detection of microRNA (miRNA) based on bipedal DNA walker with cascade amplification. Fueled by toehold-mediated strand displacement (TMSD), the bipedal DNA walker triggered by target miRNA-21 is formed through catalytic hairpin assembly (CHA), which can efficiently move along DNA tracks on CdS nanoparticles (CdS NPs)-modified fluorine doped tin oxide (FTO) electrode, resulting in the introduction of upconversion nanoparticles (UCNPs) on electrode surface. Under 980 nm laser irradiation, the UCNPs serve as the energy donor to emit UV/Vis light and excite CdS NPs to generate photocurrent for PEC detection, while the upconversion luminescence (UCL) at 803 nm is monitored for FL detection. This PEC-FL dual-mode biosensor has achieved the ultrasensitive and accurate analysis of miRNA-21 in human serum and different gynecological cancer cells. Overall, the proposed dual-mode biosensor can not only couple the inherent features of each single-mode biosensor but also provide mutual authentication of testing results, which opens up a new avenue for early diagnosis of miRNA-related diseases in clinic.
Collapse
Affiliation(s)
- Xuemin Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; Department of Ultrasonic Medicine, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Hongyan Geng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Pengfei Shi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China; Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, PR China
| | - Huijie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China
| | - Guofang Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Shuzhen Lv
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| | - Sai Bi
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China; College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266000, PR China.
| |
Collapse
|
3
|
Yang Q, Fu Y, Wang J, Yang H, Zhang X. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. J Zhejiang Univ Sci B 2023; 24:1123-1140. [PMID: 38057269 PMCID: PMC10710915 DOI: 10.1631/jzus.b2300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/24/2023] [Indexed: 12/08/2023]
Abstract
Breast cancer is a malignant tumor that seriously endangers women's lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.
Collapse
Affiliation(s)
- Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaxuan Wang
- Shanxi Medical University, Jinzhong 030600, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
4
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
5
|
Yang H, Liu Y, Chen L, Zhao J, Guo M, Zhao X, Wen Z, He Z, Chen C, Xu L. MiRNA-Based Therapies for Lung Cancer: Opportunities and Challenges? Biomolecules 2023; 13:877. [PMID: 37371458 DOI: 10.3390/biom13060877] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is a commonly diagnosed cancer and the leading cause of cancer-related deaths, posing a serious health risk. Despite new advances in immune checkpoint and targeted therapies in recent years, the prognosis for lung cancer patients, especially those in advanced stages, remains poor. MicroRNAs (miRNAs) have been shown to modulate tumor development at multiple levels, and as such, miRNA mimics and molecules aimed at regulating miRNAs have shown promise in preclinical development. More importantly, miRNA-based therapies can also complement conventional chemoradiotherapy, immunotherapy, and targeted therapies to reverse drug resistance and increase the sensitivity of lung cancer cells. Furthermore, small interfering RNA (siRNA) and miRNA-based therapies have entered clinical trials and have shown favorable development prospects. Therefore, in this paper, we review recent advances in miRNA-based therapies in lung cancer treatment as well as adjuvant therapy and present the current state of clinical lung cancer treatment. We also discuss the challenges facing miRNA-based therapies in the clinical application of lung cancer treatment to provide new ideas for the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Han Yang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Yufang Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhenke Wen
- Institute of Biomedical Research, Soochow University, Soochow 563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
6
|
Schwarzenbach H, Gahan PB. Interplay between LncRNAs and microRNAs in Breast Cancer. Int J Mol Sci 2023; 24:ijms24098095. [PMID: 37175800 PMCID: PMC10179369 DOI: 10.3390/ijms24098095] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Although long noncoding RNAs (lncRNAs) are known to be precursors of microRNAs (miRNAs), they frequently act as competing endogoneous RNAs (ceRNAs), yet still their interplay with miRNA is not well known. However, their interaction with miRNAs may result in the modulation of miRNA action. (2) To determine the contribution of these RNA molecules in tumor resistance to chemotherapeutic drugs, it is essential to consider not only the oncogenic and tumor suppressive function of miRNAs but also the impact of lncRNAs on miRNAs. Therefore, we performed an extensive search in different databases including PubMed. (3) The present study concerns the interplay between lncRNAs and miRNAs in the regulatory post-transcriptional network and their impact on drugs used in the treatment of breast cancer. (4) Consideration of this interplay may improve the search for new drugs to circumvent chemoresistance.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy
| |
Collapse
|
7
|
He Y, Xiao B, Lei T, Xuan J, Zhu Y, Kuang Z, Liu J, He J, Li L, Sun Z. LncRNA T376626 is a promising serum biomarker and promotes proliferation, migration, and invasion via binding to LAMC2 in triple-negative breast cancer. Gene 2023; 860:147227. [PMID: 36709879 DOI: 10.1016/j.gene.2023.147227] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE Circulating long noncoding RNAs (lncRNAs) have been reported to serve as biomarkers for cancer diagnosis. Here, we identified the clinical diagnostic value and biological function of lncRNA T376626 in triple-negative breast cancer (TNBC). METHOD A genome-wide lncRNA microarray was used to screen promising serum-based lncRNA biomarkers. The expression of candidate serum lncRNAs was validated in 282 breast cancer (BC) patients and 78 healthy subjects. The diagnostic value of serum lncRNA T376626 was determined by receiver operating characteristic (ROC) curve. RNA fluorescent in situ hybridization (FISH) and RNAScope ISH assays were conducted to examine the expression and localization of lncRNA T376626 in TNBC cells and BC tissues. Kaplan-Meier analysis was conducted to evaluate the relationship between lncRNA T376626 and BC patients' overall survival (OS) rate. CCK-8, colony-forming, wound healing and Transwell assays were performed to investigate the biological function of lncRNA T376626 on cell proliferation, migration, and invasion in two TNBC cell lines. Cell apoptosis-, cell cycle- and epithelial-mesenchymal transition (EMT)-related biomarkers were quantified by western blots. The lncRNA T376626 binding proteins were screened and identified by RNA pulldown. RESULTS LncRNA T376626 level was significantly higher in TNBC serums and tissues. Higher levels of lncRNA T376626 were positively associated with a higher pathological differentiation stage, more aggressive molecular subtype, and poor prognosis in BC and TNBC patients. The area under the curve (AUC) of serum lncRNA T376626 was 0.842. Overexpression (Knockdown) of lncRNA T376626 significantly promoted (inhibited) TNBC cell proliferation, migration, and invasion, possibly by regulating several cell cycle, cell apoptosis and EMT biomarkers. LAMC2 were identified as lncRNA T376626-binding proteins. LAMC2 facilitated TNBC proliferation and metastasis through lncRNA T376626. CONCLUSIONS LncRNA T376626 may serve as a TNBC serum-based diagnostic and prognostic biomarker and play an oncogenic role in TNBC progression through binding to LAMC2.
Collapse
Affiliation(s)
- Yongyin He
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, 510010 Guangzhou, Guangdong, China; Department of Laboratory Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, 510370 Guangzhou, Guangdong, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, Guangdong, China.
| | - Ting Lei
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000 Zhuhai, Guangdong, China
| | - Junfeng Xuan
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, 510010 Guangzhou, Guangdong, China
| | - Yi Zhu
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, 510010 Guangzhou, Guangdong, China
| | - Zhenzhan Kuang
- Department of Clinical Laboratory, South China Hospital of Shenzhen University, 518111 Shenzhen, Guangdong, China
| | - Jiahui Liu
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, 510010 Guangzhou, Guangdong, China
| | - Jia He
- Guangzhou Center for Disease Control and Prevention, 510440 Guangzhou, Guangdong, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, Guangdong, China.
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, 510010 Guangzhou, Guangdong, China; The First School of Clinical Medicine, Southern Medical University, 510515 Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Wang J, Wang K, Peng H, Zhang Z, Yang Z, Song M, Jiang G. Entropy-Driven Three-Dimensional DNA Nanofireworks for Simultaneous Real-Time Imaging of Telomerase and MicroRNA in Living Cells. Anal Chem 2023; 95:4138-4146. [PMID: 36790864 DOI: 10.1021/acs.analchem.2c05200] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Real-time monitoring of different types of intracellular tumor-related biomarkers is of key importance for the identification of tumor cells. However, it is hampered by the low abundance of biomarkers, inefficient free diffusion of reactants, and complex cytoplasmic milieu. Herein, we present a stable and general method for in situ imaging of microRNA-21 and telomerase utilizing simple highly integrated dual tetrahedral DNA nanostructures (TDNs) that can naturally enter cells, which could initiate to form the three-dimensional (3D) higher-order DNA superstructures (DNA nanofireworks, DNFs) through a reliable target-triggered entropy-driven strand displacement reaction in living cells for remarkable signal amplification. Importantly, the excellent biostability, biocompatibility, and sensitivity of this approach benefited from (i) the precise multidirectional arrangement of probes with a pure DNA structure and (ii) the local target concentration enhanced by the spatially confined microdomain inside the DNFs. This strategy provides a pivotal molecular toolbox for broad applications such as biomedical imaging and early precise cancer diagnosis.
Collapse
Affiliation(s)
- Jin Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaixuan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.,School of Water, Energy, and Environment, Cranfield University, Cranfield, Milton Keynes MK43 0AL, U.K
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Cranfield, Milton Keynes MK43 0AL, U.K
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Singh DD, Lee HJ, Yadav DK. Recent Clinical Advances on Long Non-Coding RNAs in Triple-Negative Breast Cancer. Cells 2023; 12:cells12040674. [PMID: 36831341 PMCID: PMC9955037 DOI: 10.3390/cells12040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a more aggressive type of breast cancer due to its heterogeneity and complex molecular mechanisms. TNBC has a high risk for metastasis, and it is difficult to manage clinical conditions of the patients. Various investigations are being conducted to overcome these challenges using RNA, DNA, and proteins for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) have emerged as a novel target to treat the multistep process of TNBC. LncRNAs regulate epigenetic expression levels, cell proliferation and apoptosis, and tumour invasiveness and metastasis. Thus, lncRNA-based early diagnosis and treatment options could be helpful, especially for patients with severe TNBC. lncRNAs are expressed in a highly specific manner in cells and tissues and are involved in TNBC progression and development. lncRNAs could be used as sensitive and specific targets for diagnosis, treatment, and monitoring of patients with TNBC. Therefore, the exploration of novel diagnostic and prognostic biomarkers is of extreme importance. Here, we discuss the molecular advances on lncRNA regulation of TNBC and lncRNA-based early diagnosis, treatment, and drug resistance.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
- Correspondence: (H.-J.L.); (D.K.Y.)
| | | |
Collapse
|
10
|
Wu T, Han N, Zhao C, Huang X, Su P, Li X. The long non-sacoding RNA TMEM147-AS1/miR-133b/ZNF587 axis regulates the Warburg effect and promotes prostatic carcinoma invasion and proliferation. J Gene Med 2022; 24:e3453. [PMID: 36181243 DOI: 10.1002/jgm.3453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The Warburg effect is a characteristic tumor cell behavior regarded as one of the cancer hallmarks and promotes tumor progression by promoting glucose uptake and lactate production. Long non-coding RNAs (lncRNAs) had been reported to emerge as a vital function in cancer development. The present research is designed to investigate the underlying molecular mechanism of lncRNA TMEM147 antisense RNA 1 (TMEM147-AS1) on aerobic glycolysis in prostatic carcinoma. METHODS lncRNA TMEM147-AS1, miR-133b and ZNF587 levels in prostatic carcinoma tissues and cells were detected by a polymerase chain reaction or western blot assays. Cell viability or invasion was determined by Edu (i.e. 5-ethynyl-2'-deoxyuridine), MTT (i.e. 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) or transwell assays. Hematoxylin and eosin and immunohistochemical staining were applied for histopathological examination. Tumor xenograft model was employed to investigate tumor growth in vivo. The combinative relationship between TMEM147-AS1 or ZNF587 and miR-133b was confirmed by a luciferase reporter assay. RESULTS TMEM147-AS1 and ZNF587 were up-regulated in prostatic carcinoma tissues and cells. Knockdown of TMEM147-AS1 or ZNF587 within prostate cancer cells significantly restrained cell viability, invasion and aerobic glycolysis in vitro and suppressed the neoplasia of prostatic carcinoma in vivo. miR-133b was directly targeted in both TMEM147-AS1 and ZNF587. Overexpression of miR-133b restrained prostate cancer cell viability, invasion and aerobic glycolysis. TMEM147-AS1 competitively targeted miR-133b, therefore counteracting miR-133b-mediated repression on ZNF587. CONCLUSIONS TMEM147-AS1 plays a tumor-promoting action in prostatic carcinoma aerobic glycolysis via affecting the miR-133b/ZNF587 axis, therefore regulating prostatic carcinoma cells invasion and proliferation. These outcomes implied that TMEM147-AS1 could be an effective treatment strategy for further study of prostatic carcinoma.
Collapse
Affiliation(s)
- Tao Wu
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Niwei Han
- Department of Laboratory Medicine, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Changyong Zhao
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiang Huang
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Peng Su
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoguang Li
- Department of Urology, the Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Hu X, Zhang Q, Xing W, Wang W. Role of microRNA/lncRNA Intertwined With the Wnt/β-Catenin Axis in Regulating the Pathogenesis of Triple-Negative Breast Cancer. Front Pharmacol 2022; 13:814971. [PMID: 35814205 PMCID: PMC9263262 DOI: 10.3389/fphar.2022.814971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Objective (s): In this mini-review, we aimed to discuss the Wnt/β-catenin signaling pathway modulation in triple-negative breast cancer, particularly the contribution of lncRNAs and miRNAs in its regulation and their possible entwining role in breast cancer pathogenesis, proliferation, migration, or malignancy.Background: Malignant tumor formation is very high for breast cancer in women and is a leading cause of death all over the globe. Among breast cancer subtypes, triple-negative breast cancer is rife in premenopausal women, most invasive, and prone to metastasis. Complex pathways are involved in this cancer’s pathogenesis, advancement, and malignancy, including the Wnt/β-catenin signaling pathway. This pathway is conserved among vertebrates and is necessary for sustaining cell homeostasis. It is regulated by several elements such as transcription factors, enhancers, non-coding RNAs (lncRNAs and miRNAs), etc.Methods: We evaluated lncRNAs and miRNAs differentially expressed in triple-negative breast cancer (TNBC) from the cDNA microarray data set literature survey. Using in silico analyses combined with a review of the current literature, we anticipated identifying lncRNAs and miRNAs that might modulate the Wnt/β-catenin signaling pathway.Result: The miRNAs and lncRNAs specific to triple-negative breast cancer have been identified based on literature and database searches. Tumorigenesis, metastasis, and EMT were all given special attention. Apart from cross-talk being essential for TNBC tumorigenesis and treatment outcomes, our results indicated eight upregulated and seven downregulated miRNAs and 19 upregulated and three downregulated lncRNAs that can be used as predictive or diagnostic markers. This consolidated information could be useful in the clinic and provide a combined literature resource for TNBC researchers working on the Wnt/β-catenin miRNA/lncRNA axis.Conclusion: In conclusion, because the Wnt pathway and miRNAs/lncRNAs can modulate TNBC, their intertwinement results in a cascade of complex reactions that affect TNBC and related processes. Their function in TNBC pathogenesis has been highlighted in molecular processes underlying the disease progression.
Collapse
Affiliation(s)
- Xue Hu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wan Wang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Wan Wang,
| |
Collapse
|
12
|
Ghasemian M, Rajabibazl M, Sahebi U, Sadeghi S, Maleki R, Hashemnia V, Mirfakhraie R. Long non-coding RNA MIR4435-2HG: a key molecule in progression of cancer and non-cancerous disorders. Cancer Cell Int 2022; 22:215. [PMID: 35715800 PMCID: PMC9205143 DOI: 10.1186/s12935-022-02633-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/11/2022] [Indexed: 12/18/2022] Open
Abstract
MIR4435-2HG (LINC00978) is a long non-coding RNA (lncRNA) that acts as an oncogene in almost all cancers. This lncRNA participates in the molecular cascades involved in other disorders such as coronary artery diseases, osteonecrosis, osteoarthritis, osteoporosis, and periodontitis. MIR4435-2HG exerts its functions via the spectrum of different mechanisms, including inhibition of apoptosis, sponging microRNAs (miRNAs), promoting cell proliferation, increasing cell invasion and migration, and enhancing epithelial to mesenchymal transition (EMT). MIR4435-2HG can regulate several signaling pathways, including Wnt, TGF-β/SMAD, Nrf2/HO-1, PI3K/AKT, MAPK/ERK, and FAK/AKT/β‑catenin signaling pathways; therefore, it can lead to tumor progression. In the present review, we aimed to discuss the potential roles of lncRNA MIR4435-2HG in developing cancerous and non-cancerous conditions. Due to its pivotal role in different disorders, this lncRNA can serve as a potential biomarker in future investigations. Moreover, it may serve as a potential therapeutic target for the treatment of various diseases.
Collapse
Affiliation(s)
- Majid Ghasemian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Unes Sahebi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Sadeghi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Reza Maleki
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Veys Hashemnia
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Zhong C, Xie Z, Zeng LH, Yuan C, Duan S. MIR4435-2HG Is a Potential Pan-Cancer Biomarker for Diagnosis and Prognosis. Front Immunol 2022; 13:855078. [PMID: 35784328 PMCID: PMC9240468 DOI: 10.3389/fimmu.2022.855078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 01/11/2023] Open
Abstract
The lncRNA MIR4435-2 host gene (MIR4435-2HG) is located on human chromosome 2q13, and its expression is up-regulated in 18 tumors. MIR4435-2HG participates in 6 signaling pathways to promote tumorigenesis, including the TGF-β signaling pathway, Wnt/β-catenin signaling pathway, MDM2/p53 signaling pathway, PI3K/AKT signaling pathway, Hippo signaling pathway, and MAPK/ERK signaling pathway. MIR4435-2HG competitively binds with 20 miRNAs to form a complex ceRNA network, thereby regulating the expression of downstream target genes. The high expression of MIR4435-2HG is also closely related to the clinicopathological characteristics and poor prognosis of a variety of tumors. Also, the high expression of MIR4435-2HG in peripheral blood or serum has the value of predicting the risk of 9 tumors. In addition, MIR4435-2HG participates in the mechanism of action of three cancer drugs, including resveratrol for the treatment of lung cancer, cisplatin for non-small cell lung cancer and colon cancer, and carboplatin for triple-negative breast cancer. This article systematically summarizes the diagnostic and prognostic value of MIR4435-2HG in a variety of tumors and outlines the ceRNA network and signaling pathways related to MIR4435-2HG, which will provide potential directions for future MIR4435-2HG research.
Collapse
Affiliation(s)
- Chenming Zhong
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Zijun Xie
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Ling-hui Zeng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Chunhui Yuan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
- *Correspondence: Shiwei Duan, ; Chunhui Yuan,
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- *Correspondence: Shiwei Duan, ; Chunhui Yuan,
| |
Collapse
|
14
|
Zhang H, Shi X, Ge Z, Wang Z, Gao Y, Gao G, Xu W, Qu X. PBX3-activated DLG1-AS1 can promote the proliferation, invasion, and migration of TNBC cells by sponging miR-16-5p. Mol Ther Oncolytics 2022; 25:201-210. [PMID: 35592389 PMCID: PMC9092379 DOI: 10.1016/j.omto.2021.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
DLG1-AS1 and PBX3 have been identified as acting as an oncogene in cervical cancer. However, they have not been well explored in triple-negative breast cancer (TNBC). As TNBC is one of the malignancies causing increasing death throughout the world, this study aimed to probe into the regulatory relationship between DLG1-AS1 and PBX3 in TNBC cells. In this study, real-time quantitative PCR (qRT-PCR) and western blot experiments were conducted to investigate the RNA and protein levels of genes of interest in TNBC cells. Functional experiments were implemented, such as 5-ethynyl-2′-deoxyuridine (EdU), transwell, and wound healing assays, to assess the changes in TNBC cell phenotype. Chromatin immunoprecipitation, luciferase reporter, RNA binding protein immunoprecipitation, and RNA pull-down assays were conducted to investigate the binding relationships among subject genes. The results show that DLG1-AS1 and PBX3 displayed high expression in TNBC cells, and PBX3 worked as the transcriptional activator of DLG1-AS1. Also, DLG1-AS1 served as an oncogene in TNBC cells and as a sponge for miR-16-5p to up-regulate JARID2. Meanwhile, JARID2 and PBX3 exerted oncogenic effects on TNBC cell growth. In conclusion, PBX3-activated DLG1-AS1 can promote the proliferation, invasion, and migration of TNBC cells by sponging miR-16-5p and elevating JARID2 expression.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xianquan Shi
- Ultrasonography Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhicheng Ge
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zihan Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yinguang Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guoxuan Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiang Qu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Corresponding author Xiang Qu, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong’an Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
15
|
SNHG3 Affects Gastric Cancer Development by Regulating SEPT9 Methylation. JOURNAL OF ONCOLOGY 2022; 2022:3433406. [PMID: 35528235 PMCID: PMC9071877 DOI: 10.1155/2022/3433406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
Background Gastric cancer (GC) is a common malignancy that can be formed by methylation-induced deactivation of tumor silencer genes, which is one of the key mechanisms of tumorigenesis. SEPT9 methylation, a symptomatic marker for tumors, can downregulate gene expression. Long noncoding RNA small nucleolar host gene 3 (lncRNA SNHG3) is a new type of lncRNA related to cancer. Our study investigated the mechanism of SNHG3 regulation of SEPT9 methylation and its effects on the growth, metastasis, and spread of gastric cancer cells. Methods Quantitative real-time PCR (qRT–PCR) was used to detect SNHG3 and miR-448 in gastric cancer, and a dual-luciferase experiment verified the effects of SNHG3, miR-448, and DNMT1. After abnormally expressing SNHG3, miR-448, and DNMT1 alone or together, methylation-specific PCR was performed to determine the methylation of SEPT9, Western blotting was performed to detect the expression of DNA methyltransferase 1 (DNMT1) and SEPT9, and Transwell, scratch, and CCK-8 assays were performed to reveal the invasion, migration, and cell growth of gastric cancer cells. Results We found that SNHG3 was upregulated in gastric cancer and that SNHG3 knockdown or miR-448 overexpression inhibited SEP9 methylation and therefore increased its expression, thereby inhibiting the growth, metastasis, and spread of gastric cancer cells. Conclusion Our study indicates that SNHG3 regulates SEPT9 methylation by targeting miR-448/DNMT1 and subsequently affecting the occurrence and development of gastric cancer.
Collapse
|
16
|
Yang X, Cao D, Ma W, Gao S, Wen G, Zhong J. Wnt signaling in triple-negative breast cancers: Its roles in molecular subtyping and cancer cell stemness and its crosstalk with non-coding RNAs. Life Sci 2022; 300:120565. [DOI: 10.1016/j.lfs.2022.120565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
|
17
|
Rincón-Riveros A, Morales D, Rodríguez JA, Villegas VE, López-Kleine L. Bioinformatic Tools for the Analysis and Prediction of ncRNA Interactions. Int J Mol Sci 2021; 22:11397. [PMID: 34768830 PMCID: PMC8583695 DOI: 10.3390/ijms222111397] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Noncoding RNAs (ncRNAs) play prominent roles in the regulation of gene expression via their interactions with other biological molecules such as proteins and nucleic acids. Although much of our knowledge about how these ncRNAs operate in different biological processes has been obtained from experimental findings, computational biology can also clearly substantially boost this knowledge by suggesting possible novel interactions of these ncRNAs with other molecules. Computational predictions are thus used as an alternative source of new insights through a process of mutual enrichment because the information obtained through experiments continuously feeds through into computational methods. The results of these predictions in turn shed light on possible interactions that are subsequently validated experimentally. This review describes the latest advances in databases, bioinformatic tools, and new in silico strategies that allow the establishment or prediction of biological interactions of ncRNAs, particularly miRNAs and lncRNAs. The ncRNA species described in this work have a special emphasis on those found in humans, but information on ncRNA of other species is also included.
Collapse
Affiliation(s)
- Andrés Rincón-Riveros
- Bioinformatics and Systems Biology Group, Universidad Nacional de Colombia, Bogotá 111221, Colombia;
| | - Duvan Morales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Josefa Antonia Rodríguez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá 111221, Colombia;
| | - Victoria E. Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá 111221, Colombia
| |
Collapse
|
18
|
Xu J, Wu KJ, Jia QJ, Ding XF. Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ Sci B 2021; 21:673-689. [PMID: 32893525 PMCID: PMC7519626 DOI: 10.1631/jzus.b1900709] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies, which makes its pathogenesis an important target for research. A growing number of studies have shown that non-coding RNA (ncRNA), including microRNA (miRNA) and long non-coding RNA (lncRNA), plays a significant role in tumorigenesis. This review summarizes the roles of miRNA and lncRNA in the progression, diagnosis, and neoadjuvant chemotherapy of TNBC. Aberrantly expressed miRNA and lncRNA are listed according to their roles. Further, it describes the multiple mechanisms that lncRNA shows for regulating gene expression in the nucleus and cytoplasm, and more importantly, describes lncRNA-regulated TNBC progression through complete combining with miRNA at the post-transcriptional level. Focusing on miRNA and lncRNA associated with TNBC can provide new insights for early diagnosis and treatment-they can be targeted in the future as a novel anticancer target of TNBC.
Collapse
|
19
|
Wu C, Liu X, Li B, Sun G, Peng C, Xiang D. miR‑451 suppresses the malignant characteristics of colorectal cancer via targeting SAMD4B. Mol Med Rep 2021; 24:557. [PMID: 34109425 PMCID: PMC8188639 DOI: 10.3892/mmr.2021.12196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer metastasis and recurrence are major causes of poor survival in patients with colorectal cancer (CRC). Therefore, the biological behavior of microRNA (miR)‑451 in CRC deserves further investigation. Reverse transcription‑quantitative PCR was applied to measure the relative expression of miR‑451 in blood serum specimens from patients with CRC and CRC cells. In vitro, HCT116 cells were transfected with miR‑451 mimics, a miR‑451 inhibitor, or SAMD4B plasmids. Proliferation, migration and apoptosis were measured using CCK‑8, Transwell assays and flow cytometry, respectively. Luciferase reporter assay was used to identify targets of miR‑451 and western blotting performed to explore the internal mechanisms of miR‑451 regulation. In vivo, the effect of miR‑451 and SAMD4B plasmids on tumor growth was analyzed using a nude mouse xenograft model. Results indicated that serum miR‑451 expression was lower in patients with CRC compared with healthy controls. Patients with elevated expression of miR‑451 had longer survival times compared with those with low expression. Overexpression of miR‑451 inhibited proliferation and migration, promoted apoptosis and enhanced the sensitivity of CRC cells to chemotherapy. SAMD4B was identified as a direct target of miR‑451 using miRNA target prediction programs and dual luciferase reporter assay validated the binding site of miR‑451 in the 3‑'UTR region of SAMD4B. Further studies confirmed that miR‑451 inhibited CRC progression via targeting SAMD4B. Results indicated that miR‑451 is essential for blocking tumor growth via targeting SAMD4B in vivo and in vitro. The miR‑451/SAMD4B axis may serve as a novel therapeutic target in patients with CRC.
Collapse
Affiliation(s)
- Chunrong Wu
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Xiaohu Liu
- Department of Gastrointestinal Surgery, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Bo Li
- Department of Cardiology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Guiyin Sun
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Chunfang Peng
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| | - Debing Xiang
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, P.R. China
| |
Collapse
|
20
|
Zhou Y, Yue Y, Fan S, Jia Q, Ding X. Advances in Pathophysiology of Triple-Negative Breast Cancer: The Potential of lncRNAs for Clinical Diagnosis, Treatment, and Prognostic Monitoring. Mol Biotechnol 2021; 63:1093-1102. [PMID: 34245439 DOI: 10.1007/s12033-021-00368-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that long non-coding RNAs (lncRNAs) are involved in several gene expression regulation processes, including epigenetic regulation, transcriptional regulation, post-transcriptional regulation, and translation regulation. It also plays a crucial role in the regulation of several characteristics of cancer biology, and the dysregulation of lncRNA expression in cancer may be part of the cause of cancer progression. Meanwhile, more and more studies are trying to determine the association between lncRNA expression and TNBC, as well as the functional role and molecular mechanism of the abnormally expressed lncRNA. Therefore, this review lists some abnormal lncRNAs in TNBC, further analyzes their molecular mechanisms and biological roles in the development of TNBC, and summarizes the potential of lncRNAs as biomarkers and therapeutic targets of TNBC, so as to provide ideas for clinical diagnosis, targeted therapy, and prognosis monitoring of TNBC.
Collapse
Affiliation(s)
- Yangkun Zhou
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yang Yue
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Siyu Fan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiaojun Jia
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xianfeng Ding
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
21
|
Liu D, Qiu M. Immune and Metabolic Dysregulated Coding and Non-coding RNAs Reveal Survival Association in Uterine Corpus Endometrial Carcinoma. Front Genet 2021; 12:673192. [PMID: 34249094 PMCID: PMC8264798 DOI: 10.3389/fgene.2021.673192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecologic malignancies, but only a few biomarkers have been proven to be effective in clinical practice. Previous studies have demonstrated the important roles of non-coding RNAs (ncRNAs) in diagnosis, prognosis, and therapy selection in UCEC and suggested the significance of integrating molecules at different levels for interpreting the underlying molecular mechanism. In this study, we collected transcriptome data, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), of 570 samples, which were comprised of 537 UCEC samples and 33 normal samples. First, differentially expressed lncRNAs, miRNAs, and mRNAs, which distinguished invasive carcinoma samples from normal samples, were identified, and further analysis showed that cancer- and metabolism-related functions were enriched by these RNAs. Next, an integrated, dysregulated, and scale-free biological network consisting of differentially expressed lncRNAs, miRNAs, and mRNAs was constructed. Protein-coding and ncRNA genes in this network showed potential immune and metabolic functions. A further analysis revealed two clinic-related modules that showed a close correlation with metabolic and immune functions. RNAs in the two modules were functionally validated to be associated with UCEC. The findings of this study demonstrate an important clinical application for improving outcome prediction for UCEC.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Qiu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Thakur KK, Kumar A, Banik K, Verma E, Khatoon E, Harsha C, Sethi G, Gupta SC, Kunnumakkara AB. Long noncoding RNAs in triple-negative breast cancer: A new frontier in the regulation of tumorigenesis. J Cell Physiol 2021; 236:7938-7965. [PMID: 34105151 DOI: 10.1002/jcp.30463] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
In recent years, triple-negative breast cancer (TNBC) has emerged as the most aggressive subtype of breast cancer and is usually associated with increased mortality worldwide. The severity of TNBC is primarily observed in younger women, with cases ranging from approximately 12%-24% of all breast cancer cases. The existing hormonal therapies offer limited clinical solutions in completely circumventing the TNBC, with chemoresistance and tumor recurrences being the common hurdles in the path of TNBC treatment. Accumulating evidence has correlated the dysregulation of long noncoding RNAs (lncRNAs) with increased cell proliferation, invasion, migration, tumor growth, chemoresistance, and decreased apoptosis in TNBC. Various clinical studies have revealed that aberrant expression of lncRNAs in TNBC tissues is associated with poor prognosis, lower overall survival, and disease-free survival. Due to these specific characteristics, lncRNAs have emerged as novel diagnostic and prognostic biomarkers for TNBC treatment. However, the underlying mechanism through which lncRNAs perform their actions remains unclear, and extensive research is being carried out to reveal it. Therefore, understanding of mechanisms regulating the modulation of lncRNAs will be a substantial breakthrough in effective treatment therapies for TNBC. This review highlights the association of several lncRNAs in TNBC progression and treatment, along with their possible functions and mechanisms.
Collapse
Affiliation(s)
- Krishan K Thakur
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Kishore Banik
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Elina Khatoon
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Choudhary Harsha
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Subash C Gupta
- Department of Biochemistry, Laboratory for Translational Cancer Research, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam, India
| |
Collapse
|
23
|
Ding Y, Wu W, Ma Z, Shao X, Zhang M, Wang Z. Potential value of MicroRNA-21 as a biomarker for predicting the prognosis of patients with breast cancer: A protocol for meta-analysis and bioinformatics analysis. Medicine (Baltimore) 2021; 100:e25964. [PMID: 34087839 PMCID: PMC8183732 DOI: 10.1097/md.0000000000025964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The latest global cancer data from 2020 shows that breast cancer has replaced lung cancer as the number one cancer in the world. Searching for new biomarkers of breast cancer has important clinical significance for early diagnosis, prediction of prognosis, and targeted therapy. MicroRNA-21 (miRNA-21) can be used as a new molecular marker for early diagnosis, prognosis, and treatment of tumors. However, the expression of miRNA-21 in breast cancer and its prognosis are not clear. Therefore, this study conducted a meta-analysis to further clarify the relationship between the expression of miRNA-21 in breast cancer and prognosis. At the same time, we carried out bioinformatics analysis to further analyze the possible molecular mechanism of miRNA-21, so as to provide potential clinical indicators for the diagnosis, treatment, and prognosis of patients. METHODS PubMed, Medline, Embase, Web of Science, Wanfang, Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, and other databases were used to retrieve the published relevant literatures. Include the eligible research, extract the survival data hazard ratios and 95% confidence intervals and other information. STATA16.0 software was used for meta-analysis. Download the miRNA data of breast cancer through the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The data extracted for independent sample t test and ROC curve was drawn. OncomiR plotted the survival curve of miRNA-21 on the prognosis of breast cancer. The target genes of miRNA-21 were predicted, and the Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were analyzed. STRING database and Cytoscape construct protein-protein interaction (PPI) network to obtain Hub gene. The correlation between the expression level of Hub gene in breast cancer and the abundance of immune cell infiltration was analyzed by TIMER database and verified by Kaplan-Meien plotter database. RESULTS The results of this meta-analysis will be submitted to a peer-reviewed journal for publication. CONCLUSION In this study, meta-analysis and bioinformatics analysis were used to further explore the prognosis, mechanism, and related pathways of miRNA-21 in breast cancer. ETHICS AND DISSEMINATION The private information from individuals will not be published. This systematic review also should not damage participants' rights. Ethical approval is not available. The results may be published in a peer-reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/R32A9.
Collapse
|
24
|
Zhang J, Du C, Zhang L, Wang Y, Zhang Y, Li J. lncRNA GSEC Promotes the Progression of Triple Negative Breast Cancer (TNBC) by Targeting the miR-202-5p/AXL Axis. Onco Targets Ther 2021; 14:2747-2759. [PMID: 33907418 PMCID: PMC8068510 DOI: 10.2147/ott.s293832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background This study aimed to explore the biological functions of G-quadruplex-forming sequence containing lncRNA (GSEC) in triple negative breast cancer (TNBC). Methods The expression of GSEC in TNBC tissues was evaluated by qRT-PCR. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell proliferation was evaluated by 5-ethynyl-20-deoxyuridine (EdU) staining assay. Cell invasion and migration were evaluated by Transwell assay. Gain- and loss-function assays were performed to assess the biological functions of GSEC in TNBC. The interactions between GSEC, miR-202-5p and AXL were determined by luciferase report assay and RNA immunoprecipitation (RIP) assay. In addition, a nude mouse xenograft model was used to confirm the oncogenic role of GSEC in TNBC. Results GSEC was significantly upregulated in TNBC tissues and cancer cell lines, and high level of GSEC was associated with advanced tumor stage, positive lymph-node metastasis and the poor prognosis of TNBC patients. Knockdown of GSEC effectively inhibited TNBC cell proliferation, invasion and migration in vitro. GSEC regulated the expression of AXL by directly sponging miR-202-5p. Downregulation of miR-202-5p attenuated GSEC knockdown-induced inhibition on TNBC cell proliferation, invasion and migration in vitro. Meanwhile, overexpression of AXL obviously reversed the inhibitory effects of miR-202-5p mimics in TNBC progression in vitro. Conclusion GSEC functioned as a potential oncogene and promoted AXL-mediated TNBC progression by sponging miR-202-5p, which might be a novel diagnostic and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Chuang Du
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Linfeng Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Yan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Yingying Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| | - Jingruo Li
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450000, People's Republic of China
| |
Collapse
|
25
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
26
|
Hu Z, Wang P, Miao B, Qu H. Long Non-Coding Ribonucleic Acid Forkhead Box P4-Antisense RNA 1 Targets microRNA-655-3p to Regulate the Proliferation, Transfer, and Invasion of Mammary Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
LncRNA FOXP4-AS1 expresses at a higher level in gastric carcinoma cells and can promote proliferation and other biological behaviors. However, the effect of FOXP4-AS1 on mammary cancer cells has not yet been elucidated. Therefore, this article explores the influence of lncRNA FOXP4-AS1
on the proliferation and other biological processes of mammary cancer MDA-MB-231 cells via its regulation of miRNA-655-3p. Firstly, nanoPCR was used to quantify the expression of FOXP4-AS1 and miRNA-655-3p in mammary cancer tissues and adjacent tissues. Compared to the adjacent tissues, the
expression level of FOXP4-AS1 in mammary cancer tissue was significantly increased, while that of miRNA-655-3p was substantially reduced. Then, si-FOXP4-AS1, miRNA-655-3p mimics, si-FOXP4-AS1 + anti-miRNA-655-3p were transfected into human mammary cancer MDA-MB-231 cells. The transfection
of si-FOXP4-AS1 or miRNA-655-3p mimics considerably reduced cell viability and the protein levels of Ki-67 and MMPs. The transfection of si-FOXP4-AS1 or miRNA-655-3p mimics could reduce cell migration and invasion. The dual-luciferase reporter assays revealed that FOXP4-AS1 could target miRNA-655-3p.
The co-transfection of si-FOXP4-AS1 and anti-miRNA-655-3p increased cell viability, migration, and invasion; the same co-transfection also elevated the protein levels of Ki-67 and MMPs. In conclusion, this study suggests that knocking down FOXP4-AS1’s expression can reduce mammary cancer
cells’ ability to proliferate and execute other biological processes by targeting the expression of miRNA-655-3p.
Collapse
Affiliation(s)
- Zhe Hu
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Affiliated Hospital), Taizhou 318000, Zhejiang, PR China
| | - Peien Wang
- Department of Surgical Oncology, Taizhou Cancer Hospital, Taizhou 317502, Zhejiang, PR China
| | - Beibei Miao
- Department of Surgical Oncology, Taizhou Cancer Hospital, Taizhou 317502, Zhejiang, PR China
| | - Haijiang Qu
- Department of Thyroid and Breast, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310006, Zhejiang, PR China
| |
Collapse
|
27
|
Zolota V, Tzelepi V, Piperigkou Z, Kourea H, Papakonstantinou E, Argentou MI, Karamanos NK. Epigenetic Alterations in Triple-Negative Breast Cancer-The Critical Role of Extracellular Matrix. Cancers (Basel) 2021; 13:cancers13040713. [PMID: 33572395 PMCID: PMC7916242 DOI: 10.3390/cancers13040713] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subgroup of breast cancer characterized by genomic complexity and therapeutic options limited to only standard chemotherapy. Although it has been suggested that stratifying TNBC patients by pathway-specific molecular alterations may predict benefit from specific therapeutic agents, application in routine clinical practice has not yet been established. There is a growing body of the literature supporting that epigenetic modifications comprised by DNA methylation, chromatin remodeling and non-coding RNAs play a fundamental role in TNBC pathogenesis. Extracellular matrix (ECM) is a highly dynamic 3D network of macromolecules with structural and cellular regulatory roles. Alterations in the expression of ECM components result in uncontrolled matrix remodeling, thus affecting its ability to regulate vital functions of cancer cells, including proliferation, migration, adhesion, invasion and epithelial-to-mesenchymal transition (EMT). Recent molecular data highlight the major role of tumor microenvironment and ECM alterations in TNBC and approaches for targeting tumor microenvironment have recently been recognized as potential therapeutic strategies. Notably, many of the ECM/EMT modifications in cancer are largely driven by epigenetic events, highlighting the pleiotropic effects of the epigenetic network in TNBC. This article presents and critically discusses the current knowledge on the epigenetic alterations correlated with TNBC pathogenesis, with emphasis on those associated with ECM/EMT modifications, their prognostic and predictive value and their use as therapeutic targets.
Collapse
Affiliation(s)
- Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
- Correspondence: ; Tel.: +30-0693613366
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; (Z.P.); (N.K.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 26110 Patras, Greece
| | - Helen Kourea
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
| | - Efthymia Papakonstantinou
- Department of Gynecology and Obstetrics School of Medicine, University of Patras, 26504 Rion, Greece;
| | - Maria-Ioanna Argentou
- Department of Surgery, School of Medicine, University of Patras, 26504 Rion, Greece;
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; (Z.P.); (N.K.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 26110 Patras, Greece
| |
Collapse
|
28
|
Zhang W, Guan X, Tang J. The long non-coding RNA landscape in triple-negative breast cancer. Cell Prolif 2021; 54:e12966. [PMID: 33314471 PMCID: PMC7848969 DOI: 10.1111/cpr.12966] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/03/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast cancer that has a higher risk of distant recurrence and metastasis, leading to a relatively aggressive biological behaviour and poor outcome. So far, the clinical management of TNBC is challenging because of its heterogeneity and paucity of specific targeted therapy. Recently, various studies have identified a lot of differently expressed long non-coding RNAs (lncRNAs) in TNBC. Those lncRNAs have been reported to play important roles in the multistep process of TNBC tumorigenesis. Here, we review the biological characteristics of lncRNAs, and present the current state of knowledge concerning the expression, function and regulation of lncRNAs in TNBC. Accumulating studies explored the potential lncRNAs-based therapeutics in TNBC, including the techniques of genetic modification using antisense oligonucleotides, locked nucleic acid and RNA nanotechnology. In current review, we also discuss the future prospects of studies about lncRNAs in TNBC and development of lncRNA-based strategies for clinical TNBC patients.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of OncologyNanjing First Hospital, Nanjing Medical UniversityNanjingChina
| | - Xiaoxiang Guan
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinhai Tang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
29
|
Deng P, Li K, Gu F, Zhang T, Zhao W, Sun M, Hou B. LINC00242/miR-1-3p/G6PD axis regulates Warburg effect and affects gastric cancer proliferation and apoptosis. Mol Med 2021; 27:9. [PMID: 33514309 PMCID: PMC7845121 DOI: 10.1186/s10020-020-00259-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Reprogrammed glucose metabolism of enhanced Warburg effect (or aerobic glycolysis) is considered as a hallmark of cancer. Long non-coding RNAs (lncRNAs) have been certified to play a crucial role in tumor progression. The current study aims to inquire into the potential regulatory mechanism of long intergenic non-protein coding RNA 242 (LINC00242) on aerobic glycolysis in gastric cancer. METHOD LINC00242, miR-1-3p and G6PD expression levels in gastric cancer tissues and cells were determined by qRT-PCR. Cell apoptosis or viability were examined by Flow cytometry or MTT assay. Western blot was utilized to investigate G6PD protein expression levels. Immunohistochemical (IHC) and hematoxylin and eosin (H&E) staining were used for histopathological detection. The targeted relationship between LINC00242 or G6PD and miR-1-3p was verified by luciferase reporter gene assay. Nude mouse xenograft was utilized to detect tumor formation in vivo. RESULT LINC00242 and G6PD was high-expressed in gastric cancer tissues and cells, and LINC00242 is positively correlated with G6PD. Silencing of LINC00242 or G6PD within gastric cancer cells prominently inhibited cell proliferation and aerobic glycolysis in vitro and relieved the tumorigenesis of gastric cancer in vivo. miR-1-3p was predicted to directly target both LINC00242 and G6PD. Overexpression of miR-1-3p suppressed gastric cancer cells proliferation and aerobic glycolysis. LINC00242 competitively combined miR-1-3p, therefore relieving miR-1-3p-mediated suppression on G6PD. CONCLUSION LINC00242 plays a stimulative role in gastric cancer aerobic glycolysis via regulation of miR-1-3p/ G6PD axis, therefore affecting gastric cancer cell proliferation.
Collapse
Affiliation(s)
- Peng Deng
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China
| | - Feng Gu
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang, 110001, China
| | - Wenyan Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ming Sun
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bin Hou
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
30
|
Otsuka K, Matsubara S, Shiraishi A, Takei N, Satoh Y, Terao M, Takada S, Kotani T, Satake H, Kimura AP. A Testis-Specific Long Noncoding RNA, Start, Is a Regulator of Steroidogenesis in Mouse Leydig Cells. Front Endocrinol (Lausanne) 2021; 12:665874. [PMID: 33897623 PMCID: PMC8061315 DOI: 10.3389/fendo.2021.665874] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
The testis expresses many long noncoding RNAs (lncRNAs), but their functions and overview of lncRNA variety are not well understood. The mouse Prss/Tessp locus contains six serine protease genes and two lncRNAs that have been suggested to play important roles in spermatogenesis. Here, we found a novel testis-specific lncRNA, Start (Steroidogenesis activating lncRNA in testis), in this locus. Start is 1822 nucleotides in length and was found to be localized mostly in the cytosol of germ cells and Leydig cells, although nuclear localization was also observed. Start-knockout (KO) mice generated by the CRISPR/Cas9 system were fertile and showed no morphological abnormality in adults. However, in adult Start-KO testes, RNA-seq and qRT-PCR analyses revealed an increase in the expression of steroidogenic genes such as Star and Hsd3b1, while ELISA analysis revealed that the testosterone levels in serum and testis were significantly low. Interestingly, at 8 days postpartum, both steroidogenic gene expression and testosterone level were decreased in Start-KO mice. Since overexpression of Start in two Leydig-derived cell lines resulted in elevation of the expression of steroidogenic genes including Star and Hsd3b1, Start is likely to be involved in their upregulation. The increase in expression of steroidogenic genes in adult Start-KO testes might be caused by a secondary effect via the androgen receptor autocrine pathway or the hypothalamus-pituitary-gonadal axis. Additionally, we observed a reduced number of Leydig cells at 8 days postpartum. Collectively, our results strongly suggest that Start is a regulator of steroidogenesis in Leydig cells. The current study provides an insight into the overall picture of the function of testis lncRNAs.
Collapse
Affiliation(s)
- Kai Otsuka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Natsumi Takei
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yui Satoh
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of NCCHD Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoya Kotani
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Atsushi P. Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
- *Correspondence: Atsushi P. Kimura,
| |
Collapse
|
31
|
Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, Grigorescu C, Stefanescu C, Volovat CC, Augustin I. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front Oncol 2020; 10:526850. [PMID: 33330019 PMCID: PMC7716774 DOI: 10.3389/fonc.2020.526850] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) include a diverse range of RNA species, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs, ncRNAs of approximately 19-25 nucleotides in length, are involved in gene expression regulation either via degradation or silencing of the messenger RNAs (mRNAs) and have roles in multiple biological processes, including cell proliferation, differentiation, migration, angiogenesis, and apoptosis. LncRNAs, which are longer than 200 nucleotides, comprise one of the largest and most heterogeneous RNA families. LncRNAs can activate or repress gene expression through various mechanisms, acting alone or in combination with miRNAs and other molecules as part of various pathways. Until recently, most research has focused on individual lncRNA and miRNA functions as regulators, and there is limited available data on ncRNA interactions relating to the tumor growth, metastasis, and therapy of cancer, acting either on mRNA alone or as competing endogenous RNA (ceRNA) networks. Triple-negative breast cancer (TNBC) represents approximately 10%-20% of all breast cancers (BCs) and is highly heterogenous and more aggressive than other types of BC, for which current targeted treatment options include hormonotherapy, PARP inhibitors, and immunotherapy; however, no targeted therapies for TNBC are available, partly because of a lack of predictive biomarkers. With advances in proteomics, new evidence has emerged demonstrating the implications of dysregulation of ncRNAs in TNBC etiology. Here, we review the roles of lncRNAs and miRNAs implicated in TNBC, including their interactions and regulatory networks. Our synthesis provides insight into the mechanisms involved in TNBC progression and has potential to aid the discovery of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania.,Center of Oncology Euroclinic, Iași, Romania
| | | | | | | | | | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | - Cristina Grigorescu
- Department of Surgery, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | | |
Collapse
|
32
|
Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death Dis 2020; 11:643. [PMID: 32811810 PMCID: PMC7434919 DOI: 10.1038/s41419-020-02821-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
As a common female malignancy, triple-negative breast cancer (TNBC) is the most serious subtype in breast cancer (BC). BAALC binder of MAP3K1 and KLF4 (BAALC) is a common oncogene in acute myelocytic leukemia (AML). We sought to explore the role of BAALC in TNBC. In this study, BAALC was significantly upregulated in TNBC tissues and cells. Then, the results of functional assays disclosed that BAALC facilitated cell proliferation, invasion, and epithelial–mesenchymal transition (EMT) processes, but repressed cell apoptosis in TNBC. Next, miR-380–3p was identified as the upstream of BAALC in TNBC cells. Moreover, LRRC75A-AS1 (also named small nucleolar RNA host gene 29: SNHG29) was verified to act as the sponge of miR-380–3p to elevate BAALC expression in TNBC. Besides, LRRC75A-AS1 could negatively regulate miR-380–3p but positively regulate BAALC expression. Finally, rescue assays elucidated that LRRC75A-AS1 facilitated cell proliferation, invasion, and EMT processes in TNBC by targeting miR-380–3p/BAALC pathway. Taken together, our study revealed a novel ceRNA network of LRRC75A-AS1/miR-380–3p/BAALC in accelerating TNBC development, indicating new promising targets for TNBC treatment.
Collapse
|
33
|
Javed Z, Khan K, Iqbal MZ, Ahmad T, Raza Q, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. Long non-coding RNA regulation of TRAIL in breast cancer: A tangle of non-coding threads. Oncol Lett 2020; 20:37. [PMID: 32802161 PMCID: PMC7412712 DOI: 10.3892/ol.2020.11896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a complex disease posing a serious threat to the female population worldwide. A complex molecular landscape and tumor heterogeneity render breast cancer cells resistant to drugs and able to promote metastasis and invasiveness. Despite the recent advancements in diagnostics and drug discovery, finding an effective cure for breast cancer is still a major challenge. Positive and negative regulation of apoptosis has been a subject of extensive study over the years. Numerous studies have shed light on the mechanisms that impede the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling cascade. Long non-coding RNAs (lncRNAs) have been implicated in the orchestration, development, proliferation, differentiation and metastasis of breast cancer. However, the roles of lncRNAs in fine-tuning apoptosis regulating machinery in breast cancer remain to be elucidated. The present review illuminates the roles of these molecules in the regulation of breast cancer and the interplay between lncRNA and TRAIL in breast cancer. The present review also attempts to reveal their role in the regulation of apoptosis in breast cancer appears a promising approach for the development of new diagnostic and therapeutic regimens.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab 44000, Pakistan
| | - Muhammad Zaheer Iqbal
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab 53700, Pakistan
| | - Touqeer Ahmad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan 87100, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, P.R. China
| |
Collapse
|
34
|
Long-Noncoding RNA (lncRNA) in the Regulation of Hypoxia-Inducible Factor (HIF) in Cancer. Noncoding RNA 2020; 6:ncrna6030027. [PMID: 32640630 PMCID: PMC7549355 DOI: 10.3390/ncrna6030027] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is dangerous for oxygen-dependent cells, therefore, physiological adaption to cellular hypoxic conditions is essential. The transcription factor hypoxia-inducible factor (HIF) is the main regulator of hypoxic metabolic adaption reducing oxygen consumption and is regulated by gradual von Hippel-Lindau (VHL)-dependent proteasomal degradation. Beyond physiology, hypoxia is frequently encountered within solid tumors and first drugs are in clinical trials to tackle this pathway in cancer. Besides hypoxia, cancer cells may promote HIF expression under normoxic conditions by altering various upstream regulators, cumulating in HIF upregulation and enhanced glycolysis and angiogenesis, altogether promoting tumor proliferation and progression. Therefore, understanding the underlying molecular mechanisms is crucial to discover potential future therapeutic targets to evolve cancer therapy. Long non-coding RNAs (lncRNA) are a class of non-protein coding RNA molecules with a length of over 200 nucleotides. They participate in cancer development and progression and might act as either oncogenic or tumor suppressive factors. Additionally, a growing body of evidence supports the role of lncRNAs in the hypoxic and normoxic regulation of HIF and its subunits HIF-1α and HIF-2α in cancer. This review provides a comprehensive update and overview of lncRNAs as regulators of HIFs expression and activation and discusses and highlights potential involved pathways.
Collapse
|
35
|
Dong Y, Xiao Y, Shi Q, Jiang C. Dysregulated lncRNA-miRNA-mRNA Network Reveals Patient Survival-Associated Modules and RNA Binding Proteins in Invasive Breast Carcinoma. Front Genet 2020; 10:1284. [PMID: 32010179 PMCID: PMC6975227 DOI: 10.3389/fgene.2019.01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common cancer in women, but few biomarkers are effective in clinic. Previous studies have shown the important roles of non-coding RNAs in diagnosis, prognosis, and therapy selection for breast cancer and have suggested the significance of integrating molecules at different levels to interpret the mechanism of breast cancer. Here, we collected transcriptome data including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA for ~1,200 samples, including 1079 invasive breast carcinoma samples and 104 normal samples, from The Cancer Genome Atlas (TCGA) project. We identified differentially expressed lncRNAs, miRNAs, and mRNAs that distinguished invasive carcinoma samples from normal samples. We further constructed an integrated dysregulated network consisting of differentially expressed lncRNAs, miRNAs, and mRNAs and found housekeeping and cancer-related functions. Moreover, 58 RNA binding proteins (RBPs) involved in biological processes that are essential to maintain cell survival were found in the dysregulated network, and 10 were correlated with overall survival. In addition, we identified two modules that stratify patients into high- and low-risk subgroups. The expression patterns of these two modules were significantly different in invasive carcinoma versus normal samples, and some molecules were high-confidence biomarkers of breast cancer. Together, these data demonstrated an important clinical application for improving outcome prediction for invasive breast cancers.
Collapse
Affiliation(s)
- Yu Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|