1
|
Yuan Y, Hu J, Shen L, He L, Zhu Y, Meng D, Jiang Q. Injectable calcium phosphate cement integrated with BMSCs-encapsulated microcapsules for bone tissue regeneration. Biomed Mater 2024; 19:065034. [PMID: 39312953 DOI: 10.1088/1748-605x/ad7e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Injectable calcium phosphate cement (CPC) offers significant benefits for the minimally invasive repair of irregular bone defects. However, the main limitations of CPC, including its deficiency in osteogenic properties and insufficient large porosity, require further investigation and resolution. In this study, alginate-chitosan-alginate (ACA) microcapsules were used to encapsulate and deliver rat bone mesenchymal stem cells (rBMSCs) into CPC paste, while a porous CPC scaffold was established to support cell growth. Our results demonstrated that the ACA cell microcapsules effectively protect the cells and facilitate their transport into the CPC paste, thereby enhancing cell viability post-implantation. Additionally, the ACA + CPC extracts were found to stimulate osteogenic differentiation of rBMSCs. Furthermore, results from a rat cranial parietal bone defect model showed that ACA microcapsules containing exogenous rBMSCs initially improved thein situosteogenic potential of CPC within bone defects, providing multiple sites for bone growth. Over time, the osteogenic potential of the exogenous cells diminishes, yet the pores created by the microcapsules persist in supporting ongoing bone formation by recruiting endogenous cells to the osteogenic sites. In conclusion, the utilization of ACA loaded stem cell microcapsules satisfactorily facilitate osteogenesis and degradation of CPC, making it a promising scaffold for bone defect transplantation.
Collapse
Affiliation(s)
- Yafei Yuan
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Jiangqi Hu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Lipei Shen
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Lin He
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Yixuan Zhu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Dan Meng
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| |
Collapse
|
2
|
Che Z, Sun Q, Zhao Z, Wu Y, Xing H, Song K, Chen A, Wang B, Cai M. Growth factor-functionalized titanium implants for enhanced bone regeneration: A review. Int J Biol Macromol 2024; 274:133153. [PMID: 38897500 DOI: 10.1016/j.ijbiomac.2024.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Titanium and titanium alloys are widely favored materials for orthopedic implants due to their exceptional mechanical properties and biological inertness. The additional benefit of sustained local release of bioactive substances further promotes bone tissue formation, thereby augmenting the osseointegration capacity of titanium implants and attracting increasing attention in bone tissue engineering. Among these bioactive substances, growth factors have shown remarkable osteogenic and angiogenic induction capabilities. Consequently, researchers have developed various physical, chemical, and biological loading techniques to incorporate growth factors into titanium implants, ensuring controlled release kinetics. In contrast to conventional treatment modalities, the localized release of growth factors from functionalized titanium implants not only enhances osseointegration but also reduces the risk of complications. This review provides a comprehensive examination of the types and mechanisms of growth factors, along with a detailed exploration of the methodologies used to load growth factors onto the surface of titanium implants. Moreover, it highlights recent advancements in the application of growth factors to the surface of titanium implants (Scheme 1). Finally, the review discusses current limitations and future prospects for growth factor-functionalized titanium implants. In summary, this paper presents cutting-edge design strategies aimed at enhancing the bone regenerative capacity of growth factor-functionalized titanium implants-a significant advancement in the field of enhanced bone regeneration.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Zhenyu Zhao
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Hu Xing
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
3
|
Tangporncharoen R, Silathapanasakul A, Tragoonlugkana P, Pruksapong C, Tawonsawatruk T, Supokawej A. The extracts of osteoblast developed from adipose-derived stem cell and its role in osteogenesis. J Orthop Surg Res 2024; 19:255. [PMID: 38650022 PMCID: PMC11034088 DOI: 10.1186/s13018-024-04747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Cell-based therapy has become an achievable choice in regenerative medicines, particularly for musculoskeletal disorders. Adipose-derived stem cells (ASCs) are an outstanding resource because of their ability and functions. Nevertheless, the use of cells for treatment comes with difficulties in operation and safety. The immunological barrier is also a major limitation of cell therapy, which can lead to unexpected results. Cell-derived products, such as cell extracts, have gained a lot of attention to overcome these limitations. The goal of this study was to optimize the production of ASC-osteoblast extracts as well as their involvement in osteogenesis. The extracts were prepared using a freeze-thaw method with varying temperatures and durations. Overall, osteogenic-associated proteins and osteoinductive potential of the extracts prepared from the osteogenic-induced ASCs were assessed. Our results demonstrated that the freeze-thaw approach is practicable for cell extracts production, with minor differences in temperature and duration having no effect on protein concentration. The ASC-osteoblast extracts contain a significant level of essential specialized proteins that promote osteogenicity. Hence, the freeze-thaw method is applicable for extract preparation and ASC-osteoblast extracts may be beneficial as an optional facilitating biologics in bone anabolic treatment and bone regeneration.
Collapse
Affiliation(s)
- Rattanawan Tangporncharoen
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Atiruj Silathapanasakul
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Patcharapa Tragoonlugkana
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chatchai Pruksapong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Pramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Han S, Yang H, Ni X, Deng Y, Li Z, Xing X, Du M. Programmed release of vascular endothelial growth factor and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration. Int J Biol Macromol 2023; 253:126721. [PMID: 37673168 DOI: 10.1016/j.ijbiomac.2023.126721] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
The healing of large bone defects remains a significant challenge in clinical practice. Accelerating both angiogenesis and osteogenesis can promote effective bone healing. In the natural healing process, angiogenesis precedes osteogenesis, providing a blood supply that supports the subsequent progression of osteogenesis. Developing a biomimetic scaffold that mimics the in vivo environment and promotes the proper sequence of vascularization followed by ossification is crucial for successful bone regeneration. In this study, a novel injectable dual-drug programmed releasing chitosan nanofibrous microsphere-based poly(D, l-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,l-lactide-co-glycolide) (PLGA-PEG-PLGA) hydrogel is fabricated by incorporating vascular endothelial growth factor (VEGF) and microspheres loaded with dental pulp stem cells-derived exosomes (DPSCs-Exo). Rapid release of VEGF promotes the swift initiation of angiogenesis, while DPSCs-Exo release ensures persistent osteogenesis. Our results demonstrate that chitosan microsphere-based PLGA-PEG-PLGA hydrogel significantly promotes angiogenesis in human umbilical vascular endothelial cells and enhances the osteogenic differentiation of pre-osteoblasts. Furthermore, in vivo transplantation of this injectable chitosan microsphere-based PLGA-PEG-PLGA hydrogel into calvarial bone defects markedly promotes bone formation. Overall, our study provides a promising approach for improving bone regeneration by temporally replicating the behavior of angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Shuang Han
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoqi Ni
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yunfan Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Xing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Bian X, Jin L, Wang Y, Yuan M, Yao Z, Ning B, Gao W, Guo C. Riboflavin deficiency reduces bone mineral density in rats by compromising osteoblast function. J Nutr Biochem 2023; 122:109453. [PMID: 37788723 DOI: 10.1016/j.jnutbio.2023.109453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Insufficient riboflavin intake has been associated with poor bone health. This study aimed to investigate the effect of riboflavin deficiency on bone health in vivo and in vitro. Riboflavin deficiency was successfully developed in rats and osteoblasts. The results indicated that bone mineral density, serum bone alkaline phosphatase, bone phosphorus, and bone calcium were significantly decreased while serum ionized calcium and osteocalcin were significantly increased in the riboflavin-deficient rats. Riboflavin deficiency also induced the reduction of Runx2, Osterix, and BMP-2/Smad1/5/9 cascade in the femur. These results were further verified in cellular experiments. Our findings demonstrated that alkaline phosphatase activities and calcified nodules were significantly decreased while intracellular osteocalcin and pro-collagen I c-terminal propeptide were significantly increased in the riboflavin-deficient osteoblasts. Additionally, the protein expression of Osterix, Runx2, and BMP-2/Smad1/5/9 cascade were significantly decreased while the protein expression of p-p38 MAPK were significantly increased in the riboflavin-deficient cells compared to the control cells. Blockage of p38 MAPK signaling pathway with SB203580 reversed these effects in riboflavin-deficient osteoblastic cells. Our data suggest that riboflavin deficiency causes osteoblast malfunction and retards bone matrix mineralization via p38 MAPK/BMP-2/Smad1/5/9 signaling pathway.
Collapse
Affiliation(s)
- Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Lu Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Yanxian Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Man Yuan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Zhanxin Yao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Baoan Ning
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, PR China.
| |
Collapse
|
6
|
Zhang M, Fukushima Y, Nozaki K, Nakanishi H, Deng J, Wakabayashi N, Itaka K. Enhancement of bone regeneration by coadministration of angiogenic and osteogenic factors using messenger RNA. Inflamm Regen 2023; 43:32. [PMID: 37340499 DOI: 10.1186/s41232-023-00285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Bone defects remain a challenge today. In addition to osteogenic activation, the crucial role of angiogenesis has also gained attention. In particular, vascular endothelial growth factor (VEGF) is likely to play a significant role in bone regeneration, not only to restore blood supply but also to be directly involved in the osteogenic differentiation of mesenchymal stem cells. In this study, to produce additive angiogenic-osteogenic effects in the process of bone regeneration, VEGF and Runt-related transcription factor 2 (Runx2), an essential transcription factor for osteogenic differentiation, were coadministered with messenger RNAs (mRNAs) to bone defects in the rat mandible. METHODS The mRNAs encoding VEGF or Runx2 were prepared via in vitro transcription (IVT). Osteogenic differentiation after mRNA transfection was evaluated using primary osteoblast-like cells, followed by an evaluation of the gene expression levels of osteogenic markers. The mRNAs were then administered to a bone defect prepared in the rat mandible using our original cationic polymer-based carrier, the polyplex nanomicelle. The bone regeneration was evaluated by micro-computerized tomography (μCT) imaging, and histologic analyses. RESULTS Osteogenic markers such as osteocalcin (Ocn) and osteopontin (Opn) were significantly upregulated after mRNA transfection. VEGF mRNA was revealed to have a distinct osteoblastic function similar to that of Runx2 mRNA, and the combined use of the two mRNAs resulted in further upregulation of the markers. After in vivo administration into the bone defect, the two mRNAs induced significant enhancement of bone regeneration with increased bone mineralization. Histological analyses using antibodies against the Cluster of Differentiation 31 protein (CD31), alkaline phosphatase (ALP), or OCN revealed that the mRNAs induced the upregulation of osteogenic markers in the defect, together with increased vessel formation, leading to rapid bone formation. CONCLUSIONS These results demonstrate the feasibility of using mRNA medicines to introduce various therapeutic factors, including transcription factors, into target sites. This study provides valuable information for the development of mRNA therapeutics for tissue engineering.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 1138549, Japan
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Yuta Fukushima
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 1138549, Japan
| | - Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan
| | - Jia Deng
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan
- Department of Masticatory Function and Health Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8549, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 1138549, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 1010062, Japan.
- Clinical Biotechnology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Kostiv RE, Matveeva NY, Kalinichenko SG. Localization of VEGF, TGF-β1, BMP-2, and Apoptosis Factors in Hypertrophic Nonunion of Human Tubular Bones. Bull Exp Biol Med 2022; 173:160-168. [PMID: 35624354 DOI: 10.1007/s10517-022-05513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/29/2022]
Abstract
We studied localization of VEGF, TGF-β1, BMP-2, caspase-3, Bcl-2, and TNFα in the callus samples obtained from 5 patients (4 women and 1 man) aged 41-53 years during planned surgery for nonunion and pseudarthrosis of the clavicle (n=1), ulna (n=1), femur (n=1), and tibia (n=2) bones. Two control groups included material of hypertrophied callus (n=3) with consolidated fractures of long bones and samples of intact bones (n=3) obtained by postmortem autopsy of subjects without pathology of the musculoskeletal system. A nonuniform distribution of the studied markers was revealed. Active expression of VEGF was observed in fibroblast-like cells of the fibrous tissue, osteoblasts of the periosteum and osteons. Osteoblasts expressing BMP-2 were localized in the periosteum and the loose connective tissue of the Haversian canals. The number of immunopositive cells expressing TGF-β1 and TNFα in the callus exceeded that in the control and correlated with the expression of caspase-3 in fibroblast-like cells, osteoblasts, chondroblasts, and microvascular endotheliocytes. The results allow considering fracture nonunion as a result of overproduction of cytotoxic and proapoptotic factors in chronic inflammation and dysfunction of the expression of morphogenetic proteins. The morphochemical patterns of the studied markers open up prospects for the development of new methods of pharmacological correction of fracture repair.
Collapse
Affiliation(s)
- R E Kostiv
- Department of Histology, Embryology, and Cytology, Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - N Yu Matveeva
- Department of Histology, Embryology, and Cytology, Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia.
| | - S G Kalinichenko
- Department of Histology, Embryology, and Cytology, Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| |
Collapse
|
8
|
Li Y, Qi W, Shi Y. miR‑150‑5p inhibits osteogenic differentiation of fibroblasts in ankylosing spondylitis by targeting VDR. Exp Ther Med 2022; 23:283. [PMID: 35317439 PMCID: PMC8908459 DOI: 10.3892/etm.2022.11213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/16/2021] [Indexed: 11/05/2022] Open
Abstract
Dysregulated microRNAs (miRNAs or miRs) serve potential roles in inflammatory systemic disease, including ankylosing spondylitis (AS). The aim of the present study was to investigate the potential function of miR-150-5p in osteogenic differentiation of AS fibroblasts and its underlying mechanism. The expression of miR-150-5p and vitamin D receptor (VDR) in AS joint capsules and fibroblasts was detected by reverse transcription-quantitative (RT-q)PCR and western blotting. Following overexpression of miR-150-5p, the alteration in osteogenic gene expression was detected by RT-qPCR, western blotting and alkaline phosphatase activity assay, as well as alizarin red staining. The association between miR-150-5p and VDR was confirmed by luciferase assay and rescue experiments were performed. Patients with AS exhibited decreased expression of miR-150-5p in joint capsules. Treatment with bone morphogenic protein 2 (BMP-2) and transforming growth factor-β1 (TGF-β1) led to downregulation of miR-150-5p in AS fibroblasts. Enforced expression of miR-150-5p attenuated osteogenic differentiation of AS fibroblasts. These results demonstrated that miR-150-5p inhibited osteogenic differentiation of AS fibroblasts by targeting VDR. miR-150-5p overexpression decreased osteogenic transformation of fibroblasts by decreasing VDR expression in AS.
Collapse
Affiliation(s)
- Yuan Li
- Department of Rheumatology and Immunology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Wufang Qi
- Department of Rheumatology and Immunology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Yuquan Shi
- Department of Rheumatology and Immunology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
9
|
Bone morphogenetic protein 9 enhances osteogenic and angiogenic responses of human amniotic mesenchymal stem cells cocultured with umbilical vein endothelial cells through the PI3K/AKT/m-TOR signaling pathway. Aging (Albany NY) 2021; 13:24829-24849. [PMID: 34837694 PMCID: PMC8660623 DOI: 10.18632/aging.203718] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023]
Abstract
Background: Neovascularization plays an essential part in bone fracture and defect healing, constructing tissue engineered bone that targets bone regeneration. Bone morphogenetic protein 9 (BMP9) is a regular indicator that potentiates osteogenic and angiogenic differentiation of MSCs. Objectives: To investigate the effects of BMP9 on osteogenesis and angiogenesis of human amniotic mesenchymal stem cells (hAMSCs) cocultured with human umbilical vein endothelial cells (HUVECs) and determine the possible underlying molecular mechanism. Results: The isolated hAMSCs expressed surface markers of MSCs. hAMSCs cocultured with HUVECs enhance osteogenic differentiation and upregulate the expression of angiogenic factors. BMP9 not only potentiates angiogenic signaling of hAMSCs cocultured with HUVECs also increases ectopic bone formation and subcutaneous vessel invasion. Mechanically, the coupling effect between osteogenesis and angiogenesis induced by BMP9 was activated by the BMP/Smad and PI3K/AKT/m-TOR signaling pathways. Conclusions: BMP9-enhanced osteoblastic and angiogenic differentiation in cocultivation with hAMSCs and HUVECs in vitro and in vivo also provide a chance to harness the BMP9-regulated coordinated effect between osteogenic and angiogenic pathways through BMP/Smad and PI3K/AKT/m-TOR signalings. Materials and Methods: The ALP and Alizarin Red S staining assay to determine the effects of osteoblastic differentiation. RT-qPCR and western blot was measured the expression of angiogenesis-related factors. Ectopic bone formation was established and retrieved bony masses were subjected to histochemical staining. The angiogenesis ability and vessel invasion were subsequently determined by immunofluorescence staining. Molecular mechanisms such as the BMP/Smad and PI3K/AKT/m-TOR signaling pathways were detected by ELISA and western blot analysis.
Collapse
|
10
|
Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration. Polymers (Basel) 2021; 13:polym13213731. [PMID: 34771286 PMCID: PMC8588076 DOI: 10.3390/polym13213731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Our research was designed to evaluate the effect on bone regeneration with 3-dimensional (3D) printed polylactic acid (PLA) and 3D printed polycaprolactone (PCL) scaffolds, determine the more effective option for enhancing bone regeneration, and offer tentative evidence for further research and clinical application. Employing the 3D printing technique, the PLA and PCL scaffolds showed similar morphologies, as confirmed via scanning electron microscopy (SEM). Mechanical strength was significantly higher in the PLA group (63.4 MPa) than in the PCL group (29.1 MPa) (p < 0.01). Average porosity, swelling ratio, and degeneration rate in the PCL scaffold were higher than those in the PLA scaffold. SEM observation after cell coculture showed improved cell attachment and activity in the PCL scaffolds. A functional study revealed the best outcome in the 3D printed PCL-TGF-β1 scaffold compared with the 3D printed PCL and the 3D printed PCL-Polydopamine (PDA) scaffold (p < 0.001). As confirmed via SEM, the 3D printed PCL- transforming growth factor beta 1 (TGF-β1) scaffold also exhibited improved cell adhesion after 6 h of cell coculture. The 3D printed PCL scaffold showed better physical properties and biocompatibility than the 3D printed PLA scaffold. Based on the data of TGF-β1, this study confirms that the 3D printed PCL scaffold may offer stronger osteogenesis.
Collapse
|
11
|
Kabir MA, Hirakawa A, Zhu B, Yokozeki K, Shakya M, Huang B, Akazawa T, Todoh M, Murata M. Mechanical Properties of Human Concentrated Growth Factor (CGF) Membrane and the CGF Graft with Bone Morphogenetic Protein-2 (BMP-2) onto Periosteum of the Skull of Nude Mice. Int J Mol Sci 2021; 22:11331. [PMID: 34768759 PMCID: PMC8582862 DOI: 10.3390/ijms222111331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
Concentrated growth factor (CGF) is 100% blood-derived, cross-linked fibrin glue with platelets and growth factors. Human CGF clot is transformed into membrane by a compression device, which has been widely used clinically. However, the mechanical properties of the CGF membranes have not been well characterized. The aims of this study were to measure the tensile strength of human CGF membrane and observe its behavior as a scaffold of BMP-2 in ectopic site over the skull. The tensile test of the full length was performed at the speed of 2mm/min. The CGF membrane (5 × 5 × 2 mm3) or the CGF/BMP-2 (1.0 μg) membrane was grafted onto the skull periosteum of nude mice (5-week-old, male), and harvested at 14 days after the graft. The appearance and size of the CGF membranes were almost same for 7 days by soaking at 4 °C in saline. The average values of the tensile strength at 0 day and 7 days were 0.24 MPa and 0.26 MPa, respectively. No significant differences of both the tensile strength and the elastic modulus were found among 0, 1, 3, and 7 days. Supra-periosteal bone induction was found at 14 days in the CGF/BMP-2, while the CGF alone did not induce bone. These results demonstrated that human CGF membrane could become a short-term, sticky fibrin scaffold for BMP-2, and might be preserved as auto-membranes for wound protection after the surgery.
Collapse
Affiliation(s)
- Md. Arafat Kabir
- Division of Oral Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa 061-0293, Japan; (M.A.K.); (B.Z.); (K.Y.); (M.S.)
| | - Akihiro Hirakawa
- Biomechanical Design Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-0819, Japan; (A.H.); (M.T.)
| | - Bowen Zhu
- Division of Oral Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa 061-0293, Japan; (M.A.K.); (B.Z.); (K.Y.); (M.S.)
| | - Kenji Yokozeki
- Division of Oral Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa 061-0293, Japan; (M.A.K.); (B.Z.); (K.Y.); (M.S.)
| | - Mamata Shakya
- Division of Oral Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa 061-0293, Japan; (M.A.K.); (B.Z.); (K.Y.); (M.S.)
| | - Bingzhen Huang
- Corefront Corporation, 2-11 Ichitanihonmura-cho, Shinjuku-ku, Tokyo 162-0845, Japan;
| | - Toshiyuki Akazawa
- Industrial Technology and Environment Research Development, Hokkaido Research Organization, Kita 19-jo Nishi 11-chome, Kita-ku, Sapporo 060-0819, Japan;
| | - Masahiro Todoh
- Biomechanical Design Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-0819, Japan; (A.H.); (M.T.)
| | - Masaru Murata
- Division of Oral Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa 061-0293, Japan; (M.A.K.); (B.Z.); (K.Y.); (M.S.)
| |
Collapse
|
12
|
Human Fresh Fibrin Membrane with Bone Morphogenetic Protein-2 (BMP-2) Induces Bone Formation in the Subcutaneous Tissues of Nude Mice. MATERIALS 2020; 14:ma14010150. [PMID: 33396335 PMCID: PMC7796051 DOI: 10.3390/ma14010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Autologous blood-derived fibrin glue with platelets, called the concentrated growth factor (CGF), can be prepared immediately by only the decided centrifuge without the addition of coagulation factors. Collagen materials combined with recombinant human BMP-2 have been commercially available for clinical use. The fresh CGF is auto-clot with wettability and elasticity, while most collagen membranes are derived from the cow or pig. The fresh CGF has wettability and elasticity, while collagen membranes are dry materials without elasticity. The aim of this study was to observe the microstructures of human CGF membrane and evaluate its behavior as a delivery scaffold of rhBMP-2 in the subcutaneous tissues of nude mice. Twenty-four nude mice (5-week-old, male) were used for the assessment of in vivo ectopic bone formation. Mice were received the CGF membrane as the controls and the CGF/rhBMP-2 membrane as the experimental group in the subcutaneous tissues, and harvested at 7, 10, and 14 days after the graft. Harvested samples were evaluated for the histological examination and the histomorphometric measurement was conducted to compare the residue of the CGF, as well as the new bone. Mature fibrin fibers assembled from multiple fibrillary elements and platelets with the rhBMP-2 membrane induced several bony islands and cartilage without residues of CGF at 14 days, while the CGF membrane alone was almost absorbed at 10 days and failed to induce bone formation at 14 days. These results demonstrated that the fresh, human CGF membrane could contribute to a short-term, sticky fibrin matrix for the delivery of rhBMP-2.
Collapse
|
13
|
Xu C, Liu H, He Y, Li Y, He X. Endothelial progenitor cells promote osteogenic differentiation in co-cultured with mesenchymal stem cells via the MAPK-dependent pathway. Stem Cell Res Ther 2020; 11:537. [PMID: 33308309 PMCID: PMC7731475 DOI: 10.1186/s13287-020-02056-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The role of bone tissue engineering is to regenerate tissue using biomaterials and stem cell-based approaches. Combination of two or more cell types is one of the strategies to promote bone formation. Endothelial progenitor cells (EPCs) may enhance the osteogenic properties of mesenchymal stem cells (MSCs) and promote bone healing; this study aimed to investigate the possible mechanisms of EPCs on promoting osteogenic differentiation of MSCs. METHODS MSCs and EPCs were isolated and co-cultured in Transwell chambers, the effects of EPCs on the regulation of MSC biological properties were investigated. Real-time PCR array, and western blotting were performed to explore possible signaling pathways involved in osteogenesis. The expression of osteogenesis markers and calcium nodule formation was quantified by qRT-PCR, western blotting, and Alizarin Red staining. RESULTS Results showed that MSCs exhibited greater alkaline phosphatase (ALP) activity and increased calcium mineral deposition significantly when co-cultured with EPCs. The mitogen-activated protein kinase (MAPK) signaling pathway was involved in this process. p38 gene expression and p38 protein phosphorylation levels showed significant upregulation in co-cultured MSCs. Silencing expression of p38 in co-cultured MSCs reduced osteogenic gene expression, protein synthesis, ALP activity, and calcium nodule formation. CONCLUSIONS These data suggest paracrine signaling from EPCs influences the biological function and promotes MSCs osteogenic differentiation. Activation of the p38MAPK pathway may be the key to enhancing MSCs osteogenic differentiation via indirect interactions with EPCs.
Collapse
Affiliation(s)
- Chu Xu
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China.,Department of General Dentistry, School of Stomatology, China Medical University, Shenyang, 110001, Liaoning, China
| | - Haijie Liu
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Yuanjia He
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Yuanqing Li
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China
| | - Xiaoning He
- Department of Stomatology, The 4th Affiliated Hospital of China Medical University, No.4 Chongshan Dong Road, Shenyang, 110032, Liaoning, China.
| |
Collapse
|