1
|
Wang Y, Pang Z, He W, Ren P, He Q, Jin J. LncRNA HOXB3OS improves high glucose-mediated podocyte damage and progression of diabetic kidney disease through enhancing SIRT1 mRNA stability. Biomed Pharmacother 2025; 182:117770. [PMID: 39693905 DOI: 10.1016/j.biopha.2024.117770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
High glucose (HG)-mediated podocyte damage can be ameliorated by lncRNA HOXB3OS, and exosomes derived from adipose-derived mesenchymal stem cells (ADSCs-Exo) can ameliorate the progression of diabetic kidney disease (DKD) dependening on RNA. To investigate the mechanism by which HOXB3OS improves podocyte injury and the effects of engineered ADSCs-Exo with a high abundance of HOXB3OS on DKD progression, MPC5 cells stimulated with HG and db/db mice were used to develop a podocyte injury model and type II DKD mouse model, respectively. HOXB3OS expression and mRNA level of SIRT1 were detected by qRT-PCR. The protein content of SIRT1 and Ythdc2 was measured through WB, IHC, and IF assays. CCK-8 assay and flow cytometry assay were used to detect cell viability and apoptosis rate of MPC5 cells. RIP assay was used to investigate the binding capacity of Ythdc2 to HOXB3OS or SIRT1 mRNA. Albuminuria, renal function and glomerular structure were observed by kits and PAS, respectively. Consequently, we found that HOXB3OS combined with Ythdc2 and inhibited the binding of Ythdc2 to SIRT1 mRNA, hence inhibiting SIRT1 mRNA degradation. SIRT1 siRNA inhibited the effect of Ythdc2 siRNA on HOXB3OS knock-down or HG-induced podocyte injury. ADSCs-Exo with a high content of HOXB3OS ameliorated HG-mediated podocyte damage and DKD progression. This suggests that engineered ADSCs-Exo with HOXB3OS can suppress Ythdc2-mediated SIRT1 mRNA degradation by disturbing the binding of Ythdc2 to SIRT1 mRNA as well as reverse SIRT1 down-regulation induced by HG, thereby ameliorating podocyte injury and DKD progression.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China
| | - Zhengyi Pang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China
| | - Wenfang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China
| | - Peiyao Ren
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China.
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310000, China; Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, China.
| |
Collapse
|
2
|
Zhou W, Wang X, Yan B, Sun Y. Embryonic Lethal Abnormal Visual-Like Protein 1 Aggravates Caerulein-Induced AR42J Cell Injury and Macrophage M1 Polarization to Accelerate Acute Pancreatitis by Upregulating TRAF6. J Interferon Cytokine Res 2025; 45:20-28. [PMID: 39535226 DOI: 10.1089/jir.2024.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been found to promote the progression of acute pancreatitis (AP). However, its underlying molecular mechanisms in AP need to be further revealed. Caerulein-induced AR42J cells were used to construct AP cell models. Cell viability and apoptosis were measured by Cell Counting Kit 8 assay and flow cytometry. Levels of inflammatory factors and oxidative stress-related markers were assessed. The medium of AR42J cells was collected for coculturing RAW264.7 cells. Macrophage marker CD86+ cell rates were checked with flow cytometry. The levels of TRAF6, embryonic lethal abnormal visual-like protein 1 (ELAVL1), and inducible nitric oxide synthase (iNOS) were examined by Western blot or quantitative real-time polymerase chain reaction. RNA immunoprecipitation assay was performed to evaluate the interaction between ELAVL1 and TRAF6. TRAF6 mRNA stability was tested using actinomycin D treatment. Caerulein treatment suppressed viability, induced AR42J cell apoptosis, inflammation, oxidative stress, and accelerated macrophage M1 polarization. TRAF6 downregulation could alleviate caerulein-induced AR42J cell injury and macrophage M1 polarization. ELAVL1 interacted with TRAF6 to stabilize its expression. Meanwhile, ELAVL1 knockdown relieved caerulein-induced AR42J cell injury and macrophage M1 polarization, while these effects were abolished by TRAF6 overexpression. TRAF6, stabilized by ELAVL1, promoted caerulein-induced AR42J cell injury and macrophage M1 polarization, suggesting that it might accelerate AP9 progression.
Collapse
Affiliation(s)
- Wenyong Zhou
- Department of General Surgery, Cangzhou Central Hospital Cangzhou, Cangzhou, China
| | - Xin Wang
- Department of General Surgery, Cangzhou Hospital of Integrated TCM-WM·Hebei, Cangzhou, China
| | - Bin Yan
- Department of Ultrasound, Cangzhou Central Hospital Cangzhou, Cangzhou, China
| | - Yue Sun
- Department of General Surgery, Cangzhou Hospital of Integrated TCM-WM·Hebei, Cangzhou, China
| |
Collapse
|
3
|
Xu Y, Wang T, Wan J, Ma D, Zhang H, Cheng D, Yang J, Wang M. Long non-coding RNA NEAT1 promotes multiple myeloma malignant transformation via targeting miR-485-5p/ABCB8. Hematology 2024; 29:2422153. [PMID: 39475764 DOI: 10.1080/16078454.2024.2422153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological cancer all over the world. Long non-coding RNA (lncRNA) nuclear-enriched autosomal transcript-1 (NEAT1) have been reported to play important roles in the development and progression of multiple human malignancies like MM. However, the functional role and molecular mechanism of NEAT1 in MM progression still needs more support to identify potential targets of MM. In the present study, we focused on the clinical and biological significance of NEAT1 in MM. We demonstrated that NEAT1 was up-regulated in MM tissues and cell line. NEAT1 silencing significantly inhibited cell proliferation and promoted cell apoptosis in vitro. And we illustrated that miR-485-5p was a direct target of NEAT1 and the effect of down-regulated NEAT1 on MM cells was partially reversed by the miR-485-5p antisense oligonucleotide (ASO-miR-485-5p). Further investigation revealed that ABCB8 directly interacted with miR-485-5p. Similarly, in vivo experiments confirmed that down-regulated NEAT1 inhibited tumor growth and ABCB8 expression. Taken together, our results demonstrate for the first time that NEAT1/miR-485-5p/ABCB8 axis may be a key pathway for the development and progression of MM, and they may provide a novel avenue for targeted therapy.
Collapse
Affiliation(s)
- Yuxiu Xu
- Department of Hematology-oncology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, People's Republic of China
| | - Tao Wang
- Department of Hematology-oncology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, People's Republic of China
| | - Jiangwei Wan
- Department of Hematology-oncology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, People's Republic of China
| | - Dongsheng Ma
- Department of Hematology-oncology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, People's Republic of China
| | - Hongyang Zhang
- Zhumadian Central Hospital, Zhumadian, Henan, People's Republic of China
| | - Dongru Cheng
- Zhumadian Central Hospital, Zhumadian, Henan, People's Republic of China
| | - Jing Yang
- Zhumadian Central Hospital, Zhumadian, Henan, People's Republic of China
| | - Meng Wang
- Zhumadian Central Hospital, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
4
|
Fang J, Zou M, Yang M, Cui Y, Pu R, Yang Y. TAF15 inhibits p53 nucleus translocation and promotes HCC cell 5-FU resistance via post-transcriptional regulation of UBE2N. J Physiol Biochem 2024; 80:919-933. [PMID: 39446246 DOI: 10.1007/s13105-024-01053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Chemotherapy resistance is an important factor responsible for the low 5-year survival rate of hepatocellular carcinoma (HCC) patients. Ubiquitin-conjugating enzyme E2N (UBE2N) is a cancer-associated ubiquitin-conjugating enzyme that is expressed in HCC tissues, and its high expression is associated with a poor prognosis. This study explored the role played by UBE2N in development of 5-fluorouracil (5-FU) resistance in HCC cells. Three HCC cell lines (HepG2 [p53 wild type], Huh7 [p53 point mutant type], Hep3B [p53 non-expression type]), and one normal liver cell line (MIHA) were used in our present study. The IC50 value of 5-FU was determined using a cell counting kit-8 (CCK-8) assay. Cell viability was assessed by colony formation assays. TUNEL assays and flow cytometry were used to analyze cell apoptosis. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to confirm the binding relationship between UBE2N mRNA and TAF15 protein. Our results showed that TAF15 and UBE2N were highly expressed in HCC cells. UBE2N inhibited the translocation of p53 protein into the cell nucleus to increase 5-FU resistance, as reflected by an increased IC50 value, an increase in cell viability, and a reduction in cell apoptosis. Overexpression of p53 reduced 5-FU resistance, but that effect could be reversed by UBE2N overexpression. TAF15 protein bound to and stabilized UBE2N mRNA, thereby inhibiting p53 translocation into the nucleus and promoting 5-FU resistance in HCC cells. Collectively, our present study identified a novel mechanism by which TAF15/UBE2N regulates p53 distribution to increase 5-FU resistance. Our results also suggest potential therapeutic strategies for treating HCC.
Collapse
Affiliation(s)
- Jiayan Fang
- Department of Internal Medicine-Oncology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, 523326, China
| | - Mengqi Zou
- Department of Pathology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Xianglong Road of Shilong Town, Dongguan, 523326, China
| | - Mei Yang
- Department of Internal Medicine-Oncology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, 523326, China
| | - Yejia Cui
- Department of Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, 523326, China
| | - Rong Pu
- Department of Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, 523326, China
| | - Yufeng Yang
- Department of Pathology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, No.1, Xianglong Road of Shilong Town, Dongguan, 523326, China.
| |
Collapse
|
5
|
Yang Y, Huang J, Li X, Lin R, Wang X, Xiao G, Zeng J, Wang Z. Periplaneta americana extract promotes infectious diabetic ulcers wound healing by downregulation of LINC01133/SLAMF9. Chin J Nat Med 2024; 22:608-618. [PMID: 39059830 DOI: 10.1016/s1875-5364(24)60569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 07/28/2024]
Abstract
Wound healing in diabetic ulcers remains a significant clinical challenge, primarily due to bacterial infection and impaired angiogenesis. Periplaneta americana extract (PAE) has been widely used to treat diabetic wounds, yet its underlying mechanisms are not fully understood. This study aimed to elucidate these mechanisms by analyzing long non-coding RNA (lncRNA) expressions in the wound tissues from diabetic anal fistula patients treated with or without PAE, using high-throughput sequencing. Peripheral blood monocytes from patients were differentiated into M0 macrophages with human macrophage colony-stimulating factor (hM-CSF) and subsequently polarized into M1 macrophages with lipopolysaccharide. The results indicated that LINC01133 and SLAMF9 were downregulated in wound tissues of patients treated with PAE. Furthermore, PAE suppressed M1 macrophage polarization and enhanced human umbilical vein endothelial cell (HUVEC) proliferation, migration, and angiogenesis. These effects were diminished when LINC01133 or SLAMF9 were overexpressed. Mechanistically, LINC01133 was shown to upregulate SLAMF9 through interaction with ELAVL1. Overexpression of SLAMF9 reversed the effects of LINC01133 silencing on macrophage polarization and HUVEC functions. In conclusion, PAE facilitates the healing of infected diabetic ulcers by downregulating the LINC01133/SLAMF9 pathway.
Collapse
Affiliation(s)
- Yuhang Yang
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Jun Huang
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Xintian Li
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Renjing Lin
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Xiaoyan Wang
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Ge Xiao
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Juanni Zeng
- Department of Anorectal Disease 1, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China; Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine/Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha 410208, China.
| | - Zhenquan Wang
- Department of Anorectal Disease 3, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
6
|
Wang J, Tan J, Zhang Y, Zhou L, Liu Y. circCD2AP promotes epithelial mesenchymal transition and stemness in bladder cancer by regulating FOXQ1/USP21 axis. iScience 2024; 27:108447. [PMID: 38292422 PMCID: PMC10827552 DOI: 10.1016/j.isci.2023.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/28/2023] [Accepted: 11/10/2023] [Indexed: 02/01/2024] Open
Abstract
Bladder cancer (BC) is a prevalent and deadly disease. circCD2AP was suggested to be highly expressed in BC. However, the exact mechanism needs further investigation. In this study, circCD2AP was observed to be upregulated in BC and linked to poor prognosis in individuals. Functionally, circCD2AP or USP21 knockdown inhibited BC cell EMT and stemness both in vitro and in vivo. Mechanistically, circCD2AP interacted with ELAVL1 to enhance the stability of USP21 mRNA, which, in turn, inhibited the ubiquitination degradation of FOXQ1. Through rescue assay, USP21 or FOXQ1 knockdown was found to abolish the promoting effects of circCD2AP or USP21 overexpression on BC cell EMT and stemness. Overall, this study has unveiled the role of circCD2AP/ELAVL1/USP21/FOXQ1 axis in BC EMT and stemness regulation, offering insights into the mechanisms underlying BC progression, with potential implications for therapeutic strategies.
Collapse
Affiliation(s)
- Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yichuan Zhang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Yuan Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
7
|
Yang Y, Yan X, Chen Y, Liu J, Xue J, Sheng X, Qin J, Xue Q, Liu X. Silencing FUT4 Inhibits the Progression of Osteosarcoma through Activation of FOXO1. Curr Pharm Des 2024; 30:440-447. [PMID: 38343056 PMCID: PMC11071653 DOI: 10.2174/0113816128269432240103052108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND It has been reported that inhibition of Fucosyltransferase4 (FUT4) to activate Forkhead box O1 (FOXO1) can lead to apoptosis of cancer cells, however, the mechanism in osteosarcoma is still unclear. OBJECTIVE To explore the biological significance of the connection between FUT4 and FOXO1 in osteosarcoma growth. METHODS In vitro tests were conducted using the human osteoblast cell line and the osteosarcoma cell lines. QRT-PCR assay as well as western blot assay were used to ascertain the relative expression levels of FUT4 and FOXO1 in the cells. By using the CCK-8 assay, colony assay, EDU assay, wound healing assay and Transwell assay, osteosarcoma cells' ability to proliferate, migrate and invade were examined in relation to si- FUT4. TUNEL test was used to evaluate Si-impact FUT4's on KHOS and U2OS apoptosis in osteosarcoma cells. Western blot assay was used to identify the expression of proliferative, migrating and apoptosis-related protein markers in osteosarcoma cells KHOS and U2OS and the expression of important proteins in the Wnt/ β-catenin signaling pathway. RESULTS In comparison with osteoblasts, osteosarcoma cells expressed more FUT4. The osteosarcoma cells' capacities to proliferate, invade, and migrate were markedly inhibited by the inhibition of FUT4 expression, which also increased osteosarcoma cell apoptosis. The Wnt/β-catenin signaling pathway was blocked by upregulating FOXO1 expression, which was in turn inhibited by inhibiting FUT4 expression. CONCLUSION Osteosarcoma cells express more FUT4. The Wnt/β-catenin signaling pathway has a significant effect on osteosarcoma cell death, and inhibition of FUT4 expression may target FOXO1 activation to decrease osteosarcoma cells' ability to proliferate, invade, and migrate.
Collapse
Affiliation(s)
- Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Xiaodi Yan
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - YueYuan Chen
- Department of Oncology, Second People’s Hospital of Nantong & Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Jiajia Liu
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Xiaoming Sheng
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Jun Qin
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Qiang Xue
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| | - Xianchen Liu
- Department of Radiation Oncology, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province 226001, China
| |
Collapse
|
8
|
Nylund P, Garrido-Zabala B, Kalushkova A, Wiklund HJ. The complex nature of lncRNA-mediated chromatin dynamics in multiple myeloma. Front Oncol 2023; 13:1303677. [PMID: 38148842 PMCID: PMC10750364 DOI: 10.3389/fonc.2023.1303677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Extensive genome-wide sequencing efforts have unveiled the intricate regulatory potential of long non-protein coding RNAs (lncRNAs) within the domain of haematological malignancies. Notably, lncRNAs have been found to directly modulate chromatin architecture, thereby impacting gene expression and disease progression by interacting with DNA, RNA, and proteins in a tissue- or condition-specific manner. Furthermore, recent studies have highlighted the intricate epigenetic control of lncRNAs in cancer. Consequently, this provides a rationale to explore the possibility of therapeutically targeting lncRNAs themselves or the epigenetic mechanisms that govern their activity. Within the scope of this review, we will assess the current state of knowledge regarding the epigenetic regulation of lncRNAs and how, in turn, lncRNAs contribute to chromatin remodelling in the context of multiple myeloma.
Collapse
Affiliation(s)
| | | | | | - Helena Jernberg Wiklund
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Dong Y, Hu M, Tan K, Dai R. ZNF143 inhibits hepatocyte mitophagy and promotes non-alcoholic fatty liver disease by targeting increased lncRNA NEAT1 expression to activate ROCK2 pathway. Epigenetics 2023; 18:2239592. [PMID: 37566742 PMCID: PMC10424604 DOI: 10.1080/15592294.2023.2239592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common hepatic disorders worldwide. The mitophagy is suggested to be repressed in NAFLD, but the mechanism remains to be elucidated. METHODS NAFLD cell and mouse models were established by treating with free fatty acid (FFA) and feeding a high fat diet (HFD), respectively. QRT-PCR, Western blotting, or IHC measured the expression of ZNF143, lncRNA NEAT1, ROCK2, and lipid formation/mitophagy-related proteins. Cell viability and mitophagy were evaluated by MTT and immunofluorescence. The chloroform-methanol extraction method measured triglyceride and total cholesterol levels. ELISA detected ALT and AST levels. The interactions among ZNF143, lncRNA NEAT1 and SND1 were analysed by ChIP, dual-luciferase reporter, pull-down, and RIP. The lipid droplets were determined by Oil-red O and HE staining. RESULTS ZNF143 and lncRNA NEAT1 were upregulated in hepatic cells treated with FFA (p < 0.01 and p < 0.001). Knockdown of ZNF143 or lncRNA NEAT1 inhibited lipid droplets formation, while promoting mitophagy (p < 0.01 and p < 0.001). ZNF143 promoted lncRNA NEAT1 transcriptional expression through binding to its promoter. LncRNA NEAT1 increased ROCK2 mRNA stability by targeting SND1. LncRNA NEAT1 or ROCK2 overexpression reversed the effect of ZNF143 or lncRNA NEAT1 knockdown on hepatic steatosis and mitophagy (p < 0.01 and p < 0.001). ZNF143 or lncRNA NEAT1 knockdown inhibited HFD-induced steatosis and promoted mitophagy in vivo (p < 0.01 and p < 0.001). CONCLUSION The upregulation of lncRNA NEAT1 caused by ZNF143 promoted NAFLD through inhibiting mitophagy via activating ROCK2 pathway by targeting SND1, providing potential targets for NAFLD therapy.
Collapse
Affiliation(s)
- Yujie Dong
- The First Affiliated Hospital, Department of Ultrasound Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Minjie Hu
- The First Affiliated Hospital, Department of Cardiothoracic Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| | - Kewei Tan
- The No.922 Hospital of the People Liberation Army Joint Logistics Support Force, Department of the Laboratory and Blood Transfusion, Hengyang, Hunan421002, China
| | - Rongjuan Dai
- The First Affiliated Hospital, Department of Infectious Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan421001, China
| |
Collapse
|
10
|
Long X, Wen F, Li J, Huang X. LncRNA FEZF1-AS1 accelerates multiple myeloma progression by regulating IGF2BP1/BZW2 signaling. Hematol Oncol 2023; 41:694-703. [PMID: 37125488 DOI: 10.1002/hon.3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 05/02/2023]
Abstract
Multiple myeloma (MM) is the second largest hematological tumor with clonal proliferation of malignant plasma cells. Growing reports have revealed that the dysregulation of long non-coding RNA (lncRNA) is involved in the MM progression. Nevertheless, lncRNA FEZF1 antisense RNA 1 (FEZF1-AS1) remain not deeply explored. The RNA transcripts and protein level of MM-associated molecule were measured by quantitative real-time polymerase chain reaction or western blot assays, respectively. The clinical correlation was analyzed by Pearson analysis. Molecular interactions among lncRNA FEZF1-AS1, basic leucine zipper and W2 domain 2 (BZW2) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) were verified by RNA immunoprecipitation and RNA pull-down assays. The survival of MM cells was detected by cell counting kit-8 and flow cytometry assays. Xenograft tumor in vivo was performed to assess tumor growth. The RNA transcripts of lncRNA FEZF1-AS1, BZW2 and IGF2BP1 were upregulated in MM samples compared to those in healthy donors. Knockdown of lncRNA FEZF1-AS1 could inhibit the proliferation and induce cell apoptosis in vitro and in vivo. Besides, lncRNA FEZF1-AS1 could maintain the stability of BZW2 mRNA by interacting IGF2BP1. Moreover, BZW2 silence also downregulated the proliferation but enhanced apoptosis of MM cells, while BZW2 overexpression had an opposite role, which dramatically reversed the regulatory roles of lncRNA FEZF1-AS1. Altogether, lncRNA FEZF1-AS1 facilitated MM development by regulating IGF2BP1/BZW2 signaling, suggesting that lncRNA FEZF1-AS1 might be a candidate for MM treatment.
Collapse
Affiliation(s)
- Xingxing Long
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Xiaoqing Huang
- Department of Blood Transfusion, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
11
|
Su Q, Pan Z, Chen H, Chen J, Zhang Y, Zhuang W. RBM47 restrains renal cell carcinoma progression and chemoresistance through interacting with lncRNA HOXB-AS1. Cell Death Discov 2023; 9:329. [PMID: 37660095 PMCID: PMC10475063 DOI: 10.1038/s41420-023-01623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023] Open
Abstract
RNA binding proteins have the critical role in renal cell carcinoma (RCC) progression. However, the role of RBM47 in RCC has not been elucidated. In this study, we found that RBM47 was downregulated in RCC tissues and its expression was negatively correlated with the prognosis of RCC patients. Also, we found that the expression of RBM47 was regulated by CBP/P300-mediated H3K27ac in RCC. Functionally, RBM47 restrained RCC cells proliferation and metastasis. Mechanistically, RBM47 interfered with the interaction between HOXB-AS1 and p53 proteins via directly binding with HOXB-AS1, finally promoted the entry of p53 into the nucleus and therefore activated the p53 signaling. Moreover, RBM47 had a synergistic anticancer effect with sunitinib both in vivo and in vitro.
Collapse
Affiliation(s)
- Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhenliang Pan
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Heyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Jiabi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanmei Zhang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Wei Zhuang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| |
Collapse
|
12
|
Zeng P, Wang F, Long X, Cao Y, Wen F, Li J, Luo Z. CPEB2 enhances cell growth and angiogenesis by upregulating ARPC5 mRNA stability in multiple myeloma. J Orthop Surg Res 2023; 18:384. [PMID: 37231521 DOI: 10.1186/s13018-023-03835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The process of multiple myeloma (MM) is the result of the combined action of multiple genes. This study aims to explore the role and mechanism of cytoplasmic polyadenylation element binding protein2 (CPEB2) in MM progression. METHODS The mRNA and protein expression levels of CPEB2 and actin-related protein 2/3 complex subunit 5 (ARPC5) were assessed by quantitative real-time PCR and western blot analysis. Cell function was determined by cell counting kit 8 assay, soft-agar colony formation assay, flow cytometry and tube formation assay. Fluorescent in situ hybridization assay was used to analyze the co-localization of CPEB2 and ARPC5 in MM cells. Actinomycin D treatment and cycloheximide chase assay were performed to assess the stability of ARPC5. The interaction between CPEB2 and ARPC5 was confirmed by RNA immunoprecipitation assay. RESULTS CPEB2 and ARPC5 mRNA and protein expression levels were upregulated in CD138+ plasma cells from MM patients and cells. CPEB2 downregulation reduced MM cell proliferation, angiogenesis, and increased apoptosis, while its overexpression had an opposite effect. CPEB2 and ARPC5 were co-localized at cell cytoplasm and could positively regulate ARPC5 expression by mediating its mRNA stability. ARPC5 overexpression reversed the suppressive effect of CPEB2 knockdown on MM progression, and it knockdown also abolished CPEB2-promoted MM progression. Besides, CPEB2 silencing also reduced MM tumor growth by decreasing ARPC5 expression. CONCLUSION Our results indicated that CPEB2 increased ARPC5 expression through promoting its mRNA stability, thereby accelerating MM malignant process.
Collapse
Affiliation(s)
- Piaorong Zeng
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Fujue Wang
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Xingxing Long
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yixiong Cao
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Feng Wen
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Junjun Li
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Zeyu Luo
- The First Affiliated Hospital, Department of Hematology, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
13
|
Yin X, Wang S, Ge R, Chen J, Gao Y, Xu S, Yang T. Long non-coding RNA DNMBP-AS1 promotes prostate cancer development by regulating LCLAT1. Syst Biol Reprod Med 2023; 69:142-152. [PMID: 36602957 DOI: 10.1080/19396368.2022.2129520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is as a serious threat to male's health around the world. Recent studies have indicated that long non-coding RNAs (lncRNAs) occupy an important position in various human cancers. However, the function and mechanism of lncRNA DNMBP antisense RNA 1 (DNMBP-AS1) in PCa is rarely investigated. RT-qPCR analysis was used to test gene expression. CCK-8, colony formation, EdU staining and transwell assays were conducted to assess the function of DNMBP-AS1 on PCa cell behaviors. RNA pull down, RIP and luciferase reporter assays were implemented to verify the mechanism of DNMBP-AS1. DNMBP-AS1 was obviously up-regulated in PCa cell lines. Functionally, DNMBP-AS1 knockdown weakened cell proliferation, migration and invasion of PCa. Mechanistically, DNMBP-AS1 sponged microRNA-6766-3p (miR-6766-3p) to regulate lysocardiolipin acyltransferase 1 (LCLAT1) expression. Furthermore, DNMBP-AS1 could stabilize LCLAT1 expression by recruiting ELAV like RNA binding protein 1 (ELAVL1). Consequently, rescue assays demonstrated that DNMBP-AS1 regulated PCa cell proliferation, migration and invasion through enhancing LCLAT1 expression. Collectively, we elucidated the function and regulatory mechanism of DNMBP-AS1 and provided the first evidence of DNMBP-AS1 as a driver for PCa.
Collapse
Affiliation(s)
- Xiangang Yin
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Suying Wang
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Rong Ge
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Jinping Chen
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Youliang Gao
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Shanshan Xu
- Department of Diagnosis, Ningbo Diagnostic Pathology Center, Ningbo, China
| | - Ting Yang
- Beijing Jinglai Huake Biotechnology Co., Ltd, Beijing, China
| |
Collapse
|
14
|
Hashemi M, Roshanzamir SM, Paskeh MDA, Karimian SS, Mahdavi MS, Kheirabad SK, Naeemi S, Taheriazam A, Salimimoghaddam S, Entezari M, Mirzaei S, Samarghandian S. Non-coding RNAs and exosomal ncRNAs in multiple myeloma: An emphasis on molecular pathways. Eur J Pharmacol 2023; 941:175380. [PMID: 36627099 DOI: 10.1016/j.ejphar.2022.175380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 01/08/2023]
Abstract
One of the most common hematological malignancies is multiple myeloma (MM) that its mortality and morbidity have increased. The incidence rate of MM is suggested to be higher in Europe and various kinds of therapeutic strategies including stem cell transplantation. However, MM treatment is still challenging and gene therapy has been shown to be promising. The non-coding RNAs (ncRNAs) including miRNAs, lncRNAs and circRNAs are considered as key players in initiation, development and progression of MM. In the present review, the role of ncRNAs in MM progression and drug resistance is highlighted to provide new insights for future experiments for their targeting and treatment of MM. The miRNAs affect proliferation and invasion of MM cells, and targeting tumor-promoting miRNAs can induce apoptosis and cell cycle arrest, and reduces proliferation of MM cells. Furthermore, miRNA regulation is of importance for modulating metastasis and chemotherapy response of tumor cells. The lncRNAs exert the same function and determine proliferation, migration and therapy response of MM cells. Notably, lncRNAs mainly target miRNAs in regulating MM progression. The circRNAs also target different molecular pathways in regulating MM malignancy that miRNAs are the most well-known ones. Furthermore, clinical application of ncRNAs in MM is discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdiyeh Sadat Mahdavi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Naeemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shokooh Salimimoghaddam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
15
|
Duca M, Malagolini N, Dall’Olio F. The Mutual Relationship between Glycosylation and Non-Coding RNAs in Cancer and Other Physio-Pathological Conditions. Int J Mol Sci 2022; 23:ijms232415804. [PMID: 36555445 PMCID: PMC9781064 DOI: 10.3390/ijms232415804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Glycosylation, which consists of the enzymatic addition of sugars to proteins and lipids, is one of the most important post-co-synthetic modifications of these molecules, profoundly affecting their activity. Although the presence of carbohydrate chains is crucial for fine-tuning the interactions between cells and molecules, glycosylation is an intrinsically stochastic process regulated by the relative abundance of biosynthetic (glycosyltransferases) and catabolic (glycosidases) enzymes, as well as sugar carriers and other molecules. Non-coding RNAs, which include microRNAs, long non-coding RNAs and circRNAs, establish a complex network of reciprocally interacting molecules whose final goal is the regulation of mRNA expression. Likewise, these interactions are stochastically regulated by ncRNA abundance. Thus, while protein sequence is deterministically dictated by the DNA/RNA/protein axis, protein abundance and activity are regulated by two stochastic processes acting, respectively, before and after the biosynthesis of the protein axis. Consequently, the worlds of glycosylation and ncRNA are closely interconnected and mutually interacting. In this paper, we will extensively review the many faces of the ncRNA-glycosylation interplay in cancer and other physio-pathological conditions.
Collapse
|
16
|
Jiang H, Hu L, Wu Q, Zhang B, Sun J, Li X. Sodium Selenite Regulates the Proliferation and Apoptosis of Gastric Cancer Cells by Suppressing the Expression of LncRNA HOXB-AS1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6356583. [PMID: 39280958 PMCID: PMC11401720 DOI: 10.1155/2022/6356583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 09/18/2024]
Abstract
Gastric carcinoma has a high incidence, accounting for approximately 6% of all cancers worldwide. The in vivo antitumor effect of sodium selenite on gastric carcinoma has been demonstrated. This study therefore aimed to further explore its targets in gastric cancer in vitro and elucidate its mechanism of action. The effects of inorganic sodium selenite (Na2SeO3) on apoptosis, proliferation, and invasion of gastric cancer cells were investigated, and the interaction between Na2SeO3 and expression of long noncoding RNA homeobox B cluster antisense RNA 1 (HOXB-AS1) was investigated to elucidate the specific mechanism of action of selenium on gastric cancer cell proliferation through regulation of HOXB-AS1. Na2SeO3 downregulated the expression of HOXB-AS1 in the human gastric cancer (HGC) cell lines, HGC-27, NCI-N87, and KATO III cells, while inhibiting their proliferation and invasion and inducing apoptosis. The upregulation of HOXB-AS1 produced the opposite results. Na2SeO3 was used to stimulate HGC-27 cells, which caused HOXB-AS1 overexpression. The cell counting kit-8 (CCK-8) assay revealed a decrease in cell proliferation, while western blotting, flow cytometry, and transwell migration assays showed the expression of apoptosis-related (Bad, Bcl-2, and cleaved-caspase-3) and invasion-related (MMP2, E-cadherin, and N-cadherin) proteins, indicating increased apoptosis and decreased invasion. We therefore conclude that Na2SeO3 inhibits the malignant progression of gastric cancer by downregulating the expression of HOXB-AS1 and thus could be used as a potential drug for its treatment.
Collapse
Affiliation(s)
- Hongsheng Jiang
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Lingbo Hu
- Department of Health Management Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Quanfeng Wu
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Bitao Zhang
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Jianhua Sun
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Xiaoying Li
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| |
Collapse
|
17
|
Chen Y, Wang N, Cao L, Zhang D, Peng H, Xue P. Long non-coding RNA HOXB-AS1 is a prognostic marker and promotes hepatocellular carcinoma cells' proliferation and invasion. Open Life Sci 2022; 17:944-951. [PMID: 36045719 PMCID: PMC9380905 DOI: 10.1515/biol-2022-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are broadly transcribed in the genome of human and play critical roles in the progression of multiple diseases. Long non-coding HOXB cluster antisense RNA 1 (HOXB-AS1) is a tumor exciter in various cancers. This study aimed to investigate the involvement of HOXB-AS1 in hepatocellular carcinoma (HCC). In the following study, HOXB-AS1 was unveiled to be highly expressed in HCC tissues as opposed to normal tissues. Silencing of HOXB-AS1 led to the loss of proliferation, migration, and invasiveness of HCC cells, namely Hep3B and Huh7. Moreover, the data showed that expression levels of HOXB-AS1 contribute significantly to the patient's survival rates. Otherwise, HOXB-AS1 levels in the serum of patients proved HOXB-AS1 as a biomarker for analysis and treatment of HCC. In summary, this study highlights HOXB-AS1 as key upregulated lncRNA in HCC which being an oncogene can cause proliferation and metastasis of HCC cells. The results also highlighted HOXB-AS1 as a promising biomarker for early diagnosis and prognosis of patients with HCC.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Na Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Heping Peng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| |
Collapse
|
18
|
Qiu R, Wang W, Li J, Wang Y. Roles of PTEN inactivation and PD-1/PD-L1 activation in esophageal squamous cell carcinoma. Mol Biol Rep 2022; 49:6633-6645. [PMID: 35301651 DOI: 10.1007/s11033-022-07246-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer in China and developing countries. The purpose of this review is to summarize the roles of inactivation of the tumor suppressor gene, phosphatase and tensin homolog (PTEN), and activation of the programmed cell death protein 1 (PD-1) upon binding to its ligand (PD-L1) in the promotion of ESCC. Studies of ESCC performed in vitro and in vivo indicated that PTEN and PD-L1 function in the regulation of cell proliferation, invasion, and migration; the epithelial-mesenchymal transition; resistance to chemotherapy and radiotherapy; and the PI3K/AKT signaling pathway. Certain genetic variants of PTEN are related to susceptibility to ESCC, and PTEN and PD-L1 also function in ESCC progression and affect the prognosis of patients with ESCC. There is also evidence that the expression of PD-L1 and PTEN are associated with the progression of certain other cancers. Future studies should further examine the relationship of PD-L1 and PTEN and their possible interactions in ESCC.
Collapse
Affiliation(s)
- Rong Qiu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China
| | - Wenxi Wang
- Department of Oncology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China
| | - Juan Li
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China
| | - Yuxiang Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, No. 12 Jian Kang Road, Shijiazhuang, Hebei Province, P. R. China.
- , No.12, Jiankang Road, 050011, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
19
|
Qian D, Qian C, Ye B, Xu M, Wu D, Li J, Li D, Yu B, Tao Y. Development and Validation of a Novel Stemness-Index-Related Long Noncoding RNA Signature for Breast Cancer Based on Weighted Gene Co-Expression Network Analysis. Front Genet 2022; 13:760514. [PMID: 35273635 PMCID: PMC8902307 DOI: 10.3389/fgene.2022.760514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Breast cancer (BC) is a major leading cause of woman deaths worldwide. Increasing evidence has revealed that stemness features are related to the prognosis and progression of tumors. Nevertheless, the roles of stemness-index-related long noncoding RNAs (lncRNAs) in BC remain unclear. Methods: Differentially expressed stemness-index-related lncRNAs between BC and normal samples in The Cancer Genome Atlas database were screened based on weighted gene co-expression network analysis and differential analysis. Univariate Cox and least absolute shrinkage and selection operator regression analyses were performed to identify prognostic lncRNAs and construct a stemness-index-related lncRNA signature. Time-dependent receiver operating characteristic curves were plotted to evaluate the predictive capability of the stemness-index-related lncRNA signature. Moreover, correlation analysis and functional enrichment analyses were conducted to investigate the stemness-index-related lncRNA signature-related biological function. Finally, a quantitative real-time polymerase chain reaction was used to detect the expression levels of lncRNAs. Results: A total of 73 differentially expressed stemness-index-related lncRNAs were identified. Next, FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were used to construct a stemness-index-related lncRNA signature, and receiver operating characteristic curves indicated that stemness-index-related lncRNA signature could predict the prognosis of BC well. Moreover, functional enrichment analysis suggested that differentially expressed genes between the high-risk group and low-risk group were mainly involved in immune-related biological processes and pathways. Furthermore, functional enrichment analysis of lncRNA-related protein-coding genes revealed that FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 were associated with neuroactive ligand–receptor interaction, AMPK signaling pathway, PPAR signaling pathway, and cGMP-PKG signaling pathway. Finally, quantitative real-time polymerase chain reaction revealed that FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the potential diagnostic biomarkers of BC. Conclusion: The stemness-index-related lncRNA signature based on FAM83H-AS1, HID1-AS1, HOXB-AS1, RP11-1070N10.3, RP11-1100L3.8, and RP11-696F12.1 could be used as an independent predictor for the survival of BC, and FAM83H-AS1, HID1-AS1, RP11-1100L3.8, and RP11-696F12.1 might be used as the diagnostic markers of BC.
Collapse
Affiliation(s)
- Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Cheng Qian
- School of Computer Science and Engineering, Changshu Institute of Technology, Changshu, China
| | - Buyun Ye
- Second Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Xu
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Danping Wu
- Department of Breast Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Jialu Li
- Department of Breast Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Dong Li
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Bin Yu
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, China
| | - Yijing Tao
- Department of Cardiology, Changshu Hospital Affiliated to Soochow University, Changshu, China
| |
Collapse
|
20
|
LncRNA-miRNA-mRNA regulatory axes in endometrial cancer: a comprehensive overview. Arch Gynecol Obstet 2022; 306:1431-1447. [PMID: 35182183 DOI: 10.1007/s00404-022-06423-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recent research on tumorigenesis and progression has opened up an array of novel molecular mechanisms in the form of interactions between cellular non-coding RNAs (long non-coding RNA[lncRNA]/microRNA [miRNA]) and coding transcripts that regulate health and disease. Endometrial cancer (EC) is a prominent gynecological malignancy with a high incidence rate and poorly known etiology and prognostic factors that hinder the success of disease management. The emerging role of lncRNA-miRNA-mRNA interactions and their dysregulation in the pathophysiology of EC has been elucidated in many recent studies. METHODS A thorough literature review was conducted to explore information about lncRNA-miRNA-mRNA axes in EC. RESULTS Several lncRNAs act as molecular sponges that sequester various tumor suppressor miRNAs to inhibit their function, leading to the dysregulation of their target mRNA transcripts that contribute to the EC regulation. CONCLUSIONS This review summarizes these networks of molecular mechanisms and their contribution to different aspects of endometrial carcinogenesis, leading to a better conceptualization of the molecular pathways that underlie the disease and helping establish novel diagnostic biomarkers and therapeutic intervention points to aid the curative intent of EC.
Collapse
|
21
|
Chu M, Fan Y, Wu L, Ma X, Sao J, Yao Y, Zhuang W, Zhang C. Knockdown of lncRNA BDNF-AS inhibited the progression of multiple myeloma by targeting the miR-125a/b-5p-BCL2 axis. Immun Ageing 2022; 19:3. [PMID: 34980181 PMCID: PMC8722203 DOI: 10.1186/s12979-021-00258-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023]
Abstract
Purpose This study aimed to explore the role of long non-coding RNA (lncRNA) BDNF-AS in the progression of multiple myeloma (MM). Methods The expression of BDNF-AS, miR-125a-5p, and miR-125b-5p in MM serum and cell lines were detected by quantitative reverse transcriptase PCR (qRT-PCR). The binding relationships between miR-125a/b-5p and BDNF-AS or Bcl-2 were predicted by Starbase and verified by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay and 5-ethynyl-2′-deoxyuridine (EdU) staining assay. Cell migration was evaluated by wound healing assay. The expression levels of apoptosis-related proteins were evaluated by Western blot analysis. The role of BDNF-AS was also investigated in a xenograft tumor model in vivo. Results BDNF-AS was significantly upregulated, while miR-125a-5p and miR-125b-5p were downregulated in MM serum and corresponding cancer cell lines. Knockdown of BDNF-AS effectively inhibited the proliferation and migration of MM.1S and U266 cells, and co-transfection of miR-125a-5p or miR-125b-5p inhibitor and sh-BDNF-AS enhanced cell proliferation and migration compared with that in sh-BDNF-AS group. Knockdown of miR-125a-5p or miR-125b-5p significantly enhanced the proliferation and migration of MM.1S and U266 cells, and co-transfection of sh-Bcl-2 and miR-125a/b-5p inhibitor inhibited cell proliferation compared with that in miR-125a/b-5p inhibitor group. Moreover, knockdown of BDNF-AS increased the expression levels of apoptosis-related proteins (cleaved caspase 3 and cleaved PARP), while knockdown of miR-125a-5p or miR-125b-5p reduced the expression levels of these apoptosis-related proteins compared with knockdown of BDNF-AS. Furthermore, knockdown of BDNF-AS effectively suppressed MM tumor growth in vivo. Conclusion Our findings revealed that knockdown of BDNF-AS inhibited the progression of MM by targeting the miR-125a/b-5p-Bcl-2 axis, indicating that BDNF-AS might serve as a novel drug target for MM. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-021-00258-5.
Collapse
Affiliation(s)
- Min Chu
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Yingchao Fan
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Liting Wu
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Xiaoyan Ma
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Jinfeng Sao
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Yonghua Yao
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Wenfang Zhuang
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China.
| | - Cui Zhang
- Medical laboratory, Shidong Hospital Affiliated to University of Shanghai For Science and Technology, 999 Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
22
|
Tan F, Chen J, Du Z, Zhao F, Liu Y, Zhang Q, Yuan C. MIR17HG: A Cancerogenic Long-Noncoding RNA in Different Cancers. Curr Pharm Des 2022; 28:1272-1281. [PMID: 35272588 DOI: 10.2174/1381612828666220310144500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
LncRNA MIR17HG, located at chromosome 13q31, plays an inevitable role in promoting tumor progressions, such as tumorigenesis, proliferation, and metastasis. Besides, lncRNA MIR17HG is rare due to its open reading frame (ORF), which can be translated to produce protein. By systematically retrieval, we summarized that MIR17HG is an emerging lncRNA that exhibits carcinogenically in osteosarcoma (OS), glioma, cervical squamous cell carcinoma (CSCC), colorectal cancer (CRC), gastric cancer (GC), atypical teratoid rhabdoid tumors (ATRT). Furthermore, a high expression level of MIR17HG protein is also linked with meningioma. Additionally, MIR17HG polymorphisms in glioma, CRC, liver cancer (LC), breast cancer (BC), head and neck squamous cell carcinoma (HNSCC), and multiple myeloma (MM) also have a large influence on cancer susceptibility, prognosis, and so on. Collectively, long non-coding RNA MIR17HG's tumor-stimulative role could be a promising therapeutic target. Besides, by investigating patients' MIR17HG single-nucleotide polymorphisms (SNPs), clinicians could also personalize the productive interventions in gene therapy or predict the diagnosis/prognosis precisely.
Collapse
Affiliation(s)
- Fangshun Tan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Jinlan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Zhuoying Du
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Fangnan Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Yuling Liu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Qi Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
23
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
24
|
Xu J, Xu W, Yang X, Liu Z, Zhao Y, Sun Q. LncRNA MIR99AHG mediated by FOXA1 modulates NOTCH2/Notch signaling pathway to accelerate pancreatic cancer through sponging miR-3129-5p and recruiting ELAVL1. Cancer Cell Int 2021; 21:674. [PMID: 34911544 PMCID: PMC8675481 DOI: 10.1186/s12935-021-02189-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 08/31/2021] [Indexed: 01/05/2023] Open
Abstract
Background Pancreatic cancer (PCa) is a fatal malignancy with poor prognosis, high recurrence and mortality. Substantial reports have suggested long non-coding RNAs (lncRNAs) are implicated in development of numerous malignant tumors, and PCa is included. However, the correlation between novel lncRNA mir-99a-let-7c cluster host gene (MIR99AHG) and PCa remains elusive and needs to be deeply investigated. Methods In this study, we firstly used RT-qPCR to examine MIR99AHG expression. Functional assays were implemented for determination of the role of MIR99AHG in PCa cells. Mechanism experiments were designed and carried out for exploring the regulatory mechanism involving MIR99AHG. Results MIR99AHG was distinctly overexpressed in PCa cell lines. MIR99AHG deficiency abrogated PCa cell proliferation, migration and invasion. Moreover, MIR99AHG up-regulation was induced by transcription factor forkhead box A1 (FOXA1). Furthermore, MIR99AHG modulated notch receptor 2 (NOTCH2) expression and stimulated Notch signaling pathway through sequestering microRNA-3129-5p (miR-3129-5p) and recruiting ELAV like RNA binding protein 1 (ELAVL1). Conclusions Altogether, the exploration of FOXA1/MIR99AHG/miR-3129-5p/ELAVL1/NOTCH2 axis in the progression of PCa might provide a meaningful revelation for PCa diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02189-z.
Collapse
Affiliation(s)
- Jin Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Weixue Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xuan Yang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Yiya Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Qinyun Sun
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, China
| |
Collapse
|
25
|
Lin H, Xie Y, Kong Y, Yang L, Li M. Identification of Two Molecular Subtypes of Hepatocellular Carcinoma Based on Dysregulated Immune LncRNAs. Front Mol Biosci 2021; 8:625858. [PMID: 34888348 PMCID: PMC8650115 DOI: 10.3389/fmolb.2021.625858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/01/2021] [Indexed: 12/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) as important regulators of gene expression also have critical functions in immune regulation. This study identified lncRNA modulators of immune-related pathways as biomarkers for hepatocellular carcinoma (HCC). The profile of lncRNA regulation in immune pathways in HCC was comprehensively mapped. To determine lncRNAs with immunomodulatory functions specific to HCC, the enrichment of lncRNAs in a collection of 17 immune functions was calculated applying gene set enrichment analysis (GSEA). Unsupervised clustering of samples were performed in the R package ConsensusClusterPlus to analyze subtype survival and immunological characteristics. The enrichment of 3,134 lncRNA–immune pathway pairs in both diseased and normal samples showed a total of 1,984 immunoregulatory functional lncRNAs specific to HCC only. In addition, 18 immune-related lncRNAs were disordered in HCC and were significantly associated with immune cell infiltration. Functional enrichment analysis indicated that the 18 dysregulated immune lncRNAs were enriched in cytokines, cytokine receptors, TGFb family members, TNF family members, and TNF family member receptor pathways. Two molecular subtypes of hepatocellular carcinoma were identified based on 18 dysregulated immune lncRNAs. Immunological profiling showed that subtype 1 samples with higher levels of cytokine response had a better survival, but subtype 2 samples with higher levels of tumor proliferation had poorer survival. This study identified 18 HCC-specific dysregulated immune lncRNAs and two HCC molecular subtypes with significant prognostic differences and immune characteristics. The current findings help understand the function of lncRNAs and promote the identification of immunotherapy targets.
Collapse
Affiliation(s)
- Hongsheng Lin
- Guangxi University of Chinese Medicine, Nanning, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China.,Guangxi Medical University, Nanning, China.,Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yangyi Xie
- Guangxi University of Chinese Medicine, Nanning, China.,The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, China
| | - Yinzhi Kong
- Guangxi University of Chinese Medicine, Nanning, China.,The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, China
| | - Li Yang
- Guangxi University of Chinese Medicine, Nanning, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Mingfen Li
- Guangxi University of Chinese Medicine, Nanning, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
26
|
Shao W, Ding Q, Guo Y, Xing J, Huo Z, Wang Z, Xu Q, Guo Y. A Pan-Cancer Landscape of HOX-Related lncRNAs and Their Association With Prognosis and Tumor Microenvironment. Front Mol Biosci 2021; 8:767856. [PMID: 34805277 PMCID: PMC8602076 DOI: 10.3389/fmolb.2021.767856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/27/2022] Open
Abstract
The highly conserved homology cassette family (HOX) as well as 18 referenced long non-coding antisense transcripts (HOXATs) play vital roles in the development of some cancers. Nevertheless, their expression patterns as well as their association with cancer prognosis and the tumor microenvironment (TME) in pan-cancers are still unclear. Here, based on public databases, the expression levels of HOXATs, their prognostic potentials, and correlation with tumor mutation burden (TMB), immune cell infiltration, immune subtype, immune response-related genes, and stemness scores corresponding to 33 tumor types were analyzed systematically using R language. The results of the analysis indicated that different cancer tissues show different HOXAT expression profiles. Further, HOXAT expression showed association with cancer prognosis and immune and stemness regulation. Gene set enrichment analysis also demonstrated that HOXATs participate in cancer- and immune-related pathways, and based on their expression levels, HOTAIRM1 and HOXB-AS1 showed potential involvement in oncogenesis as well as possible involvement in immune regulation across a variety of cancer types. Further investigation also confirmed a significantly higher expression of HOXB-AS1 in GBM than in lower grade glioma tissues. Importantly, in vitro cell function experiments indicated that HOXB-AS1 supports cancer stem cell and plays a fundamental role in glioma metastasis. In conclusion, our results provide valuable resources that can guide the investigation of the mechanisms related to the role of HOXATs in cancers as well as therapeutic analysis in this regard.
Collapse
Affiliation(s)
- Wei Shao
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Qian Ding
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Juan Xing
- Henan Provincial Nanyang Central Hospital, Nanyang, China
| | - Zheng Huo
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Zhan Wang
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Nanyang Normal University, Nanyang, China
| | - Yue Guo
- Henan Provincial Nanyang Central Hospital, Nanyang, China
| |
Collapse
|
27
|
Liu B, Xiang W, Liu J, Tang J, Wang J, Liu B, Long Z, Wang L, Yin G, Liu J. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int 2021; 21:459. [PMID: 34461912 PMCID: PMC8404292 DOI: 10.1186/s12935-021-02168-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Antisense long non-coding RNAs (antisense lncRNAs), transcribed from the opposite strand of genes with either protein coding or non-coding function, were reported recently to play a crucial role in the process of tumor onset and development. Functionally, antisense lncRNAs either promote or suppress cancer cell proliferation, migration, invasion, and chemoradiosensitivity. Mechanistically, they exert their regulatory functions through epigenetic, transcriptional, post-transcriptional, and translational modulations. Simultaneously, because of nucleotide sequence complementarity, antisense lncRNAs have a special role on its corresponding sense gene. We highlight the functions and molecular mechanisms of antisense lncRNAs in cancer tumorigenesis and progression. We also discuss the potential of antisense lncRNAs to become cancer diagnostic biomarkers and targets for tumor treatment.
Collapse
Affiliation(s)
- Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
28
|
Novikova EL, Kulakova MA. There and Back Again: Hox Clusters Use Both DNA Strands. J Dev Biol 2021; 9:28. [PMID: 34287306 PMCID: PMC8293171 DOI: 10.3390/jdb9030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia.
Collapse
Affiliation(s)
- Elena L. Novikova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| | - Milana A. Kulakova
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia;
- Laboratory of Evolutionary Morphology, Zoological Institute RAS, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia
| |
Collapse
|
29
|
Bone marrow mesenchymal stem cell-derived exosomes induce the Th17/Treg imbalance in immune thrombocytopenia through miR-146a-5p/IRAK1 axis. Hum Cell 2021; 34:1360-1374. [PMID: 34052997 DOI: 10.1007/s13577-021-00547-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are associated with immune thrombocytopenia (ITP), the underlying mechanism has not been fully elucidated. Here, we attempted to investigate whether BMSCs can regulate Th17/Treg imbalance in ITP through the exosome pathway. We first assessed the proportions of Th17 cells and Tregs in ITP patients, showing that ITP patients exhibited an evident imbalance of Th17/Treg. BMSCs-exosomes' treatment significantly reduced Th17/Treg ratio in the CD4+ T cells of ITP patients. Moreover, miR-146a-5p was highly expressed in BMSCs-exosomes. The expression of miR-146a-5p was obviously increased in CD4+ T cells following the treatment of BMSCs-exosomes. BMSCs-exosomal miR-146a-5p silencing promoted the proportions of Th17 cells and repressed the proportions of Tregs in CD4+ T cells. In addition, miR-146a-5p directly interacted with IL-1R-associated kinase-1 (IRAK), and repressed IRAK1 expression. IRAK1 overexpression promoted Th17/Treg ratio in CD4+ T cells, which was abolished by BMSCs-exosomal miR-146a-5p. In conclusion, these findings demonstrate that BMSC-derived exosomal miR-146a-5p regulates Th17/Treg imbalance in ITP by repressing IRAK1 expression. Thus, this work suggests that BMSCs-exosomal miR-146a-5p may be a potential therapeutic target for ITP.
Collapse
|
30
|
Wu J, Cai Y, Zhao G, Li M. A ten N6-methyladenosine-related long non-coding RNAs signature predicts prognosis of triple-negative breast cancer. J Clin Lab Anal 2021; 35:e23779. [PMID: 33934391 PMCID: PMC8183938 DOI: 10.1002/jcla.23779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Patients with triple‐negative breast cancer (TNBC) face a major challenge of the poor prognosis, and N6‐methyladenosine‐(m6A) mediated regulation in cancer has been proposed. Therefore, this study aimed to explore the prognostic roles of m6A‐related long non‐coding RNAs (LncRNAs) in TNBC. Methods Clinical information and expression data of TNBC samples were collected from TCGA and GEO databases. Pearson correlation, univariate, and multivariate Cox regression analysis were employed to identify independent prognostic m6A‐related LncRNAs to construct the prognostic score (PS) risk model. Receiver operating characteristic (ROC) curve was used to evaluate the performance of PS risk model. A competing endogenous RNA (ceRNA) network was established for the functional analysis on targeted mRNAs. Results We identified 10 independent prognostic m6A‐related LncRNAs (SAMD12‐AS1, BVES‐AS1, LINC00593, MIR205HG, LINC00571, ANKRD10‐IT1, CIRBP‐AS1, SUCLG2‐AS1, BLACAT1, and HOXB‐AS1) and established a PS risk model accordingly. Relevant results suggested that TNBC patients with lower PS had better overall survival status, and ROC curves proved that the PS model had better prognostic abilities with the AUC of 0.997 and 0.864 in TCGA and GSE76250 datasets, respectively. Recurrence and PS model status were defined as independent prognostic factors of TNBC. These ten LncRNAs were all differentially expressed in high‐risk TNBC compared with controls. The ceRNA network revealed the regulatory axes for nine key LncRNAs, and mRNAs in the network were identified to function in pathways of cell communication, signaling transduction and cancer. Conclusion Our findings proposed a ten‐m6A‐related LncRNAs as potential biomarkers to predict the prognostic risk of TNBC.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Gaiping Zhao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Maolan Li
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
31
|
The Role of lncRNAs in the Pathobiology and Clinical Behavior of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13081976. [PMID: 33923983 PMCID: PMC8074217 DOI: 10.3390/cancers13081976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma (MM), the second most common hematological neoplasm, is still considered an incurable disease. Long non-coding RNAs (lncRNAs), genes that do not encode proteins, participate in numerous biological processes, but their deregulation, like that of coding genes, can contribute to carcinogenesis. Increasing evidence points to the relevant role of lncRNAs in the development of human tumors, such that they emerge as attractive biomarkers and therapeutic targets for cancer treatment, including MM. Here we review the oncogenic or tumor-suppressor functions of lncRNAs in MM and provide an overview of novel therapeutic approaches based on lncRNAs that will help to improve the management of these patients. Abstract MM is a hematological neoplasm that is still considered an incurable disease. Besides established genetic alterations, recent studies have shown that MM pathogenesis is also characterized by epigenetic aberrations, such as the gain of de novo active chromatin marks in promoter and enhancer regions and extensive DNA hypomethylation of intergenic regions, highlighting the relevance of these non-coding genomic regions. A recent study described how long non-coding RNAs (lncRNAs) correspond to 82% of the MM transcriptome and an increasing number of studies have demonstrated the importance of deregulation of lncRNAs in MM. In this review we focus on the deregulated lncRNAs in MM, including their biological or functional mechanisms, their role as biomarkers to improve the prognosis and monitoring of MM patients, and their participation in drug resistance. Furthermore, we also discuss the evidence supporting the role of lncRNAs as therapeutic targets through different novel RNA-based strategies.
Collapse
|
32
|
Cui Y, Guo W, Li Y, Shi J, Ma S, Guan F. Pan-cancer analysis identifies ESM1 as a novel oncogene for esophageal cancer. Esophagus 2021; 18:326-338. [PMID: 33175267 DOI: 10.1007/s10388-020-00796-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/30/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Recent studies highlight the crucial role of endothelial cell-specific molecule 1 (ESM1) in the development of multiple cancer types. However, its aberrant expression and prognostic value in human pan-cancer have largely not been described. METHODS AND RESULTS In this study, we used The Cancer Genome Atlas (TCGA) analysis databases to explore the expression level and prognostic significance of ESM1 in 33 types of human cancer. ESM1 was shown to be over-expressed in 12 cancer types, including BLCA, BRCA, COAD, CHOL, ESCA, HNSC, KIRC, KICH, LIHC, STAD, THCA, and UCEC. The expression of ESM1 was significantly correlated with the overall survival (OS) of patients in CESC, ESCA, KIRC, and KIRP. In addition, high ESM1 level indicated poor disease-free survival (DFS) of patients with ACC, ESCA, PRAD, LIHC, KIRP, and UCS. Through comparative analysis, we discovered that ESM1 was dramatically up-regulated in esophageal cancer (ESCA) and associated with worse patient OS and DFS. The elevation of ESM1 in ESCA was confirmed by the datasets from Cancer RNA-Seq Nexus (CRN) and Gene Expression Omnibus (GEO). Based on Gene Set Enrichment Analysis (GSEA), we analyzed the co-expressed genes of ESM1 in ESCA, and found that ESM1 was closely implicated in cell proliferation and migration and the regulation of Janus kinase (JAK) signaling pathway. Functionally, knockdown of ESM1 significantly suppressed cell proliferation and migration, and decreased the protein level of JAK1. CONCLUSIONS Taken together, our results suggest for the first time that ESM1 functions as an oncogene and may be a clinical biomarker and/or therapeutic target in ESCA.
Collapse
Affiliation(s)
- Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jijing Shi
- Central Lab of the First People's Hospital of Zhengzhou, Zhengzhou, 450001, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
33
|
Guo B, Xiao C, Liu Y, Zhang N, Bai H, Yang T, Xiang Y, Nan Y, Li Q, Zhang W, Huang D. miR-744-5p Inhibits Multiple Myeloma Proliferation, Epithelial Mesenchymal Transformation and Glycolysis by Targeting SOX12/Wnt/β-Catenin Signaling. Onco Targets Ther 2021; 14:1161-1172. [PMID: 33654408 PMCID: PMC7910092 DOI: 10.2147/ott.s270636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/17/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose This study investigated the function and molecular mechanisms of miR-744-5p in multiple myeloma (MM). Methods miR-744-5p and SRY-related high-mobility-group box 12 (SOX12) expression in clinical tissues and MM cells was monitored by quantitative real-time polymerase chain reactions and Western blot. miR-744-5p expression in MM cells was regulated by transfection. Cell proliferation was researched by cell counting kit-8 assay and plate clone formation experiment. Transwell experiment was utilized for migration and invasion detection. Glycolysis test was conducted for the detection of glucose uptake and lactate production of MM cells. The relationship between miR-744-5p and SOX12 was determined by dual-luciferase reporter gene assay and RNA pull-down experiment. In vivo experiment was conducted using nude mice. Results miR-744-5p expression was reduced in MM patients (P<0.01). Low miR-744-5p expression was associated with lower 60-month survival in MM patients (P=0.0402). miR-744-5p overexpression inhibited MM cells proliferation, invasion, migration, glucose uptake, lactate production, and epithelial mesenchymal transformation (EMT) (P<0.01). miR-744-5p directly inhibited SOX12 expression. miR-744-5p silencing promoted MM cells proliferation, invasion, migration, glucose uptake, lactate production, and EMT by elevating SOX12 (P<0.01). miR-744-5p inhibited the growth of MM xenograft tumors in vivo (P<0.001). Conclusion miR-744-5p inhibits MM cells proliferation, invasion, migration, EMT, and glycolysis by targeting SOX12/Wnt/β-catenin.
Collapse
Affiliation(s)
- Bingling Guo
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Chunyan Xiao
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Yumin Liu
- Medical Records Management Division, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Ning Zhang
- Intensive Care Unit, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Hao Bai
- Pharmacy Services, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Tao Yang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Ying Xiang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Yingyu Nan
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Qiying Li
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Wenjun Zhang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Dehong Huang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| |
Collapse
|
34
|
Peng Y, Song X, Lan J, Wang X, Wang M. Bone marrow stromal cells derived exosomal miR-10a and miR-16 may be involved in progression of patients with multiple myeloma by regulating EPHA8 or IGF1R/CCND1. Medicine (Baltimore) 2021; 100:e23447. [PMID: 33530159 PMCID: PMC7850735 DOI: 10.1097/md.0000000000023447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/23/2020] [Indexed: 11/25/2022] Open
Abstract
Interaction with bone marrow stromal cells (BMSCs) has been suggested as an important mechanism for the progression of multiple myeloma (MM) cells, while exosomes are crucial mediators for cell-to-cell communication. The study was to investigate the miRNA profile changes in exosomes released by BMSCs of MM patients and explore their possible function roles.The microarray datasets of exosomal miRNAs in BMSCs were downloaded from the Gene Expression Omnibus database (GSE110271: 6 MM patients, 2 healthy donors; GSE78865: 4 donors and 2 MM patients; GSE39571: 7 MM patients and 4 controls). The differentially expressed miRNAs (DEMs) were identified using the LIMMA method. The target genes of DEMs were predicted by the miRwalk 2.0 database and the hub genes were screened by constructing the protein-protein interaction (PPI) network, module analysis and overlapping with the differentially expressed genes (DEGs) after overexpression or knockout of miRNAs.Three downregulated DEMs were found to distinguish MM from normal and MM-MGUS controls in the GSE39571 dataset; one downregulated and one upregulated DEMs (hsa-miR-10a) could differentiate MM from normal and MM-MGUS controls in the GSE110271-GSE78865 merged dataset. Furthermore, 11 downregulated (hsa-miR-16) and 1 upregulated DEMs were shared between GSE39571 and merged dataset when comparing MM with normal samples. The target genes were predicted for these 17 DEMs. PPI with module analysis showed IGF1R and CCND1 were hub genes and regulated by hsa-miR-16. Furthermore, EPHA8 was identified as a DEG that was downregulated in MM cells when the use of has-miR-10a mimics; while IGF1R, CCND1, CUL3, and ELAVL1 were also screened as DEGs that were upregulated in MM cells when silencing of hsa-miR-16.BMSCs-derived exosomal miR-10a and miR-16 may be involved in MM progression by regulating EPHA8 or IGF1R/CCND1/CUL3/ELAVL1, respectively. These exosomal miRNAs or genes may represent potential biomarkers for diagnosis of MM and prediction of progression and targets for developing therapeutic drugs.
Collapse
|
35
|
Han J, Qu H, Han M, Ding Y, Xie M, Hu J, Chen Y, Dong H. MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene 2020; 40:833-847. [PMID: 33273726 DOI: 10.1038/s41388-020-01574-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Trastuzumab resistance has been becoming a major obstacle for treatment of HER-2-positive breast cancer patients. Increasing evidence suggests that mesenchymal stem cells (MSCs) play critical roles during the formation of drug resistance, however, the underlying mechanism is not well known. In this study, mass spectrometry, RNA pulldown and RNA immunoprecipitation assays were performed to verify the direct interactions among AGAP2-AS1 and other associated targets, such as human antigen R (HuR), miR-15a-5p, and carnitine palmitoyl transferase 1 (CPT1). In vitro and in vivo experimental assays were done to clarify the functional role of AGAP2-AS1 in trastuzumab resistance, stemness, and fatty acid oxidation (FAO). The results showed that MSC co-culture induced trastuzumab resistance. AGAP2-AS1 was upregulated in MSC-cultured cells, and knockdown of AGAP2-AS1 reversed the MSC-mediated trastuzumab resistance. Furthermore, MSC culture-induced AGAP2-AS1 regulates stemness and trastuzumab resistance via activating FAO. Mechanistically, AGAP2-AS1 is associated with HuR, and the AGAP2-AS1-HuR complex could directly bind to the CPT1, increasing its expression via improving RNA stability. In addition, AGAP2-AS1 could serve as ceRNA via sponging miR-15a-5p and releasing CPT1 mRNA. Clinically, increased expression of serum AGAP2-AS1 predicts poor response to trastuzumab treatment in breast cancer patients. In conclusion, MSC culture-induced AGAP2-AS1 caused stemness and trastuzumab resistance via promoting CPT1 expression and inducing FAO. Our results provide new insight of the role of MSCs in trastuzumab resistance and AGAP2-AS1 could be promising predictive biomarker and therapeutic target for HER-2+ breast cancer patients.
Collapse
Affiliation(s)
- Jing Han
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Hongbo Qu
- Department of Breast and Thyroid Surgery, The First People's Hospital of Chenzhou City, 423000, Hunan, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yichao Ding
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Mingwei Xie
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, 400010, Chongqing, China
| | - Yuanwen Chen
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, China, 400062, Chongqing, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311, Haikou, China.
| |
Collapse
|
36
|
Fan T, Sun N, He J. Exosome-Derived LncRNAs in Lung Cancer. Front Oncol 2020; 10:1728. [PMID: 33072553 PMCID: PMC7538687 DOI: 10.3389/fonc.2020.01728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
As extracellular vesicles, exosomes are released from most cells to perform cell–cell communication. Recent studies have shown that exosomes could be released into tumor microenvironment and blood to promote tumor progression through packaging and transmitting various bioactive molecules, such as cholesterol, proteins, lipids, miRNAs, mRNAs, and long non-coding RNAs (lncRNAs) to distant cells. LncRNAs have emerged as a major class of non-coding transcripts. A lot of LncRNAs have been discovered during the past few years of research on genomics. They have been proven to participate in various biological functions and disease processes through multiple mechanisms. In this review, we analyzed the role of exosome-derived lncRNAs in lung carcinogenesis and metastasis. We also highlight opportunities for the clinical potential of exosomes with specific lncRNAs as biomarkers and therapeutic intervention in lung cancer.
Collapse
Affiliation(s)
- Tao Fan
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
He J, Leng C, Pan J, Li A, Zhang H, Cong F, Wang H. Identification of lncRNAs Involved in PCV2 Infection of PK-15 Cells. Pathogens 2020; 9:pathogens9060479. [PMID: 32560439 PMCID: PMC7350310 DOI: 10.3390/pathogens9060479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) can cause severe disease in infected pigs, resulting in massive economic loss for the swine industry. Transcriptomic and proteomic approaches have been widely employed to identify the underlying molecular mechanisms of the PCV2 infection. Numerous differentially expressed mRNAs, miRNAs, and proteins, together with their associated signaling pathways, have been identified during PCV2 infection, paving the way for analysis of their biological functions. Long noncoding RNAs (lncRNAs) are important regulators of multiple biological processes. However, little is known regarding their role in the PCV2 infection. Hence, in our study, RNA-seq was performed by infecting PK-15 cells with PCV2. Analysis of the differentially expressed genes (DEGs) suggested that the cytoskeleton, apoptosis, cell division, and protein phosphorylation were significantly disturbed. Then, using stringent parameters, six lncRNAs were identified. Additionally, potential targets of the lncRNAs were predicted using both cis- and trans-prediction methods. Interestingly, we found that the HOXB (Homeobox B) gene cluster was probably the target of the lncRNA LOC106505099. Enrichment analysis of the target genes showed that numerous developmental processes were altered during PCV2 infection. Therefore, our study revealed that lncRNAs might affect porcine embryonic development through the regulation of the HOXB genes.
Collapse
Affiliation(s)
- Jin He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, 1638 Wolong Road, Wolong District, Nanyang 473061, China;
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Aoqi Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
| | - Feng Cong
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510640, China;
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (J.P.); (A.L.); (H.Z.)
- Correspondence:
| |
Collapse
|
38
|
Liu X, Sun R, Chen J, Liu L, Cui X, Shen S, Cui G, Ren Z, Yu Z. Crosstalk Mechanisms Between HGF/c-Met Axis and ncRNAs in Malignancy. Front Cell Dev Biol 2020; 8:23. [PMID: 32083078 PMCID: PMC7004951 DOI: 10.3389/fcell.2020.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Several lines of evidence have confirmed the magnitude of crosstalk between HGF/c-Met axis (hepatocyte growth factor and its high-affinity receptor c-mesenchymal-epithelial transition factor) and non-coding RNAs (ncRNAs) in tumorigenesis. Through activating canonical or non-canonical signaling pathways, the HGF/c-Met axis mediates a range of oncogenic processes such as cell proliferation, invasion, apoptosis, and angiogenesis and is increasingly becoming a promising target for cancer therapy. Meanwhile, ncRNAs are a cluster of functional RNA molecules that perform their biological roles at the RNA level and are essential regulators of gene expression. The expression of ncRNAs is cell/tissue/tumor-specific, which makes them excellent candidates for cancer research. Many studies have revealed that ncRNAs play a crucial role in cancer initiation and progression by regulating different downstream genes or signal transduction pathways, including HGF/c-Met axis. In this review, we discuss the regulatory association between ncRNAs and the HGF/c-Met axis by providing a comprehensive understanding of their potential mechanisms and roles in cancer development. These findings could reveal their possible clinical applications as biomarkers for therapeutic interventions.
Collapse
Affiliation(s)
- Xin Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianan Chen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xichun Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Liu D, Qiu M, Jiang L, Liu K. Long Noncoding RNA HOXB-AS1 Is Upregulated in Endometrial Carcinoma and Sponged miR-149-3p to Upregulate Wnt10b. Technol Cancer Res Treat 2020; 19:1533033820967462. [PMID: 33073693 PMCID: PMC7592328 DOI: 10.1177/1533033820967462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
The functions of Long noncoding RNA (lncRNA) HOXB-AS1 have been investigated in glioblastoma and multiple myeloma. However, the role of lncRNA HOXB-AS1 in endometrial carcinoma (EC) remains largely unknown. This study investigated the underlying mechanisms of the lncRNA HOXB-AS1 on the progression of EC. In this study, We found that HOXB-AS1 expression was significantly upregulated in EC tissue samples and was associated with shorter survival time. Furthermore, upregulation of HOXB-AS1 promoted proliferation, invasion, and migration of EC cell. HOXB-AS1 and Wnt10b directly bound to miR-149-3p. HOXB-AS1 increased the expression of Wnt10b by binding to miR-149-3p. We further verified the upregulation of β-catenin, cyclin D1, and c-myc induced by HOXB-AS1. In conclusion, our results indicated that HOXB-AS1 exerted oncogenic function as competing endogenous RNA (ceRNA) of miR-149-3p to release Wnt10b and activated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Da Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Min Qiu
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|