1
|
Nie X, Xie R, Fan J, Wang DW. LncRNA MIR217HG aggravates pressure-overload induced cardiac remodeling by activating miR-138/THBS1 pathway. Life Sci 2024; 336:122290. [PMID: 38013141 DOI: 10.1016/j.lfs.2023.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
AIM Cardiac hypertrophy and fibrosis are associated with cardiac remodeling and heart failure. We have previously shown that miRNA-217, embedded within the third intron of MIR217HG, aggravates pressure overload-induced cardiac hypertrophy by targeting phosphatase and tensin homolog. However, whether the MIR217HG transcript itself plays a role in cardiac remodeling remains unknown. METHODS Real-time PCR assays and RNA in situ hybridization were performed to detect MIR217HG expression. Lentiviruses and adeno-associated viruses with a cardiac-specific promoter (cTnT) were used to control MIR217HG expression in vitro and in vivo. Transverse aortic constriction (TAC) surgery was performed to develop cardiac remodeling models. Cardiac structure and function were analyzed using echocardiography and invasive pressure-volume analysis. KEY FINDINGS MIR217HG expression was increased in patients with heart failure. MIR217HG overexpression aggravated pressure-overload-induced myocyte hypertrophy and fibrosis both in vivo and in vitro, whereas MIR217HG knockdown reversed these phenotypes. Mechanistically, MIR217HG increased THBS1 expression by sponging miR-138. MiR-138 recognized the 3'UTR of THBS1 and repressed THBS1 expression in the absence of MIR217HG. Silencing THBS1 expression reversed MIR217HG-induced cardiac hypertrophy and remodeling. CONCLUSION MIR217HG acts as a potent inducer of cardiac remodeling that may contribute to heart failure by activating the miR-138/THBS1 pathway.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Rong Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
2
|
Cieśla M, Darmochwal-Kolarz DA, Kwaśniak K, Pałka A, Kolarz B. Plasma Circular-RNA 0005567 as a Potential Marker of Disease Activity in Rheumatoid Arthritis. Int J Mol Sci 2023; 25:417. [PMID: 38203588 PMCID: PMC10779327 DOI: 10.3390/ijms25010417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Circular RNAs (circRNAs) are noncoding molecules and are generated through back splicing, during which the 5' and 3' ends are covalently joined. Consequently, the lack of free ends makes them stable and resistant to exonucleases, and they become more suitable biomarkers than other noncoding RNAs. The aim of the study was to find an association between selected circRNAs and disease activity in patients with RA. A total of 71 subjects, 45 patients with RA and 26 healthy controls (HCs), were enrolled. In the RA group, 24 patients had high disease activity (DAS-28-ESR > 5.1) and 21 individuals were in remission (DAS-28-ESR ≤ 2.6). The cell line SW982 was used to evaluate the biological function of circ_0005567. The concentration of circ_0005567 in RA patients was elevated compared to HCs (median, 177.5 [lower-upper quartile, 83.13-234.6] vs. 97.83 [42.03-145.4], p = 0.017). Patients with high disease activity had a higher concentration of circ_0005567 than the control group (185.4 [112.72-249.25] vs. 97.83 [42.03-145.4], p = 0.015). In the cell line model, we found an association between circ_0005567 and miR-194-5p concentration and increased expression of mRNAs that may be related to cell proliferation. The plasma concentration of circ_0005567 may be a new potential biomarker associated with disease activity in patients with RA.
Collapse
Affiliation(s)
- Marek Cieśla
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (D.A.D.-K.); (B.K.)
| | - Dorota A. Darmochwal-Kolarz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (D.A.D.-K.); (B.K.)
| | - Konrad Kwaśniak
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszów University, 35-310 Rzeszow, Poland
| | - Anna Pałka
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (D.A.D.-K.); (B.K.)
| | - Bogdan Kolarz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (D.A.D.-K.); (B.K.)
| |
Collapse
|
3
|
Cao THM, Le APH, Tran TT, Huynh VK, Pham BH, Le TM, Nguyen QL, Tran TC, Tong TM, Than THN, Nguyen TTT, Ha HTT. Plasma cell-free RNA profiling of Vietnamese Alzheimer's patients reveals a linkage with chronic inflammation and apoptosis: a pilot study. Front Mol Neurosci 2023; 16:1308610. [PMID: 38178908 PMCID: PMC10764507 DOI: 10.3389/fnmol.2023.1308610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Circulating cell-free RNA (cfRNA) is a potential hallmark for early diagnosis of Alzheimer's Disease (AD) as it construes the genetic expression level, giving insights into the pathological progress from the outset. Profiles of cfRNA in Caucasian AD patients have been investigated thoroughly, yet there was no report exploring cfRNAs in the ASEAN groups. This study examined the gap, expecting to support the development of point-of-care AD diagnosis. Methods cfRNA profiles were characterized from 20 Vietnamese plasma samples (10 probable AD and 10 age-matched controls). RNA reads were subjected to differential expression (DE) analysis. Weighted gene correlation network analysis (WGCNA) was performed to identify gene modules that were significantly co-expressed. These modules' expression profiles were then correlated with AD status to identify relevant modules. Genes with the highest intramodular connectivity (module membership) were selected as hub genes. Transcript counts of differentially expressed genes were correlated with key AD measures-MMSE and MTA scores-to identify potential biomarkers. Results 136 genes were identified as significant AD hallmarks (p < 0.05), with 52 downregulated and 84 upregulated in the AD cohort. 45.6% of these genes are highly expressed in the hippocampus, cerebellum, and cerebral cortex. Notably, all markers related to chronic inflammation were upregulated, and there was a significant shift in all apoptotic markers. Three co-expressed modules were found to be significantly correlated with Alzheimer's status (p < 0.05; R2> 0.5). Functional enrichment analysis on these modules reveals an association with focal adhesion, nucleocytoplasmic transport, and metal ion response leading to apoptosis, suggesting the potential participation of these pathways in AD pathology. 47 significant hub genes were found to be differentially expressed genes with the highest connectivity. Six significant hub genes (CREB1, YTHDC1, IL1RL1, PHACTR2, ANKRD36B, RNF213) were found to be significantly correlated with MTA and MMSE scores. Other significant transcripts (XRN1, UBB, CHP1, THBS1, S100A9) were found to be involved in inflammation and neuronal death. Overall, we have identified candidate transcripts in plasma cf-RNA that are differentially expressed and are implicated in inflammation and apoptosis, which can jumpstart further investigations into applying cf-RNA as an AD biomarker in Vietnam and ASEAN countries.
Collapse
Affiliation(s)
- Thien Hoang Minh Cao
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Phuc Hoang Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tai Tien Tran
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Vy Kim Huynh
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Bao Hoai Pham
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thao Mai Le
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Quang Lam Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thang Cong Tran
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Trang Mai Tong
- Department of Neurology, University Medical Center, Ho Chi Minh City, Vietnam
| | - The Ha Ngoc Than
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Geriatrics and Palliative Care, University Medical Center, Ho Chi Minh City, Vietnam
| | - Tran Tran To Nguyen
- Department of Geriatrics, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huong Thi Thanh Ha
- School of Biomedical Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Li X, Xu S, Liu J, Zhao Y, Han H, Li X, Wang Y. Treatment with 1,25-Dihydroxyvitamin D3 Delays Choroid Plexus Infiltration and BCSFB Injury in MRL/lpr Mice Coinciding with Activation of the PPARγ/NF-κB/TNF-α Pathway and Suppression of TGF-β/Smad Signaling. Inflammation 2023; 46:556-572. [PMID: 36269513 DOI: 10.1007/s10753-022-01755-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious complication of systemic lupus erythematosus (SLE) involving the nervous system with high morbidity and mortality. A key hypothesis in NPSLE is that a disrupted barrier allows autoantibodies and immune components of peripheral blood to penetrate into the central nervous system (CNS), resulting in inflammation and damage. The blood cerebrospinal fluid barrier (BCSFB), which consists of the choroid plexus and the hypothalamic tanycytes, has long been regarded as an immunological sanctuary site. 1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] is the active form of vitamin D, which plays multiple roles in inflammation and immunoregulation. In this study, we investigated the possible protective effects of 1,25-dihydroxyvitamin D3 against BCSFB dysfunction in NPSLE in MRL/lpr mice and explored the mechanism by which 1,25-dihydroxyvitamin D3 inhibits the progression of NPSLE. In this study, we found that supplementation with 1,25-dihydroxyvitamin D3 markedly improved serological and immunological indices, delayed inflammatory infiltration, delayed neuronal deformation, and upregulated the expression of brain-derived neurotrophic factor (BDNF) proteins in the brain. Furthermore, 1,25-dihydroxyvitamin D3 downregulated proinflammatory cytokines such as nuclear factor kappa-B (NF-κB) and tumor necrosis factor-α (TNF-α) by activating peroxisome proliferator-activated receptor γ (PPARγ), and it reduced the expression of the TGF-β/Smad signaling pathway. Our findings demonstrate that 1,25-dihydroxyvitamin D3 delayed cell infiltration into the choroid plexus and decreased markers suggestive of cognitive decline in MRL/lpr mice, and the mechanism may be related to protection against BCSFB disruption through activation of the anti-inflammatory PPARγ/NF-κB/TNF-α pathway as well as upregulation of BDNF and inhibition of the TGF-β/Smad signaling pathway. These findings provide a novel direction for the study of NPSLE.
Collapse
Affiliation(s)
- Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuangli Xu
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yingzhe Zhao
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| | - Yanqiang Wang
- Department of Neurology II, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
5
|
Cui X, Zhang C, Wang F, Zhao X, Wang S, Liu J, He D, Wang C, Yang FC, Tong S, Liang Y. Latexin regulates sex dimorphism in hematopoiesis via gender-specific differential expression of microRNA 98-3p and thrombospondin 1. Cell Rep 2023; 42:112274. [PMID: 36933218 PMCID: PMC10160986 DOI: 10.1016/j.celrep.2023.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the ability to self-renew and differentiate to all blood cell types. HSCs and their differentiated progeny show sex/gender differences. The fundamental mechanisms remain largely unexplored. We previously reported that latexin (Lxn) deletion increased HSC survival and repopulation capacity in female mice. Here, we find no differences in HSC function and hematopoiesis in Lxn knockout (Lxn-/-) male mice under physiologic and myelosuppressive conditions. We further find that Thbs1, a downstream target gene of Lxn in female HSCs, is repressed in male HSCs. Male-specific high expression of microRNA 98-3p (miR98-3p) contributes to Thbs1 suppression in male HSCs, thus abrogating the functional effect of Lxn in male HSCs and hematopoiesis. These findings uncover a regulatory mechanism involving a sex-chromosome-related microRNA and its differential control of Lxn-Thbs1 signaling in hematopoiesis and shed light on the process underlying sex dimorphism in both normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Xiaojing Cui
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA
| | - Fang Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA
| | - Xinghui Zhao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 USA
| | - Jinpeng Liu
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Daheng He
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Chi Wang
- Division of Cancer Biostatistics, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536 USA
| | - Feng-Chun Yang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sheng Tong
- Department of Bioengineering, University of Kentucky, Lexington, KY 40536, USA
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 USA.
| |
Collapse
|
6
|
Rheumatoid arthritis and non-coding RNAs; how to trigger inflammation. Life Sci 2023; 315:121367. [PMID: 36639050 DOI: 10.1016/j.lfs.2023.121367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic inflammatory disease categorized by continuous synovitis in the joints and systemic inflammatory responses that can cause lifelong disability. The major cause of RA is the dysregulation of the immune response. The development of RA disease includes multiplex association of several interleukins and cells, which leads to synovial cell growth, cartilage and bone damage. The primary stage of RA disease is related to the modification of both the innate and adaptive immune systems, which leads to the formation of autoantibodies. This process results in many damaged molecules and epitope spreading. Both the innate (e.g., dendritic cells, macrophages, and neutrophils) and acquired immune cells (e.g., T and B lymphocytes) will increase and continue the chronic inflammatory condition in the next stages of the RA disease. In recent years, non-coding RNAs have been proved as significant controllers of biological functions, especially immune cell expansion and reactions. Non-coding RNAs were primarily containing microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Various studies confirmed non-coding RNAs as hopeful markers for diagnosing and curing RA. This review will describe and cover existing knowledge about RA pathogenesis, which might be favorable for discovering possible ncRNA markers for RA.
Collapse
|
7
|
Örsten S, Baysal İ, Akdoğan N, İnal N, Bostan E, Çiftçi SY, Akyön Y. Possible microRNA-based mechanism underlying relationship between chronic spontaneous urticaria and Blastocystis. Exp Parasitol 2023; 245:108453. [PMID: 36584787 DOI: 10.1016/j.exppara.2022.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Blastocystis spp. has been proposed as a possible cause of extraintestinal clinical signs such as urticaria pathogenesis. OBJECTIVES The aim of this study was to investigate the differences between microRNA (miRNA) expression profiles of Chronic spontaneous urticaria (CSU) patients in the presence or absence of Blastocystis spp. as well as healthy controls. Additionally, cellular pathways which are affected in the presence of Blastocystis spp. were identified. METHODS Twenty patients diagnosed with CSU were enrolled in the study and divided into equally two groups according to the presence of Blastocystis spp. Besides, six healthy individuals were included in the study. The expression profiles of 372 human-derived miRNAs have been investigated in serum samples from CSU patients and healthy controls with miScript miRNA PCR Array Human miRBase Profiler. RESULTS Compared to Blastocystis-negative (BN)-CSU patients, expression of 3 miRNAs (hsa-miR-3183, hsa-miR-4469, hsa-miR-5191) were found to be downregulated by at least two-fold (p < 0.05) in Blastocystis-positive (BP)-CSU patients. Additionally, the miRNA expression profiles of six healthy individuals (n = 3 Blastocystis-positive, n = 3 Blastocystis-negative) were analyzed and it was determined that the expressions of 7 miRNAs (hsa-miR-4661-5p, hsa-miR-4666a-5p, hsa-miR-4803, hsa-miR-5587-5p, hsa-miR-4500, hsa-miR-5680, hsa-miR-382-3p) increased at least 3-fold in the serum of individuals with Blastocystis-positive compared to Blastocystis-negative subjects. Most down-regulated miRNAs, in BP-CSU patients, affect cell adhesion molecules (CAMs), and signaling pathways therefore, Blastocystis spp. presence may influence the clinical presentation of urticaria by leading to unbalanced immunity. In addition, Blastocystis spp. presence may be influenced TGF- β signaling pathway through altered miRNAs and may be laying the groundwork for the development of CSU in healthy individuals. CONCLUSIONS As a consequence, this is the first report to show that the miRNA expression profile is affected by the presence of Blastocystis spp. Further miRNA-based studies are needed in order to enlighten the exact underlying molecular mechanisms of the relationship between Blastocystis spp. and CSU.
Collapse
Affiliation(s)
- Serra Örsten
- Hacettepe University, Vocational School of Health Services, Ankara, Turkey.
| | - İpek Baysal
- Hacettepe University, Vocational School of Health Services, Ankara, Turkey
| | - Neslihan Akdoğan
- Hacettepe University, Faculty of Medicine Department of Dermatology and Venereology, Ankara, Turkey
| | - Neşe İnal
- Hacettepe University, Faculty of Medicine Department of Medical Microbiology, Ankara, Turkey
| | - Ecem Bostan
- Hacettepe University, Faculty of Medicine Department of Dermatology and Venereology, Ankara, Turkey
| | | | - Yakut Akyön
- Hacettepe University, Faculty of Medicine Department of Medical Microbiology, Ankara, Turkey
| |
Collapse
|
8
|
Wang X, Kong F, Lin Z. Cromolyn prevents cerebral vasospasm and dementia by targeting WDR43. Front Aging Neurosci 2023; 15:1132733. [PMID: 37122373 PMCID: PMC10133528 DOI: 10.3389/fnagi.2023.1132733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Background Cerebral vasospasm (CV) can cause inflammation and damage to neuronal cells in the elderly, leading to dementia. Purpose This study aimed to investigate the genetic mechanisms underlying dementia caused by CV in the elderly, identify preventive and therapeutic drugs, and evaluate their efficacy in treating neurodegenerative diseases. Methods Genes associated with subarachnoid hemorrhage and CV were acquired and screened for differentially expressed miRNAs (DEmiRNAs) associated with aneurysm rupture. A regulatory network of DEmiRNAs and mRNAs was constructed, and virtual screening was performed to evaluate possible binding patterns between Food and Drug Administration (FDA)-approved drugs and core proteins. Molecular dynamics simulations were performed on the optimal docked complexes. Optimally docked drugs were evaluated for efficacy in the treatment of neurodegenerative diseases through cellular experiments. Results The study found upregulated genes (including WDR43 and THBS1) and one downregulated gene associated with aneurysm rupture. Differences in the expression of these genes indicate greater disease risk. DEmiRNAs associated with ruptured aortic aneurysm were identified, of which two could bind to THBS1 and WDR43. Cromolyn and lanoxin formed the best docking complexes with WDR43 and THBS1, respectively. Cellular experiments showed that cromolyn improved BV2 cell viability and enhanced Aβ42 uptake, suggesting its potential as a therapeutic agent for inflammation-related disorders. Conclusion The findings suggest that WDR43 and THBS1 are potential targets for preventing and treating CV-induced dementia in the elderly. Cromolyn may have therapeutic value in the treatment of Alzheimer's disease and dementia.
Collapse
|
9
|
Anti-Inflammatory microRNAs for Treating Inflammatory Skin Diseases. Biomolecules 2022; 12:biom12081072. [PMID: 36008966 PMCID: PMC9405611 DOI: 10.3390/biom12081072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
Skin inflammation occurs due to immune dysregulation because of internal disorders, infections, and allergic reactions. The inflammation of the skin is a major sign of chronic autoimmune inflammatory diseases, such as psoriasis, atopic dermatitis (AD), and lupus erythematosus. Although there are many therapies for treating these cutaneous inflammation diseases, their recurrence rates are high due to incomplete resolution. MicroRNA (miRNA) plays a critical role in skin inflammation by regulating the expression of protein-coding genes at the posttranscriptional level during pathogenesis and homeostasis maintenance. Some miRNAs possess anti-inflammatory features, which are beneficial for mitigating the inflammatory response. miRNAs that are reduced in inflammatory skin diseases can be supplied transiently using miRNA mimics and agomir. miRNA-based therapies that can target multiple genes in a given pathway are potential candidates for the treatment of skin inflammation. This review article offers an overview of the function of miRNA in skin inflammation regulation, with a focus on psoriasis, AD, and cutaneous wounds. Some bioactive molecules can target and modulate miRNAs to achieve the objective of inflammation suppression. This review also reports the anti-inflammatory efficacy of these molecules through modulating miRNA expression. The main limitations of miRNA-based therapies are rapid biodegradation and poor skin and cell penetration. Consideration was given to improving these drawbacks using the approaches of cell-penetrating peptides (CPPs), nanocarriers, exosomes, and low-frequency ultrasound. A formulation design for successful miRNA delivery into skin and target cells is also described in this review. The possible use of miRNAs as biomarkers and therapeutic modalities could open a novel opportunity for the diagnosis and treatment of inflammation-associated skin diseases.
Collapse
|
10
|
Zhang Y, Ye Y, Li Z, Dai H, Wang P. miR-18a-5p Reduces Inflammatory Response and Human Dermal Microvascular Endothelial Cells Permeability by Targeting Thrombospondin 1 in Chronic Idiopathic Urticaria. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic idiopathic urticaria (CIU) is a skin disease that has an acute attack when patient encounters an allergen. Previous research demonstrated that microRNA (miRNA) has a crucial role in CIU occurrence and development. This study aimed to investigate the role and mechanism of miR-18a-5p
in CIU. StarBase and dual luciferase reporter gene assay confirmed that thrombospondin 1 (THBS1) was a direct target of miR-18a-5p. miR-18a-5p negatively regulated THBS1 expression in human mast cell line HMC-1 and human dermal microvascular endothelial cells (HDMECs). Further analysis indicated
that miR-18a-5p mimic significantly reduced inflammatory factors including interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor (TNF)-α release, decreased the degranulation rate and histamine release rate of HMC-1 cells. Besides, we found that miR-18a-5p reduced
the permeability of HDMECs by suppressing THBS1 expression. Finally, the data indicated that miR-18a-5p inhibited the transforming growth factor beta (TGF-β)/SMAD family member 3 (Smad3) signaling pathway in HDMECs by inhibiting the expression of THBS1. Taken together, the results
suggested that miR-18a-5p reduced inflammation and human skin microvascular endothelial cell permeability in CIU by targeting THBS1. miR-18a-5p might be a new target for CIU treatment.
Collapse
Affiliation(s)
- Yijin Zhang
- Department of Dermetology, The Third People’s Hospital of Hangzhou, Hangzhuo 310000, China
| | - Yujian Ye
- Department of Dermetology, The Third People’s Hospital of Hangzhou, Hangzhuo 310000, China
| | - Zhao Li
- Department of Dermetology, The Third People’s Hospital of Hangzhou, Hangzhuo 310000, China
| | - Hui Dai
- Department of Dermetology, The Third People’s Hospital of Hangzhou, Hangzhuo 310000, China
| | - Ping Wang
- Department of Dermetology, The Third People’s Hospital of Hangzhou, Hangzhuo 310000, China
| |
Collapse
|
11
|
Shaikhnia F, Ghasempour G, Mohammadi A, Shabani M, Najafi M. miR-27a inhibits molecular adhesion between monocytes and human umbilical vein endothelial cells; systemic approach. BMC Res Notes 2022; 15:31. [PMID: 35144666 PMCID: PMC8830077 DOI: 10.1186/s13104-022-05920-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The endothelial cells overexpress the adhesion molecules in the leukocyte diapedesis pathway, developing vessel subendothelial molecular events. In this study, miR-194 and miR-27a were predicted and investigated on the expression of adhesion molecules in HUVEC cells. The SELE, SELP, and JAM-B adhesion molecules involved in the leukocyte tethering were predicted on the GO-enriched gene network. Following transfection of PEI-miRNA particles into HUVEC cells, the SELE, SELP, and JAM-B gene expression levels were evaluated by real-time qPCR. Furthermore, the monocyte-endothelial adhesion was performed using adhesion assay kit. RESULTS In agreement with the prediction results, the cellular data showed that miR-27a and miR-194 decrease significantly the SELP and JAM-B expression levels in HUVECs (P < 0.05). Moreover, both the miRNAs suppressed the monocyte adhesion to endothelial cells. Since the miR-27a inhibited significantly the monocyte-endothelial adhesion (P = 0.0001) through the suppression of SELP and JAM-B thus it might relate to the leukocyte diapedesis pathway.
Collapse
Affiliation(s)
- Farhad Shaikhnia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Mohammadi
- Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Shabani
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
MiR-222-3p induced by hepatitis B virus promotes the proliferation and inhibits apoptosis in hepatocellular carcinoma by upregulating THBS1. Hum Cell 2021; 34:1788-1799. [PMID: 34273068 DOI: 10.1007/s13577-021-00577-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to explore the role of miR-222-3p in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). MiR-222-3p expression in tumor tissues of HBV (+) or HBV (-) HCC patients and corresponding cell lines was detected by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation was assessed by cell counting kit-8 (CCK-8) and colony formation assays. Cell apoptosis was evaluated by flow cytometry. The potential targets of miR-222-3p were predicted by Targetscan, and the binding relationship between miR-222-3p and thrombospondin-1 (THBS1) was determined by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-222-3p was significantly upregulated in HCC tissues and cell lines and further elevated by HBV infection. MiR-222-3p downregulation effectively inhibited the proliferation and induced the apoptosis of HBV (-) HepG2 cells, HBV (+) HepG2.2.15 cells, Huh7-V cells, and Huh7-HBV cells. In addition, miR-222-3p overexpression enhanced the proliferation of these cell lines but exhibited no obvious effect on their apoptosis. Mechanistically, miR-222-3p was directly bound to the 3'-UTR of THBS1 and acted as its competing endogenous RNA (ceRNA). Interestingly, THBS1 silencing attenuated the inhibitory effect of miR-222-3p downregulation on the proliferation of these cell lines in vitro. Our results revealed that HBV infection further increased miR-222-3p expression and promoted HCC progression via miR-222-3p-mediated THBS1 downregulation. Our findings suggest that miR-222-3p might be a potential diagnostic and therapeutic target for HCC and HBV-related HCC.
Collapse
|
13
|
Zhang C, Li J, Li H, Wang G, Wang Q, Zhang X, Li B, Xu H. lncRNA MIR155HG Accelerates the Progression of Sepsis via Upregulating MEF2A by Sponging miR-194-5p. DNA Cell Biol 2021; 40:811-820. [PMID: 34030477 DOI: 10.1089/dna.2021.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNA MIR155HG exerts important effects in the progression of multiple diseases. This study investigated the functions of MIR155HG in sepsis development. Blood samples were collected from 28 patients with sepsis and 28 without sepsis. The murine cardiac muscle cell line (HL-1) and macrophage cell line (RAW 264.7) treated with lipopolysaccharide (LPS) were used as the in vitro sepsis models. The levels of MIR155HG, miR-194-5p, and MEF2A were determined using real-time-quantitative polymerase chain reaction. Cell counting kit-8 and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays were used to assess cell viability and apoptosis, respectively. The association between miR-194-5p and MIR155HG or MEF2A was confirmed using a dual-luciferase reporter assay. The levels of inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA). In this study, we demonstrated that MIR155HG expression was significantly increased in sepsis blood samples, RAW 264.7, and HL-1 cells treated with LPS. Silencing of MIR155HG promoted cell viability and obstructed cell apoptosis and inflammation of RAW 264.7 and HL-1 cells treated with LPS. MiR-194-5p depletion abrogated cell viability promotion and suppressive effect on cell apoptosis and inflammation caused by MIR155HG knockdown. In addition, MIR155HG upregulated MEF2A through interaction with miR-194-5p. Finally, rescue assays indicated that MEF2A overexpression abolished the inhibitory effect on sepsis progression induced by MIR155HG deletion. In conclusion, MIR155HG promotes sepsis progression in an in vitro sepsis model by modulating the miR-194-5p/MEF2A axis. This discovery provides a promising biomarker for sepsis therapy.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Jing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hongjing Li
- Department of Pneumoconiosis, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Guiling Wang
- Department of Rehabilitation, Huai'an Hongze District Hospital of Traditional Chinese Medicine, Huai'an, P.R. China
| | - Qingqing Wang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Xin Zhang
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Baiteng Li
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| | - Haixu Xu
- Department of Intensive Care Medicine, Huai'an Hongze District People's Hospital, Huai'an, P.R. China
| |
Collapse
|
14
|
Long Non-coding RNA GAS5 Worsens Coronary Atherosclerosis Through MicroRNA-194-3p/TXNIP Axis. Mol Neurobiol 2021; 58:3198-3207. [PMID: 33638792 PMCID: PMC8257541 DOI: 10.1007/s12035-021-02332-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022]
Abstract
It is formerly conducted that long non-coding RNA growth arrest-specific 5 (GAS5) is involved in the process of coronary atherosclerosis (AS). The regulatory effects of GAS5 on the microRNA (miR)-194-3p/thioredoxin-interacting protein (TXNIP) axis in AS have been insufficiently explored yet. Thereafter, this work is started from GAS5/miR-194-3p/TXNIP axis in AS. AS rats were modeled to obtain their coronary vascular tissues and endothelial cells (ECs), in which GAS5, miR-194-3p, and TXNIP expression were tested. ECs were identified by immunohistochemistry. The mechanism among GAS5, miR-194-3p, and TXNIP was determined. ECs were transfected with inhibited GAS5 or overexpressed miR-194-3p to decipher their functions in proliferation and apoptosis of ECs in AS. Raised GAS5 and TXNIP and degraded miR-194-3p expression levels exhibited in AS. GAS5 bound to miR-194-3p while miR-194-3p targeted TXNIP. Depleting GAS5 or restoring miR-194-3p enhanced proliferation and depressed apoptosis of ECs in AS. This work clearly manifests that inhibited GAS5 facilitates the growth of ECs through miR-194-3p-targeted TXNIP in AS, consolidating the basal reference to the curing for AS.
Collapse
|
15
|
Leng Y, Chen Z, Ding H, Zhao X, Qin L, Pan Y. Overexpression of microRNA-29b inhibits epithelial-mesenchymal transition and angiogenesis of colorectal cancer through the ETV4/ERK/EGFR axis. Cancer Cell Int 2021; 21:17. [PMID: 33407520 PMCID: PMC7789299 DOI: 10.1186/s12935-020-01700-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent studies have reported the involvement of microRNA-29 (miR-29) family members in human cancers through their ability to regulate cellular functions. The present study investigated biological function of miR-29b in colorectal cancer (CRC). METHODS CRC tissues and adjacent normal tissues were collected and the expression of ETV4 and miR-29b in the tissues were identified. The relationship between ETV4 and miR-29b or ETV4 expression and the EGFR promoter was identified using dual-luciferase reporter gene and CHIP assays. The proliferation, invasion, migration, and apoptosis of CRC HCT116 cells were assayed using MTT assay, Scratch test, Transwell assay, and flow cytometry, respectively. Also, expression of epithelial-mesenchymal transition (EMT) markers, angiogenic factors, and vasculogenic mimicry formation were evaluated using RT-qPCR and Western blot. RESULTS ETV4 was upregulated, while miR-29b expression was decreased in CRC tissues. ETV4 was identified as a target gene of miR-29b, which in turn inactivated the ERK signaling pathway by targeting ETV4 and inhibiting EGFR transcription. Transfection with miR-29b mimic, siRNA-ETV4, or ERK signaling pathway inhibitor U0126 increased expression of E-cadherin and TSP-1, and CRC cell apoptosis, yet reduced expression of ERK1/2, MMP-2, MMP-9, Vimentin, and VEGF, as well as inhibiting EMT, angiogenesis, and CRC cell migration and invasion. The EMT, angiogenesis and cancer progression induced by miR-29b inhibitor were reversed by siRNA-mediated ETV4 silencing. CONCLUSIONS miR-29b suppresses angiogenesis and EMT in CRC via the ETV4/ERK/EGFR axis.
Collapse
Affiliation(s)
- Yin Leng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, No. 601, Huangpu Avenue, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Zhixian Chen
- Department of Oncology, Fuda Cancer Hospital, Jinan University, Guangzhou, 510665, People's Republic of China
| | - Hui Ding
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, No. 601, Huangpu Avenue, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Xiaoxu Zhao
- Medical Department, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People's Republic of China
| | - Li Qin
- Department of Histology and Embryology, Medical School of Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yunlong Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, No. 601, Huangpu Avenue, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Wang L, Xiong X, Zhang L, Shen J. Neurovascular Unit: A critical role in ischemic stroke. CNS Neurosci Ther 2021; 27:7-16. [PMID: 33389780 PMCID: PMC7804897 DOI: 10.1111/cns.13561] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS), a common cerebrovascular disease, results from a sudden blockage of a blood vessel in the brain, thereby restricting blood supply to the area in question, and making a significantly negative impact on human health. Unfortunately, current treatments, that are mainly based on a recanalization of occluded blood vessels, are insufficient or inaccessible to many stroke patients. Recently, the profound influence of the neurovascular unit (NVU) on recanalization and the prognosis of IS have become better understood; in‐depth studies of the NVU have also provided novel approaches for IS treatment. In this article, we review the intimate connections between the changes in the NVU and IS outcomes, and discuss possible new management strategies having practical significance to IS. We discuss the concept of the NVU, as well as its roles in IS blood‐brain barrier regulation, cell preservation, inflammatory immune response, and neurovascular repair. Besides, we also summarize the influence of noncoding RNAs in NVU, and IS therapies targeting the NVU. We conclude that both the pathophysiological and neurovascular repair processes of IS are strongly associated with the homeostatic state of the NVU and that further research into therapies directed at the NVU could expand the range of treatments available for IS.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luyuan Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Liu W, Sheng L, Nie L, Wen X, Mo X. Functional interaction between long non-coding RNA and microRNA in rheumatoid arthritis. J Clin Lab Anal 2020; 34:e23489. [PMID: 33319382 PMCID: PMC7755821 DOI: 10.1002/jcla.23489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
MicroRNA (miRNA) has received widespread attention for its role in several key cellular processes such as cell differentiation, cell proliferation, apoptosis, and autoimmune diseases. Although we now have a good understanding of miRNA expression and function, our knowledge regarding the molecular mechanism of long non‐coding RNA (lncRNA) is still in its infancy. In this review, we will briefly introduce the definition and function of lncRNA and summarize the interactions between lncRNA and miRNA and their research progress in rheumatoid arthritis (RA). The expression of miR‐16, miR‐146a, miR‐155, and miR‐223 and the interactions between HOTAIR and miR138, ZFAS1 and miR‐27a, and GAPLINC and miR‐575 are representative examples that may augment the understanding of the pathogenesis of RA and help in the development of new biomarkers and target therapies.
Collapse
Affiliation(s)
- Weiwei Liu
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Li Sheng
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Lei Nie
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Xiaoyun Wen
- Medical College of Northwest Minzu University, Lanzhou, China
| | - Xiaodan Mo
- Medical College of Northwest Minzu University, Lanzhou, China
| |
Collapse
|
18
|
Zhao Y, Xia Z, Lin T, Yin Y. Significance of hub genes and immune cell infiltration identified by bioinformatics analysis in pelvic organ prolapse. PeerJ 2020; 8:e9773. [PMID: 32874785 PMCID: PMC7441923 DOI: 10.7717/peerj.9773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Objective Pelvic organ prolapse (POP) refers to the decline of pelvic organ position and dysfunction caused by weak pelvic floor support. The aim of the present study was to screen the hub genes and immune cell infiltration related to POP disease. Methods Microarray data of 34 POP tissues in the GSE12852 gene expression dataset were used as research objects. Weighted gene co-expression network analysis (WGCNA) was performed to elucidate the hub module and hub genes related to POP occurrence. Gene function annotation was performed using the DAVID tool. Differential analysis based on the GSE12852 dataset was carried out to explore the expression of the selected hub genes in POP and non-POP tissues, and RT-qPCR was used to validate the results. The differential immune cell infiltration between POP and non-POP tissues was investigated using the CIBERSORT algorithm. Results WGCNA revealed the module that possessed the highest correlation with POP occurrence. Functional annotation indicated that the genes in this module were mainly involved in immunity. ZNF331, THBS1, IFRD1, FLJ20533, CXCR4, GEM, SOD2, and SAT were identified as the hub genes. Differential analysis and RT-qPCR demonstrated that the selected hub genes were overexpressed in POP tissues as compared with non-POP tissues. The CIBERSORT algorithm was employed to evaluate the infiltration of 22 immune cell types in POP tissues and non-POP tissues. We found greater infiltration of activated mast cells and neutrophils in POP tissues than non-POP tissues, while the infiltration of resting mast cells was lower in POP tissues. Moreover, we investigated the relationship between the type of immune cell infiltration and hub genes by Pearson correlation analysis. The results indicate that activated mast cells and neutrophils had a positive correlation with the hub genes, while resting mast cells had a negative correlation with the hub genes. Conclusions Our research identified eight hub genes and the infiltration of three types of immune cells related to POP occurrence. These hub genes may participate in the pathogenesis of POP through the immune system, giving them a certain diagnostic and therapeutic value.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Te Lin
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yitong Yin
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Suppressed nuclear factor-kappa B alleviates lipopolysaccharide-induced acute lung injury through downregulation of CXCR4 mediated by microRNA-194. Respir Res 2020; 21:144. [PMID: 32522221 PMCID: PMC7288420 DOI: 10.1186/s12931-020-01391-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI) is a highly lethal pulmonary disease that causes edema, hypoxemia and respiratory failure. Recent evidence indicates that nuclear factor-kappa B (NF-κB) plays a crucial role in ALI development. However, the regulatory mechanism of NF-κB on ALI remains enigmatic. In this study, we investigated potential molecular mechanism of NF-κB on ALI induced by lipopolysaccharide (LPS). BALB/c mice were subjected to intratracheal spraying of LPS to generate an ALI mode, with the activity of NF-κB in mice tissues being detected by enzyme linked immunosorbent assay (ELISA), and the number of inflammatory cells in bronchoalveolar lavage fluid being counted. Then, the macrophage cell line RAW264.7 exposed to LPS were treated with ammonium pyrrolidinedithiocarbamate (PDTC) (inhibitor of NF-κB), miR-194 mimic, or oe-chemokine receptor type 4 (CXCR4) separately or in combination. After that, ELISA and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to detect the expression level of IL-1β, IL-6, TNF-α, miR-194 and CXCR4, respectively. In addition, the targeting relationship between miR-194 and CXCR4 was verified by dual-luciferase reporter gene assay. The dry/wet ratio of lung and the MPO activity were also measured to assess the inflammatory response in mice. Activation of NF-κB down-regulated the miR-194 expression in LPS-induced ALI. Overexpression of miR-194 alleviated LPS-induced ALI and reduced the expression of inflammatory factors IL-1β, IL-6 and TNF-α via targeting CXCR4. In LPS-induced ALI, NF-κB mediates the CXCR4 expression by inhibiting the expression of miR-194, thus promoting the inflammatory injury of lung.
Collapse
|