1
|
Zhang Y, Zang C, Mao M, Zhang M, Tang Z, Chen W, Zhu W. Advances in RNA therapy for the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103753. [PMID: 39842534 DOI: 10.1016/j.autrev.2025.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Autoimmune diseases (ADs) are a group of complex, chronic conditions characterized by disturbance of immune tolerance, with examples including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. These diseases have unclear pathogenesis, and traditional therapeutic approaches remain limited. However, advances in high-throughput histology technology and scientific discoveries have led to the identification of various pathogenic factors contributing to ADs. Coupled with improvements in RNA nucleic acid-based drug synthesis, design, and delivery, RNA-based therapies have been extensively investigated for their potential in treating ADs. This paper reviews the progress in the use of miRNAs, lncRNAs, circRNAs, siRNAs, antisense oligonucleotides (ASOs), aptamers, mRNAs, and other RNA-based therapies in ADs, focusing on their therapeutic potential and application prospects, providing insights for future research and clinical treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Chenyang Zang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Manyun Mao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Mi Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangqing Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
2
|
Zhang S, Xu R, Kang L. Biomarkers for systemic lupus erythematosus: A scoping review. Immun Inflamm Dis 2024; 12:e70022. [PMID: 39364719 PMCID: PMC11450456 DOI: 10.1002/iid3.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND In recent years, newly discovered potential biomarkers have great research potential in the diagnosis, disease activity prediction, and treatment of systemic lupus erythematosus (SLE). OBJECTIVE In this study, a scoping review of potential biomarkers for SLE over several years has identified the extent to which studies on biomarkers for SLE have been conducted, the specificity, sensitivity, and diagnostic value of potential biomarkers of SLE, the research potential of these biomarkers in disease diagnosis, and activity detection is discussed. METHODS In PubMed and Google Scholar databases, "SLE," "biomarkers," "predictor," "autoimmune diseases," "lupus nephritis," "neuropsychiatric SLE," "diagnosis," "monitoring," and "disease activity" were used as keywords to systematically search for SLE molecular biomarkers published from 2020 to 2024. Analyze and summarize the literature that can guide the article. CONCLUSIONS Recent findings suggest that some potential biomarkers may have clinical application prospects. However, to date, many of these biomarkers have not been subjected to repeated clinical validation. And no single biomarker has sufficient sensitivity and specificity for SLE. It is not scientific to choose only one or several biomarkers to judge the complex disease of SLE. It may be a good direction to carry out a meta-analysis of various biomarkers to find SLE biomarkers suitable for clinical use, or to evaluate SLE by combining multiple biomarkers through mathematical models. At the same time, advanced computational methods are needed to analyze large data sets and discover new biomarkers, and strive to find biomarkers that are sensitive and specific enough to SLE and can be used in clinical practice, rather than only staying in experimental research and data analysis.
Collapse
Affiliation(s)
- Su‐jie Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous RegionSchool of Medicine, Xizang Minzu UniversityXianyangShaanxiChina
| | - Rui‐yang Xu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous RegionSchool of Medicine, Xizang Minzu UniversityXianyangShaanxiChina
| | - Long‐li Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous RegionSchool of Medicine, Xizang Minzu UniversityXianyangShaanxiChina
| |
Collapse
|
3
|
Tovar-Cuevas AJ, Rosales Gómez RC, Martín-Márquez BT, Peña Dueñas NA, Sandoval-García F, Guzmán Ornelas MO, Chávez Tostado M, Hernández Corona DM, Corona Meraz FI. Bioinformatic Analysis from a Descriptive Profile of miRNAs in Chronic Migraine. Int J Mol Sci 2024; 25:10491. [PMID: 39408819 PMCID: PMC11477213 DOI: 10.3390/ijms251910491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic migraines have been described chiefly only from a clinical perspective. However, searching for reliable molecular markers has allowed for the discovery of the expression of different genes mainly associated with inflammation, neuro-vascularization, and pain-related pathways. The interest in microRNAs (miRs) that can regulate the expression of these genes has gained significant relevance since multiple miRs could play a key role in regulating these events. In this study, miRs were searched in samples from patients with chronic migraine, and the inclusion criteria were carefully reviewed. Different bioinformatic tools, such as miRbase, targetscan, miRPath, tissue atlas, and miR2Disease, were used to analyze the samples. Our findings revealed that some of the miRs were expressed more (miR-197, miR-101, miR-92a, miR-375, and miR-146b) and less (miR-133a/b, miR-134, miR-195, and miR-340) than others. We concluded that, during chronic migraine, common pathways, such as inflammation, vascularization, neurodevelopment, nociceptive pain, and pharmacological resistance, were associated with this disease.
Collapse
Affiliation(s)
- Alvaro Jovanny Tovar-Cuevas
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
| | - Roberto Carlos Rosales Gómez
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (B.T.M.-M.); (F.S.-G.)
| | - Nathan Alejandro Peña Dueñas
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético (IIRSME), Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (B.T.M.-M.); (F.S.-G.)
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Mexico
| | - Milton Omar Guzmán Ornelas
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
- Cuerpo Académico UDG-CA-1096, “Ciencias de la Nutrición y Procesos Moleculares del Metabolismo”, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45625, Mexico
| | - Mariana Chávez Tostado
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
- Cuerpo Académico UDG-CA-1096, “Ciencias de la Nutrición y Procesos Moleculares del Metabolismo”, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45625, Mexico
| | - Diana Mercedes Hernández Corona
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
- Cuerpo Académico UDG-CA-1096, “Ciencias de la Nutrición y Procesos Moleculares del Metabolismo”, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45625, Mexico
| | - Fernanda-Isadora Corona Meraz
- Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico; (A.J.T.-C.); (R.C.R.G.); (N.A.P.D.); (M.O.G.O.); (M.C.T.); (D.M.H.C.)
- Cuerpo Académico UDG-CA-1096, “Ciencias de la Nutrición y Procesos Moleculares del Metabolismo”, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45625, Mexico
| |
Collapse
|
4
|
Liu XM, Yang L, Yang QB. Advanced Progress of Histone Deacetylases in Rheumatic Diseases. J Inflamm Res 2024; 17:947-955. [PMID: 38370467 PMCID: PMC10870932 DOI: 10.2147/jir.s447811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an important role in regulating gene expression in various biological processes, including differentiation, development, stress response, and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function.
Collapse
Affiliation(s)
- Xue-Mei Liu
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Liu Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
- Department of Clinical Medicine, Graduate School of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| | - Qi-Bin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, People’s Republic of China
| |
Collapse
|
5
|
Wu Y, Dong HR, Liu LT, Peng ML, Su XL. Advances in the study of exosome-derived miRNAs in the pathogenesis, diagnosis, and treatment of systemic lupus erythematosus. Lupus 2023; 32:1475-1485. [PMID: 37906972 PMCID: PMC10666474 DOI: 10.1177/09612033231212280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disease caused by autoantibodies, with high morbidity and mortality. It involves multiple systems, particularly the renal, which can lead to lupus nephritis (LN); its multi-system effects have a significant impact on the physical and mental health of patients. Exosomes are vesicles that are secreted during cell activity and carry a variety of nucleic acids, proteins, and lipids. They are distributed through body fluids for cellular communication. MicroRNAs (miRNAs) are nucleic acids that are packaged within the exosome that are taken up and released in response to changes in plasma membrane structure. MiRNAs are potential participants in immune and inflammatory responses, which are transported to target cells and can inhibit gene expression in receptor cells. It has been suggested that exosomal miRNA can regulate the pathogenesis of SLE and, as such, they are of value in diagnosis and treatment. In this paper, we focus on the research progress into exosomal miRNA in SLE and inspire new directions for SLE related research.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | | | - Li Tin Liu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mei Lin Peng
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiu Lan Su
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Mei X, Zhang B, Zhao M, Lu Q. An update on epigenetic regulation in autoimmune diseases. J Transl Autoimmun 2022; 5:100176. [PMID: 36544624 PMCID: PMC9762196 DOI: 10.1016/j.jtauto.2022.100176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases (AIDs) generally manifest as chronic immune disorders characterized by significant heterogeneity and complex symptoms. The discordant incidence of AIDs between monozygotic twins guided people to attach importance to environmental factors. Epigenetics is one of the major ways to be influenced, some of them can even occur years before clinical diagnosis. With the advent of high-throughput omics times, the mysterious veil of epigenetic modification in AIDs has been gradually unraveled, and some progress has been made in utilizing it as indicators of diagnosis and disease activity. For example, the hypomethylated IFI44L promoter in diagnosing systematic lupus erythematosus (SLE). More recently, newly identified noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are also believed to be involved in the etiology of AIDs while the initial factor behind those epigenetic alterations can be diverse from metabolism to microbiota. Update and comprehensive insights into epigenetics in AIDs can help us understand the pathogenesis and further orchestrate it to benefit patients in the future. Therefore, we reviewed the latest epigenetic findings in SLE, rheumatoid arthritis (RA), Type 1 diabetes (T1D), systemic sclerosis (SSc) primarily from cellular levels.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China
| | - Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Luo B, Zhou K, Liufu Y, Huang X, Zeng H, Zhang Z. Novel insight into miRNA biology and its role in the pathogenesis of systemic lupus erythematosus. Front Immunol 2022; 13:1059887. [PMID: 36532020 PMCID: PMC9756849 DOI: 10.3389/fimmu.2022.1059887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs(miRNAs) have emerged as key regulators that control and influence gene expression as well as multiple biological processes depending on their potential binding sites in human-protein coding genes and other unconventional patterns, including coding for peptides, activating Toll-like receptors as a ligand, and other manners. Accumulating evidence has demonstrated that microRNA expression is tightly regulated during phases of development, differentiation, and effector functions of immune cells, immunological disorders of systemic lupus erythematosus (SLE). This review outlines the biogenesis of miRNAs and their unconventional functions as well as underlying cellular and molecular mechanisms. It then summarizes our current knowledge about how the biogenesis of miRNAs is regulated. Moreover, an overview was provided concerning the role of abnormal expression of miRNAs in lupus immune cells. In particular, we will shed some light on the recent advances in the role of miRNAs and exosome-derived miRNAs in immunological and epigenetic pathways in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Baiwei Luo
- Department of Rheumatology and Immunology, Yuebei People’s Hospital Affifiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Kaixia Zhou
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong, China
- Department of Clinical Laboratory, Shanghai Cancer Center, Fudan University, Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingcong Liufu
- Department of Anorectal, Shenzhen TCM Anorectal Hospital (Futian), Shenzhen, China
| | - Xia Huang
- Department of Xi Yuan Community Health Service Center, The Eighth Affifiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huiqiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong, China
| | - Zhaoyang Zhang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Bahreini F, Rayzan E, Rezaei N. MicroRNAs and Diabetes Mellitus Type 1. Curr Diabetes Rev 2022; 18:e021421191398. [PMID: 33588736 DOI: 10.2174/1573399817666210215111201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes mellitus is a multifactorial, progressive, autoimmune disease with a strong genetic feature that can affect multiple organs, including the kidney, eyes, and nerves. Early detection of type 1 diabetes can help critically to avoid serious damages to these organs. MicroRNAs are small RNA molecules that act in post-transcriptional gene regulation by attaching to the complementary sequence in the 3'-untranslated region of their target genes. Alterations in the expression of microRNA coding genes are extensively reported in several diseases, such as type 1 diabetes. Presenting non-invasive biomarkers for early detection of type 1 diabetes by quantifying microRNAs gene expression level can be a significant step in biotechnology and medicine. This review discusses the area of microRNAs dysregulation in type 1 diabetes and affected molecular mechanisms involved in pancreatic islet cell formation and dysregulation in the expression of inflammatory elements as well as pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Rayzan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Huang J, Xu X, Yang J. miRNAs Alter T Helper 17 Cell Fate in the Pathogenesis of Autoimmune Diseases. Front Immunol 2021; 12:593473. [PMID: 33968012 PMCID: PMC8096907 DOI: 10.3389/fimmu.2021.593473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
T helper 17 (Th17) cells are characterized by the secretion of the IL-17 cytokine and are essential for the immune response against bacterial and fungal infections. Despite the beneficial roles of Th17 cells, unrestrained IL-17 production can contribute to immunopathology and inflammatory autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although these diverse outcomes are directed by the activation of Th17 cells, the regulation of Th17 cells is incompletely understood. The discovery that microRNAs (miRNAs) are involved in the regulation of Th17 cell differentiation and function has greatly improved our understanding of Th17 cells in immune response and disease. Here, we provide an overview of the biogenesis and function of miRNA and summarize the role of miRNAs in Th17 cell differentiation and function. Finally, we focus on recent advances in miRNA-mediated dysregulation of Th17 cell fate in autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|