1
|
Pathania AS, Chava H, Balusu R, Pasupulati AK, Coulter DW, Challagundla KB. The crosstalk between non-coding RNAs and cell-cycle events: A new frontier in cancer therapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200785. [PMID: 38595981 PMCID: PMC10973673 DOI: 10.1016/j.omton.2024.200785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The cell cycle comprises sequential events during which a cell duplicates its genome and divides it into two daughter cells. This process is tightly regulated to ensure that the daughter cell receives identical copied chromosomal DNA and that any errors in the DNA during replication are correctly repaired. Cyclins and their enzyme partners, cyclin-dependent kinases (CDKs), are critical regulators of G- to M-phase transitions during the cell cycle. Mitogenic signals induce the formation of the cyclin/CDK complexes, resulting in phosphorylation and activation of the CDKs. Once activated, cyclin/CDK complexes phosphorylate specific substrates that drive the cell cycle forward. The sequential activation and inactivation of cyclin-CDK complexes are tightly controlled by activating and inactivating phosphorylation events induced by cell-cycle proteins. The non-coding RNAs (ncRNAs), which do not code for proteins, regulate cell-cycle proteins at the transcriptional and translational levels, thereby controlling their expression at different cell-cycle phases. Deregulation of ncRNAs can cause abnormal expression patterns of cell-cycle-regulating proteins, resulting in abnormalities in cell-cycle regulation and cancer development. This review explores how ncRNA dysregulation can disrupt cell division balance and discusses potential therapeutic approaches targeting these ncRNAs to control cell-cycle events in cancer treatment.
Collapse
Affiliation(s)
- Anup S. Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Balusu
- Department of Hematologic Malignancies and Cellular Therapeutics, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Anil K. Pasupulati
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B. Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- The Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Zhou L, Tong Y, Ho BM, Li J, Chan HYE, Zhang T, Du L, He JN, Chen LJ, Tham CC, Yam JC, Pang CP, Chu WK. Etiology including epigenetic defects of retinoblastoma. Asia Pac J Ophthalmol (Phila) 2024:100072. [PMID: 38789041 DOI: 10.1016/j.apjo.2024.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Retinoblastoma (RB), originating from the developing retina, is an aggressive intraocular malignant neoplasm in childhood. Biallelic loss of RB1 is conventionally considered a prerequisite for initiating RB development in most RB cases. Additional genetic mutations arising from genome instability following RB1 mutations are proposed to be required to promote RB development. Recent advancements in high throughput sequencing technologies allow a deeper and more comprehensive understanding of the etiology of RB that additional genetic alterations following RB1 biallelic loss are rare, yet epigenetic changes driven by RB1 loss emerge as a critical contributor promoting RB tumorigenesis. Multiple epigenetic regulators have been found to be dysregulated and to contribute to RB development, including noncoding RNAs, DNA methylations, RNA modifications, chromatin conformations, and histone modifications. A full understanding of the roles of genetic and epigenetic alterations in RB formation is crucial in facilitating the translation of these findings into effective treatment strategies for RB. In this review, we summarize current knowledge concerning genetic defects and epigenetic dysregulations in RB, aiming to help understand their links and roles in RB tumorigenesis.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yan Tong
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Bo Man Ho
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiahui Li
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hoi Ying Emily Chan
- Medicine Programme Global Physician-Leadership Stream, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Tian Zhang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Lin Du
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jing Na He
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
3
|
Xie W, Shao Y, Bo Q, Li Z, Yu Q, Wang L, Wu G. FTO promotes the progression of retinoblastoma through YTHDF2-dependent N6-methyladenosine modification in E2F3. Mol Carcinog 2024; 63:926-937. [PMID: 38380957 DOI: 10.1002/mc.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Early treatment of retinoblastoma (RB) has significantly improved clinical outcomes. N6-methyladenosine (m6A) methylation is crucial for cancer progression. Thus, we investigated the role of FTO-dependent demethylation in RB and its underlying mechanisms. The biological behavior of RB cells was analyzed using cell counting kit-8, colony formation analysis, transwell assay, flow cytometry, and western blot analysis. m6A modification was evaluated using methylated RNA immunoprecipitation and dual-luciferase reporter assays, and E2F3 stability was assessed using Actinomycin D. The roles of FTO and E2F3 were also elucidated in vivo. These results indicated that FTO was highly expressed in RB cells with low m6A levels. FTO knockdown inhibited RB cell growth, migration, invasion, and epithelial-mesenchymal transition and arrested the cell cycle at the G0/G1 phase. Mechanistically, FTO interference promoted m6A methylation of E2F3, which was recognized by YTHDF2, thereby reducing mRNA stability. E2F3 overexpression partially rescued the effects of FTO knockdown on biological behavior. Moreover, FTO knockdown reduced tumor weight, tumor volume, ki67 expression, and tumor cell infiltration by mediating E2F3. Taken together, FTO silencing inhibited the malignant processes of RB by suppressing E2F3 in an m6A-YTHD2-dependent manner. These findings suggest that FTO is a novel therapeutic target for RB.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Yongqing Shao
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Qingyun Bo
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Zhen Li
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Qihua Yu
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Layi Wang
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Guohai Wu
- Department of Ophthalmology, Ningbo Eye Hospital, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
4
|
Cao C, Wu X, Li Z, Xie Y, Xu S, Guo J, Sun W. EIF4A3-Bound hsa_circ_0006847 Exerts a Tumor-Suppressive Role in Gastric Cancer. DNA Cell Biol 2024; 43:232-244. [PMID: 38513058 DOI: 10.1089/dna.2023.0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Numerous studies have shown that circular RNAs are associated with the occurrence and development of various cancers, but the biological functions and mechanisms of hsa_circ_0006847 (circASPHD1) in gastric cancer (GC) remain unclear. The expression of hsa_circ_0006847 in GC cell lines, tissue, and plasma from GC patients was assayed by quantitative real-time reverse transcription-polymerase chain reaction. Hsa_circ_0006847 expression in cells was downregulated or upregulated by transfected small interfering RNA (siRNA) or overexpression plasmid. The role of hsa_circ_0006847 in GC was investigated with Cell Counting Kit-8, EdU, Transwell, flow cytometry assays, and in a subcutaneous xenograft tumor model. In addition, the interaction of eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0006847 was determined with western blot, biotin-labeled RNA pull-down, and RNA immunoprecipitation assays. Co-immunoprecipitation and mass spectrometry were used to validate the combination of EIF4A3 and synaptopodin-2 (SYNPO2). The expression of hsa_circ_0006847 was decreased in GC tissues and cells and indicated poor survival and prognosis. Overexpression of hsa_circ_0006847 inhibited cell proliferation, migration, and invasion. Flow cytometry showed that upregulation of hsa_circ_0006847 resulted in promotion of apoptosis of GC cells and inhibited their progression through the G0/G1 phase. Downregulation of hsa_circ_0006847 expression had the opposite effects. Overexpression of hsa_circ_0006847 in subcutaneous tumor xenografts inhibited tumor growth. Mechanically, hsa_circ_0006847 promoted the binding of EIF4A3 to SYNPO2 by recruiting EIF4A3, which inhibited the growth of GC. The tumor suppressor activity of hsa_circ_0006847, inhibition of the occurrence and development of GC, was mediated by promotion of EIF4A3 and the binding of EIF4A3 to SYNPO2. The results support the study of hsa_circ_0006847 as a novel therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Chunli Cao
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Xinxin Wu
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Zhe Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Shiyi Xu
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Junming Guo
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Institute of Digestive Diseases of Ningbo University, Ningbo, China
| | - Weiliang Sun
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Wei J, Li M, Chen S, Xue C, Zheng L, Duan Y, Deng H, Fan S, Xiong W, Zhou M. CircBRD7 attenuates tumor growth and metastasis in nasopharyngeal carcinoma via epigenetic activation of its host gene. Cancer Sci 2024; 115:139-154. [PMID: 37940358 PMCID: PMC10823269 DOI: 10.1111/cas.15998] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
BRD7 was identified as a tumor suppressor in nasopharyngeal carcinoma (NPC). Circular RNAs (CircRNAs) are involved in the occurrence and development of NPC as oncogenes or tumor suppressors. However, the function and mechanism of the circular RNA forms derived from BRD7 in NPC are not well understood. In this study, we first identified that circBRD7 was a novel circRNA derived from BRD7 that inhibited cell proliferation, migration, invasion of NPC cells, as well as the xenograft tumor growth and metastasis in vivo. Mechanistically, circBRD7 promoted the transcriptional activation and expression of BRD7 by enhancing the enrichment of histone 3 lysine 27 acetylation (H3K27ac) in the promoter region of its host gene BRD7, and BRD7 promoted the formation of circBRD7. Therefore, circBRD7 formed a positive feedback loop with BRD7 to inhibit NPC development and progression. Moreover, restoration of BRD7 expression rescued the inhibitory effect of circBRD7 on the malignant progression of NPC. In addition, circBRD7 demonstrated low expression in NPC tissues, which was positively correlated with BRD7 expression and negatively correlated with the clinical stage of NPC patients. Taken together, circBRD7 attenuates the tumor growth and metastasis of NPC by forming a positive feedback loop with its host gene BRD7, and targeting the circBRD7/BRD7 axis is a promising strategy for the clinical diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaChina
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaChina
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaChina
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaChina
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaChina
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaChina
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Songqing Fan
- Department of Pathology, the Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaChina
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
- Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaChina
| |
Collapse
|
6
|
Zhang W, He Y, Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential. Pharmacol Res 2023; 197:106946. [PMID: 37797661 DOI: 10.1016/j.phrs.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Ocular neovascular disease (OND), characterized by the aberrant formation of immature blood vessels, is the leading cause of vision impairment and blindness. It is important to find effective ways to diagnose and treat these diseases. Circular RNA (circRNA) is a group of endogenous non-coding RNA that play a crucial role in regulating different biological processes. Due to their close association with ocular disease and angiogenesis, circRNAs have become a hotspot in OND research. In this review, we intensively investigate the possibility of using circRNAs in the management of ONDs. In general, angiogenesis is divided into five phases. On the basis of these five steps, we describe the potential of using circRNAs by introducing how they regulate angiogenesis. Subsequently, the interactions between circRNAs and ONDs, including pterygium, corneal neovascularization, age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity, are analyzed in detail. We also introduce the potential use of circRNAs as OND diagnostic biomarkers. Finally, we summarize the prospects of using circRNAs as a potential strategy in OND management. The gaps in recent research are also pointed out with the purpose of promoting the introduction of circRNAs into clinical applications.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
7
|
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene 2023; 42:2783-2800. [PMID: 37587333 PMCID: PMC10504067 DOI: 10.1038/s41388-023-02780-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/18/2023]
Abstract
To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.
Collapse
Affiliation(s)
- Giuseppina Pisignano
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - David C Michael
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Tanvi H Visal
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radu Pirlog
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol, BS16 1QY, UK
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Wei J, Li M, Xue C, Chen S, Zheng L, Deng H, Tang F, Li G, Xiong W, Zeng Z, Zhou M. Understanding the roles and regulation patterns of circRNA on its host gene in tumorigenesis and tumor progression. J Exp Clin Cancer Res 2023; 42:86. [PMID: 37060016 PMCID: PMC10105446 DOI: 10.1186/s13046-023-02657-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023] Open
Abstract
Circular RNAs (circRNAs) are a novel type of endogenous non-coding RNAs, which are covalently closed loop structures formed by precursor mRNAs (pre-mRNAs) through back-splicing. CircRNAs are abnormally expressed in many tumors, and play critical roles in a variety of tumors as oncogenes or tumor suppressor genes by sponging miRNAs, regulating alternative splicing and transcription, cis-regulating host genes, interacting with RNA binding proteins (RBPs) or encoding polypeptides. Among them, the regulation of circRNAs on their corresponding host genes is a critical way for circRNAs to exit their functions. Accumulating evidence suggests that circRNAs are able to regulate the expression of host genes at the transcriptional level, post-transcriptional level, translational level, post-translational level, or by encoding polypeptides. Therefore, this paper mainly summarized the roles and association of circRNAs and their corresponding host genes in tumorigenesis and tumor progression, generalized the circRNAs that function synergistically or antagonistically with their host genes, and elaborated the mechanisms of mutual regulation between circRNAs and their host genes. More importantly, this review provides specific references for revealing the potential application of circRNAs combined with their host genes in tumor diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
- Cancer Research Institute, Central South University, Changsha, 410078, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
9
|
Karami Fath M, Pourbagher Benam S, Kouhi Esfahani N, Shahkarami N, Shafa S, Bagheri H, Shafagh SG, Payandeh Z, Barati G. The functional role of circular RNAs in the pathogenesis of retinoblastoma: a new potential biomarker and therapeutic target? Clin Transl Oncol 2023:10.1007/s12094-023-03144-2. [PMID: 37000290 DOI: 10.1007/s12094-023-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
Retinoblastoma (RB) is a common cancer in infants and children. It is a curable disease; however, a delayed diagnosis or treatment makes the treatment difficult. Genetic mutations have a central role in the pathogenesis of RB. Genetic materials such as RNAs (coding and non-coding RNAs) are also involved in the progression of the tumor. Circular RNA (circRNA) is the most recently identified RNA and is involved in regulating gene expression mainly through "microRNA sponges". The dysregulation of circRNAs has been observed in several diseases and tumors. Also, various studies have shown that circRNAs expression is changed in RB tissues. Due to their role in the pathogenesis of the disease, circRNAs might be helpful as a diagnostic or prognostic biomarker in patients with RB. In addition, circRNAs could be a suitable therapeutic target to treat RB in a targeted therapy approach.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | | | - Negar Shahkarami
- School of Allied Medical Sciences, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bagheri
- Faculty of Medicine, Islamic Azad University of Tehran Branch, Tehran, Iran
| | | | - Zahra Payandeh
- Division Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
10
|
Li Y, Zhao H, Li N, Yuan C, Dong N, Wen J, Li Z, Wang Q, Wang L, Mao H. BBOX1-AS1 mediates trophoblast cells dysfunction via regulating hnRNPK/GADD45A axis†. Biol Reprod 2023; 108:408-422. [PMID: 36617174 DOI: 10.1093/biolre/ioad002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Recurrent pregnancy loss (RPL) is a common pathological problem during pregnancy, and its clinical etiology is complex and unclear. Dysfunction of trophoblasts may cause a series of pregnancy complications, including preeclampsia, fetal growth restriction, and RPL. Recently, lncRNAs have been found to be closely related to the occurrence and regulation of pregnancy-related diseases, but few studies have focused on their role in RPL. In this study, we identified a novel lncRNA BBOX1-AS1 that was significantly upregulated in villous tissues and serum of RPL patients. Functionally, BBOX1-AS1 inhibited proliferation, migration, invasion, tube formation and promoted apoptosis of trophoblast cells. Mechanistically, overexpression of BBOX1-AS1 activated the p38 and JNK MAPK signaling pathways by upregulating GADD45A expression. Further studies indicated that BBOX1-AS1 could increase the stability of GADD45A mRNA by binding hnRNPK and ultimately cause abnormal trophoblast function. Collectively, our study highlights that the BBOX1-AS1/hnRNPK/GADD45A axis plays an important role in trophoblast-induced RPL and that BBOX1-AS1 may serve as a potential target for the diagnosis of RPL.
Collapse
Affiliation(s)
- Yali Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Ning Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Chao Yuan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Nana Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jin Wen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zihui Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Tian H, Zhao L, Li H, Huang Y, Wang Y. Circular RNA in Retina: A Potential Biomarker and Therapeutic Target. Ophthalmic Res 2023; 66:516-528. [PMID: 36689924 DOI: 10.1159/000529207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Circular RNA (circRNA) is a newly discovered noncoding RNA, which forms a closed ring with more than 200 bases in length. CircRNA is formed by back splicing of precursor RNA, and its expression abundance in body fluid is up to 10 times that of homologous linear transcripts. Recently, novel activities for circRNA in various diseases have emerged, ranging from cancer therapy and neurodegenerative diseases. Here, we reviewed the literature on the biogenesis of circRNA and its relationship with retinal diseases in recent years. We first described the mechanism, existing form and main function of circRNA. Next, we also pinpoint that circRNA has great value in the diagnosis and treatment of retinal diseases represented by retinoblastoma, retinal degeneration, and diabetic retinopathy. By this review, we hope to explore more possibilities of circRNA in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huiwen Tian
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China,
| | - Lu Zhao
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongyang Li
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingxiang Huang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Galardi A, Colletti M, Palma A, Di Giannatale A. An Update on Circular RNA in Pediatric Cancers. Biomedicines 2022; 11:biomedicines11010036. [PMID: 36672544 PMCID: PMC9856195 DOI: 10.3390/biomedicines11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded closed noncoding RNA molecules which are formed as a result of reverse splicing of mRNAs. Despite their relative abundance, only recently there appeared an increased interest in the understanding of their regulatory importance. Among their most relevant characteristics are high stability, abundance and evolutionary conservation among species. CircRNAs are implicated in several cellular functions, ranging from miRNA and protein sponges to transcriptional modulation and splicing. Additionally, circRNAs' aberrant expression in pathological conditions is bringing to light their possible use as diagnostic and prognostic biomarkers. Their use as indicator molecules of pathological changes is also supported by their peculiar covalent closed cyclic structure which bestows resistance to RNases. Their regulatory role in cancer pathogenesis and metastasis is supported by studies involving human tumors that have investigated different expression profiles of these molecules. As endogenous competitive RNA, circRNAs can regulate tumor proliferation and invasion and they arouse great consideration as potential therapeutic biomarkers and targets for cancer. In this review, we describe the most recent findings on circRNAs in the most common pediatric solid cancers (such as brain tumors, neuroblastomas, and sarcomas) and in more rare ones (such as Wilms tumors, hepatoblastomas, and retinoblastomas).
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Marta Colletti
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Alessandro Palma
- Translational Cytogenomics Research Unit, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
| | - Angela Di Giannatale
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS, Bambino Gesù Children’s Hospital, Viale San Paolo 15, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
13
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
14
|
Li F, Yin YK, Zhang JT, Gong HP, Hao XD. Role of circular RNAs in retinoblastoma. Funct Integr Genomics 2022; 23:13. [PMID: 36547723 DOI: 10.1007/s10142-022-00942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Retinoblastoma (RB), the most common malignant retinal tumor among children under 3 years old, is lethal if left untreated. Early diagnosis, together with timely and effective treatment, is important to improve retinoblastoma-related outcomes. Circular RNAs (circRNAs), a new class of non-coding RNAs with the capacity to regulate cellular activities, have great potential in retinoblastoma diagnosis and treatment. Recent studies have identified circular RNAs that regulate multiple cellular processes involved in retinoblastoma, including cell viability, proliferation, apoptosis, autophagy, migration, and invasion. Six circular RNAs (circ-FAM158A, circ-DHDDS, circ-E2F3, circ-TRHDE, circ-E2F5, and circ-RNF20) promote disease progression and metastasis in retinoblastoma and function as oncogenic factors. Other circular RNAs, such as circ-TET1, circ-SHPRH, circ-MKLN1, and circ-CUL2, play tumor suppressive roles in retinoblastoma. At present, the studies on the regulatory mechanism of circular RNAs in retinoblastoma are not very clear. The purpose of this review is to summarize recent studies on the functional roles and molecular mechanisms of circular RNAs in retinoblastoma and highlight novel strategies for retinoblastoma diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Fei Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yi-Ke Yin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Ji-Tao Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hai-Pai Gong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
15
|
hsa_circ_0084811 Regulates Cell Proliferation and Apoptosis in Retinoblastoma through miR-18a-5p/miR-18b-5p/E2F5 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6918396. [PMID: 35909488 PMCID: PMC9325647 DOI: 10.1155/2022/6918396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Background Retinoblastoma (RB) is the commonest primary intraocular malignancy during childhood. Circular RNAs (circRNAs) act as regulators in RB development, and hsa_circ_E2F5 (circ_0084811 in this study) was found to be highly expressed in RB cells, so we wanted to identify its detailed molecular mechanism. Methods The expression level of circ_0084811 in RB cells was tested by RT-qPCR and its effects on RB cells were evaluated through functional assays. The regulatory mechanism that circ_0084811 may exert in RB progression was testified through mechanism experiments. Results High circ_0084811 expression in RB cells facilitated cell proliferation but inhibited cell apoptosis. The enrichment of acetylation of histone 3 lysine 27 (H3K27ac) in circ_0084811 promoter induced circ_0084811 upregulation. Moreover, circ_0084811 regulated E2F transcription factor 5 (E2F5) expression via sponging microRNA-18a-5p (miR-18a-5p) and microRNA-18b-5p (miR-18b-5p). Conclusion circ_0084811 modulated RB progression via the miR-18a-5p/miR-18b-5p/E2F5 axis.
Collapse
|
16
|
Han Q, Ma L, Shao L, Wang H, Feng M. Circ_0075804 regulates the expression of LASP1 by Targeting miR-1287-5p and thus affects the biological process of retinoblastoma. Curr Eye Res 2022; 47:1077-1086. [PMID: 35285372 DOI: 10.1080/02713683.2022.2053164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Increasing evidence reveals that circular RNA (circRNA) dysregulation is involved in retinoblastoma (RB) pathogenesis. To further realize the development of RB, we investigated the role and regulatory mechanism of circ_0075804 in RB. METHODS Real-time quantitative PCR (RT-qPCR) and western blot were employed for expression analysis. CCK-8 assay, EdU assay, colony formation assay, flow cytometry assay and transwell assay were performed to monitor cell phenotypes. Xenograft models were established to monitor the role of circ_0075804 on tumor growth. Tumor growth was assessed by the expression of Ki67, N-cadherin, MMP2 and MMP9 via IHC assay. The predicted binding sites between miR-1287-5p and circ_0075804 or LIM and SH3 protein 1 (LASP1) were validated by dual-luciferase reporter assay. RESULTS Upregulation of circ_0075804 and LASP1, and downregulation of miR-1287-5p were shown in RB tissues and cells. Circ_0075804 knockdown repressed RB cell growth, invasion and survival, and hindered tumor development in vivo. MiR-1287-5p was targeted by circ_0075804, and its repression largely reversed the functional effects of circ_0075804 knockdown. LASP1 was a functional target of miR-1287-5p. The inhibition of miR-1287-5p upregulation on RB cell proliferation, survival and invasion was reversed by LASP1 overexpression. Moreover, circ_0075804 knockdown weakened LASP1 expression via increasing miR-1287-5p. CONCLUSION Circ_0075804 promotes LASP1 expression by targeting miR-1287-5p, thus acting as a contributor to RB carcinogenesis.Highlights:Circ_0075804 is overexpressed in RB.Circ_0075804 knockdown inhibits RB cell malignant phenotypes and tumor growth in vivo.Circ_0075804 regulates RB cell behaviors by targeting miR-1287-5p.MiR-1287-5p affects RB cell behaviors by binding to LASP1.Circ_0075804 regulates LASP1 expression via targeting miR-1287-5p.
Collapse
Affiliation(s)
- Qichao Han
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| | - Lan Ma
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| | - Li Shao
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| | - Hong Wang
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| | - Meiyan Feng
- Department of Ophtalmology, Zaozhuang Municipal Hospital Shandong Province, Zaozhuang Shandong, China
| |
Collapse
|
17
|
Zhang H, Qiu X, Song Z, Lan L, Ren X, Ye B. CircCUL2 suppresses retinoblastoma cells by regulating miR-214-5p/E2F2 Axis. Anticancer Drugs 2022; 33:e218-e227. [PMID: 34387590 DOI: 10.1097/cad.0000000000001190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the effect of circCUL2 on the proliferation, invasion and migration of retinoblastoma cells by regulating the miR-214-5p/E2F2 axis. qRT-PCR and western blot were performed to detect the expressions of circCUL2, miR-214-5p and E2F2 in tumor tissues and adjacent normal tissues from retinoblastoma patients, and in normal human retinal epithelial cells ARPE-19 and human retinoblastoma cells Y79 and SO-Rb50. qRT-PCR and western blot were performed for the detection of RNA levels of circCUL2 and miR-214-5p and the mRNA and protein levels of E2F2, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay for cell proliferation ability, Transwell assay for cell invasion ability, and scratch assay for cell migration ability. Luciferase dual reporter assay was used to detect the targeting relationship between circCUL2 and miR-214-5p, and between miR-214-5p and E2F2. CircCUL2 and E2F2 were lowly expressed, while miR-214-5p was highly expressed in retinoblastoma tumor tissues and cells. Transfection with pcDNA3.1-CUL2 or miR-214-5p inhibitor inhibited the proliferation, invasion and migration of Y79 and SO-Rb50 cells compared with the negative control; while transfection with sh-CUL2 or miR-214-5p mimics promoted the proliferation, invasion and migration of Y79 and SO-Rb50 cells. CircCUL2 negatively regulated miR-214-5p, while miR-214-5p negatively regulated E2F2. Overexpression of miR-214-5p or silencing of E2F2 in SO-Rb50 cells partially reversed the inhibitory effect of circCUL2 on the proliferation, invasion and migration of retinoblastoma cells. CircCUL2 inhibited the proliferation, invasion and migration of retinoblastoma cells by regulating the miR-214-5p/E2F2 axis.
Collapse
Affiliation(s)
| | - XinWen Qiu
- Nanchang Aier Eye Hospital, Nanchang, Jiangxi, P.R. China
| | - ZhiJie Song
- Nanchang Aier Eye Hospital, Nanchang, Jiangxi, P.R. China
| | - LiXia Lan
- Nanchang Aier Eye Hospital, Nanchang, Jiangxi, P.R. China
| | - Xuan Ren
- Nanchang Aier Eye Hospital, Nanchang, Jiangxi, P.R. China
| | - Bo Ye
- Nanchang Aier Eye Hospital, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
18
|
Liang T, Fan M, Meng Z, Sun B, Mi S, Gao X. Circ_0000527 Drives Retinoblastoma Progression by Regulating miR-1236-3p/SMAD2 Pathway. Curr Eye Res 2021; 47:624-633. [PMID: 34963405 DOI: 10.1080/02713683.2021.2007535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Circular RNAs (circRNAs) play essential roles in the progression of human tumors, including retinoblastoma (RB). In this study, we aimed to explore the functions and potential mechanisms of circ_0000527 in RB. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR), Western blot assay and immunohistochemistry (IHC) assay were conducted to determine the levels of circ_0000527, microRNA-1236-3p (miR-1236-3p) and SMAD family member 2 (SMAD2). RNase R assay and actinomycin D assay were conducted to analyze the characteristic of circ_0000527. Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, and colony formation assay were performed for cell proliferation ability. Wound healing assay and transwell assay were applied to assess cell migration and invasion. Tube formation assay was utilized for angiogenesis ability. Flow cytometry analysis was adopted to analyze cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to analyze the relationships among circ_0000527, miR-1236-3p, and SMAD2. Murine xenograft model assay was conducted for the role of circ_0000527 in vivo. RESULTS Circ_0000527 was overexpressed in RB patients and related to advanced TNM stages, optic nerve invasion and choroidal invasion. Circ_0000527 knockdown suppressed cell proliferation, migration, invasion and angiogenesis and promoted apoptosis in RB cells in vitro. Circ_0000527 sponged miR-1236-3p, which directly targeted SMAD2. MiR-1236-3p level was decreased in RB tissues and cells. MiR-1236-3p inhibition reversed circ_0000527 knockdown-mediated effects on RB cell malignant behaviors. Moreover, miR-1236-3p overexpression suppressed RB cell progression, with SMAD2 elevation abrogated the effect. Additionally, circ_0000527 knockdown restrained tumor formation in vivo. CONCLUSIONS Circ_0000527/miR-1236-3p/SMAD2 axis played a positive role in the progression of RB.
Collapse
Affiliation(s)
- Ting Liang
- Department of Ophthalmology, 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming Fan
- Department of Cardiovascular Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhaojun Meng
- Department of Ophthalmology, 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bo Sun
- Department of Ophthalmology, 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shuyong Mi
- Department of Ophthalmology, 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiangchun Gao
- Department of Ophthalmology, 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
19
|
Zuo X, Fu C, Xie J, Wang X, Yan Z. Hsa_circ_0000527 Downregulation Suppresses the Development of Retinoblastoma by Modulating the miR-27a-3p/HDAC9 Pathway. Curr Eye Res 2021; 47:115-126. [PMID: 34823425 DOI: 10.1080/02713683.2021.1925697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Accumulating evidence indicates that the progression of retinoblastoma (RB) may involve circRNA dysfunction. We aimed to disclose the role of hsa_circ_0000527 and its potential functional mechanism in RB. METHODS The expression of hsa_circ_0000527, miR-27a-3p and histone deacetylase 9 (HDAC9) mRNA was monitored using quantitative real-time polymerase chain reaction (qPCR). Functional assays, including cell proliferation and apoptosis, were investigated using cell counting kit-8 (CCK-8) assay, colony formation assay and flow cytometry assay. The expression of apoptosis-associated proteins and HDAC9 protein was detected by western blot. The targeting relationship between miR-27a-3p and hsa_circ_0000527 or HDAC9 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Besides, Xenograft models were constructed to confirm the effect of hsa_circ_0000527 in vivo. RESULTS Hsa_circ_0000527 and HDAC9 were upregulated, while miR-27a-3p was downregulated in RB tissues and cells. Hsa_circ_0000527 downregulation repressed RB cell proliferation and induced RB cell apoptosis. MiR-27a-3p was a target of hsa_circ_0000527, and hsa_circ_0000527 suppressed the expression of miR-27a-3p. MiR-27a-3p inhibition reversed the role of hsa_circ_0000527 downregulation. In addition, HDAC9 was a target of miR-27a-3p, and hsa_circ_0000527 indirectly regulated HDAC9 expression by targeting miR-27a-3p. MiR-27a-3p restoration inhibited RB cell proliferation and promoted apoptosis, which was reversed by HDAC9 overexpression. Hsa_circ_0000527 downregulation could inactivate the PI3K/AKT pathway. Moreover, hsa_circ_0000527 downregulation blocked tumor growth rate in vivo. CONCLUSION hsa_circ_0000527 downregulation blocked the progression of RB by regulating the miR-27a-3p/HDAC9 pathway, which might be associated with the inactivation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Changjiang Fu
- Department of Cardiac Surgery, Xingtai Third Hospital, Xingtai, Hebei, China
| | - Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Zhen Yan
- Department of Ophthalmology, Xingtai People's Hospital, Xingtai, Hebei, China
| |
Collapse
|
20
|
circ-SIRT1 Promotes Colorectal Cancer Proliferation and EMT by Recruiting and Binding to eIF4A3. Anal Cell Pathol (Amst) 2021; 2021:5739769. [PMID: 34660182 PMCID: PMC8519704 DOI: 10.1155/2021/5739769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/06/2023] Open
Abstract
Circular RNA (circRNA), a recently identified type of endogenous noncoding RNA, has been implicated in the occurrence and development of a variety of tumors; however, whether circ-SIRT1, derived from pre-mRNA of the parental SIRT1 gene, is involved in colorectal cancer (CRC) remains unknown, as do the potential underlying mechanisms. The expression of circ-SIRT1 in CRC cells and tissue was detected by RT-qPCR. Colony formation and Cell Counting Kit-8 assays were used to evaluate the effect of circ-SIRT1 knockdown on the proliferative ability of CRC cells. Wound healing and Transwell assays were used to assess the effect of circ-SIRT1 knockdown on the migratory and invasive capacity of CRC cells. RNA immunoprecipitation and RNA pull-down assays were employed to validate the binding of circ-SIRT1 to EIF4A3. Western blot was used to identify the changes in the expression of EIF4A3 and EMT-related proteins. The RT-qPCR results showed that circ-SIRT1 was highly expressed in CRC cells and tissue and was positively correlated with the depth of tumor invasion. Knocking down circ-SIRT1 inhibited the proliferation and invasion of CRC cells and EMT. We further found that EIF4A3 could bind to circ-SIRT1, and that overexpressing circ-SIRT1 decreased the abundance of EIF4A3 at the mRNAs of the EMT marker proteins N-cadherin and vimentin. Combined, our findings suggested that circ-SIRT1 regulates the expression of EMT-related proteins by preventing EIF4A3 recruitment to the respective mRNAs. Our results further indicate that circ-SIRT1 functions as an oncogene in CRC by promoting the proliferation, invasion, and EMT of CRC cells through the circ-SIRT1/EIF4A3/N-cadherin/vimentin pathway.
Collapse
|
21
|
Zhang Y, Dou X, Kong Q, Li Y, Zhou X. Circ_0075804 promotes the malignant behaviors of retinoblastoma cells by binding to miR-138-5p to induce PEG10 expression. Int Ophthalmol 2021; 42:509-523. [PMID: 34633608 DOI: 10.1007/s10792-021-02067-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND It has been gradually recognized that circular RNAs (circRNAs) are important modulators in multiple malignancies. Here, we analyzed the function of circ_0075804 and explored its associated mechanism in regulating retinoblastoma (RB) progression. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were utilized to measure RNA and protein expression, respectively. Cell proliferation was analyzed by Cell counting kit-8 (CCK8) assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay. Cell apoptosis was assessed by flow cytometry. Cell migration and invasion abilities were analyzed by wound healing assay and transwell invasion assay. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to verify intermolecular target relations. Xenograft tumor model was used to analyze the role of circ_0075804 in tumor growth in vivo. RESULTS Circ_0075804 expression was markedly up-regulated in RB tissues and cell lines. Circ_0075804 knockdown restrained the proliferation, migration and invasion whereas promoted the apoptosis of RB cells. Circ_0075804 acted as a molecular sponge for microRNA-138-5p (miR-138-5p), and circ_0075804 silencing-induced effects were partly reversed by miR-138-5p knockdown in RB cells. MiR-138-5p interacted with the 3' untranslated region (3'UTR) of paternally expressed 10 (PEG10). Circ_0075804 positively regulated PEG10 level by sponging miR-138-5p in RB cells. PEG10 overexpression largely overturned miR-138-5p overexpression-mediated effects in RB cells. Circ_0075804 knockdown blocked xenograft tumor growth in vivo. CONCLUSION Circ_0075804 promoted RB progression via miR-138-5p-dependent regulation of PEG10, which provided new insight in RB therapy.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Ophthalmology, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, No. 18 Zetian Road, Futian District, Shenzhen, 518040, Guangdong Province, China.
| | - Xiaoyan Dou
- Department of Ophthalmology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Qinghui Kong
- Department of Ophthalmology, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong Province, China
| | - Yuying Li
- Department of Ophthalmology, School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, Guangdong Province, China
| | - Xing Zhou
- Department of Ophthalmology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
22
|
Das A, Sinha T, Shyamal S, Panda AC. Emerging Role of Circular RNA-Protein Interactions. Noncoding RNA 2021; 7:48. [PMID: 34449657 PMCID: PMC8395946 DOI: 10.3390/ncrna7030048] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are emerging as novel regulators of gene expression in various biological processes. CircRNAs regulate gene expression by interacting with cellular regulators such as microRNAs and RNA binding proteins (RBPs) to regulate downstream gene expression. The accumulation of high-throughput RNA-protein interaction data revealed the interaction of RBPs with the coding and noncoding RNAs, including recently discovered circRNAs. RBPs are a large family of proteins known to play a critical role in gene expression by modulating RNA splicing, nuclear export, mRNA stability, localization, and translation. However, the interaction of RBPs with circRNAs and their implications on circRNA biogenesis and function has been emerging in the last few years. Recent studies suggest that circRNA interaction with target proteins modulates the interaction of the protein with downstream target mRNAs or proteins. This review outlines the emerging mechanisms of circRNA-protein interactions and their functional role in cell physiology.
Collapse
Affiliation(s)
- Arundhati Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; (A.D.); (T.S.); (S.S.)
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Tanvi Sinha
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; (A.D.); (T.S.); (S.S.)
| | - Sharmishtha Shyamal
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; (A.D.); (T.S.); (S.S.)
| | - Amaresh Chandra Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar 751023, India; (A.D.); (T.S.); (S.S.)
| |
Collapse
|
23
|
New Molecular Mechanisms and Clinical Impact of circRNAs in Human Cancer. Cancers (Basel) 2021; 13:cancers13133154. [PMID: 34202482 PMCID: PMC8268751 DOI: 10.3390/cancers13133154] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Circular RNAs (circRNAs) belong to a new class of non-coding RNAs implicated in cellular physiological functions but also in the evolution of various human pathologies. Due to their circular shape, circRNAs are resistant to degradation by exonuclease activity, making them more stable than linear RNAs. Several findings reported that circRNAs are aberrantly modulated in human cancer tissues, thus affecting carcinogenesis and metastatization. We aim to report the most recent and relevant results about novel circRNA functions and molecular regulation, to dissert about their role as reliable cancer biomarkers, and to hypothesize their contribution to multiple hallmarks of cancer. Abstract Next generation RNA sequencing techniques, implemented in the recent years, have allowed us to identify circular RNAs (circRNAs), covalently closed loop structures resulting in RNA molecules that are more stable than linear RNAs. This class of non-coding RNA is emerging to be involved in a variety of cell functions during development, differentiation, and in many diseases, including cancer. Among the described biological activities, circRNAs have been implicated in microRNA (miRNA) sequestration, modulation of protein–protein interactions and regulation of mRNA transcription. In human cancer, circRNAs were implicated in the control of oncogenic activities such as tumor cell proliferation, epithelial-mesenchymal transition, invasion, metastasis and chemoresistance. The most widely described mechanism of action of circRNAs is their ability to act as competing endogenous RNAs (ceRNAs) for miRNAs, lncRNAs and mRNAs, thus impacting along their axis, despite the fact that a variety of additional mechanisms of action are emerging, representing an open and expanding field of study. Furthermore, research is currently focusing on understanding the possible implications of circRNAs in diagnostics, prognosis prediction, effectiveness of therapies and, eventually, therapeutic intervention in human cancer. The purpose of this review is to discuss new knowledge on the mechanisms of circRNA action, beyond ceRNA, their impact on human cancer and to dissect their potential value as biomarkers and therapeutic targets.
Collapse
|
24
|
Yu J, Yang L, Lu H. The emerging role of circular RNAs in common solid malignant tumors in children. Cancer Cell Int 2021; 21:309. [PMID: 34116651 PMCID: PMC8196486 DOI: 10.1186/s12935-021-01998-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 01/12/2023] Open
Abstract
Malignant tumors are one of the fatal diseases that threaten children’s physical and mental health and affect their development. Research has shown that the occurrence and development of malignant tumors are associated with the abnormal expression and regulation of genes. Circular RNAs (circRNAs) are noncoding RNAs that have a closed circular structure, with a relatively stable expression, and do not undergo exonuclease-mediated degradation readily. Recent studies have shown that circRNA plays an important role in the occurrence, metastasis, and invasion of solid malignant tumors (SMTs) in children. Thus, circRNA is being considered as a breakthrough in the treatment of SMTs in children. In this review, we describe the functions and mechanisms of circRNAs involved in SMTs in children oncogenesis, and summarize the roles of circRNAs in regulating cell proliferation, cell apoptotic death, the cell cycle, cell migrative and invasive ability, epithelial-mesenchymal transition (EMT), cancer stem cells and drug resistance in SMTs in children. In addition, we also discuss the role of circRNAs in the early diagnosis, pathological grading, targeted therapy, and prognosis evaluation of common SMTs in children. CircRNAs are likely to provide a novel direction in therapy in SMTs of children.
Collapse
Affiliation(s)
- Jiabin Yu
- Qingdao University, Qingdao, Shandong, China.,Surgical Center of Women and Children's Hospital, Qingdao University, No. 6, Tongfu Rd, Shibei District, Qingdao, 266011, Shandong, China
| | - Li Yang
- Qingdao University, Qingdao, Shandong, China.,Surgical Center of Women and Children's Hospital, Qingdao University, No. 6, Tongfu Rd, Shibei District, Qingdao, 266011, Shandong, China
| | - Hongting Lu
- Surgical Center of Women and Children's Hospital, Qingdao University, No. 6, Tongfu Rd, Shibei District, Qingdao, 266011, Shandong, China.
| |
Collapse
|
25
|
Song J, Zhang Z. Long non‑coding RNA SNHG20 promotes cell proliferation, migration and invasion in retinoblastoma via the miR‑335‑5p/E2F3 axis. Mol Med Rep 2021; 24:543. [PMID: 34080033 DOI: 10.3892/mmr.2021.12182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/08/2021] [Indexed: 11/05/2022] Open
Abstract
Current therapies for retinoblastoma (RB) are unsatisfactory and there is an urgent need for the development of new treatment modalities. Small nucleolar RNA host gene 20 (SNHG20) has been reported to serve a key oncogenic role in the development of various types of cancer, but its role in RB tumorigenesis remains to be fully determined. The present study aimed to investigate the expression patterns and biological roles of SNHG20 in RB. The expression levels of SNHG20 were measured via reverse transcription‑quantitative PCR in RB tissues and cell lines. The impact of SNHG20 status on cell proliferation, survival, migration and invasion was determined using small interfering RNA and a range of established experimental assays. The SNHG20/microRNA (miR)‑335‑5p/E2F transcription factor 3 (E2F3) signaling axis was further investigated using a dual‑luciferase activity reporter system and an RNA pull‑down assay combined with bioinformatics analyses. SNHG20 expression was significantly increased in RB tissues and cell lines. Silencing of SNHG20 in RB cells was shown to inhibit cell proliferation, clonogenic survival, migration and invasion. Moreover, mechanistic investigations demonstrated that SNHG20 could enhance the expression of E2F3 by sponging of miR‑335‑5p. These data suggested that the long non‑coding RNA SNHG20 may promote cell proliferation, migration and invasion in RB via the miR‑335‑5p/E2F3 axis.
Collapse
Affiliation(s)
- Jing Song
- Department of Ophthalmology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| | - Ziping Zhang
- Department of Ophthalmology, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| |
Collapse
|
26
|
Xu L, Long H, Zhou B, Jiang H, Cai M. CircMKLN1 Suppresses the Progression of Human Retinoblastoma by Modulation of miR-425-5p/PDCD4 Axis. Curr Eye Res 2021; 46:1751-1761. [PMID: 33988065 DOI: 10.1080/02713683.2021.1927110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: Circular RNAs (circRNAs) are essential regulators in tumorigenesis and development. In this study, we focused on the functions of circRNA muskelin 1 (circMKLN1) in retinoblastoma (RB) progression.Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) assay was conducted to determine the levels of circMKLN1, microRNA-425-5p (miR-425-5p) and programmed cell death 4 (PDCD4). The characteristic of circMKLN1 was analyzed using RNase R assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were employed to explore cell proliferation ability. The transwell assay was utilized for cell migration and invasion. A Western blot assay was performed for protein levels. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to demonstrate the relationships among circMKLN1, miR-425-5p and PDCD4. Murine xenograft model assay was adopted to investigate the role of circMKLN1 in vivo.Results: CircMKLN1 was downregulated in RB tissues and cells. High levels of circMKLN1 were related to a favorable outcome of RB patients. CircMKLN1 was resistant to RNase R digestion and circMKLN1 overexpression repressed RB cell proliferation, migration and invasion in vitro. MiR-425-5p was identified as the target of circMKLN1 and miR-425-5p elevation reversed the effects of circMKLN1 overexpression on RB cell malignant behaviors. Furthermore, as the target gene of miR-425-5p, PDCD4 silencing could ameliorate the suppressive roles of circMKLN1 in RB cell growth and metastasis. Additionally, circMKLN1 overexpression hampered tumor growth in vivo.Conclusions: CircMKLN1 overexpression decelerated the progression of RB through sponging miR-425-5p and elevating PDCD4.
Collapse
Affiliation(s)
- Le Xu
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| | - Hua Long
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| | - Bo Zhou
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| | - Haibo Jiang
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| | - Mingfang Cai
- Department of Ophthalmology, Suizhou Hospital, Hubei University of Medicine, Suizhou City, Hubei Province, China
| |
Collapse
|
27
|
Fu C, Wang S, Jin L, Zhang M, Li M. CircTET1 Inhibits Retinoblastoma Progression via Targeting miR-492 and miR-494-3p through Wnt/β-catenin Signaling Pathway. Curr Eye Res 2021; 46:978-987. [PMID: 33108919 DOI: 10.1080/02713683.2020.1843685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Retinoblastoma (RB) is a frequent intraocular malignancy in children. Circular RNA (circRNA) plays an essential role in regulating the occurrence and development of tumors. This study aimed at investigating the function and molecular basis of hsa_circ_0093996 (circTET1) in RB.Methods: The expression of circTET1, miR-492 and miR-494-3p was examined using quantitative real-time polymerase chain reaction. Cell proliferation, cycle arrest, apoptosis, migration and invasion of RB cells were detected using Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, scratch assay and transwell analysis, respectively. The levels of matrix metalloproteinase (MMP) 2, MMP9 and Wnt/β-catenin pathway-related proteins were measured via western blot assay. The association between circTET1 and miR-492/miR-494-3p was validated via dual-luciferase reporter assay and RNA pull-down assay. Xenograft assay was employed to analyze tumor growth in vivo.Results: CircTET1 level was reduced, while miR-492 and miR-494-3p levels were increased in RB tissues and cells. Overexpression of circTET1 inhibited proliferation, migration and invasion, and promoted apoptosis and cell cycle arrest in Y79 and WERI-Rb1 cells. Moreover, circTET1 impeded RB cell progression by sponging miR-492/miR-494-3p. Also, up-regulation of circTET1 restrained Wnt/β-catenin pathway via regulating miR-492 and miR-494-3p. Furthermore, circTET1 suppressed tumor growth in xenograft models.Conclusion: CircTET1 inhibited RB progression by sponging miR-492/miR-494-3p and inactivating the Wnt/β-catenin pathway, which provided new insights for RB treatment.
Collapse
Affiliation(s)
- Changbo Fu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Suchang Wang
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Lei Jin
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Minmin Zhang
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| | - Mengmeng Li
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Ophthalmology, The Affiliated Hospital of China University of Mining and Technology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China.,Department of Ophthalmology, Xuzhou Eye Research Institute, Xuzhou, Jiangsu, China
| |
Collapse
|
28
|
Circ-E2F3 acts as a ceRNA for miR-204-5p to promote proliferation, metastasis and apoptosis inhibition in retinoblastoma by regulating ROCK1 expression. Exp Mol Pathol 2021; 120:104637. [PMID: 33844975 DOI: 10.1016/j.yexmp.2021.104637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/29/2020] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Circular RNA (circRNA) plays an important role in the malignant progression of many tumors, including retinoblastoma (RB). However, the role and regulatory mechanism of circ-E2F3 in RB have not been fully elucidated. METHODS Quantitative real-time PCR was used to measure circ-E2F3, miR-204-5p and Rho-associated protein kinase 1 (ROCK1) expression. Cell proliferation, apoptosis and metastasis were monitored by MTT, colony formation, flow cytometry, transwell and wound healing assays. Dual-luciferase reporter assay was employed to verify the relationship between miR-204-5p and circ-E2F3 or ROCK1. ROCK1 protein expression was detected by western blot assay. Mice xenograft models were built to assess the role of circ-E2F3 on RB tumor growth. RESULTS Circ-E2F3 was upregulated in RB tissues and cells. Silencing of circ-E2F3 inhibited the proliferation, migration, invasion, and induced the apoptosis of RB cells in vitro, as well as reduced RB tumor growth in vivo. MiR-204-5p could be sponged by circ-E2F3, and its inhibitor reversed the suppressive effect of circ-E2F3 silencing on RB progression. In addition, ROCK1 was confirmed to interact with miR-204-5p. MiR-204-5p regulated RB progression by targeting ROCK1. Also, circ-E2F3 positively regulated ROCK1 expression by sponging miR-204-5p. CONCLUSION Circ-E2F3 functioned as a tumor promoter in RB through the miR-204-5p/ROCK1 axis.
Collapse
|
29
|
Jiang Y, Xiao F, Wang L, Wang T, Chen L. Hsa_circ_0099198 facilitates the progression of retinoblastoma by regulating miR-1287/LRP6 axis. Exp Eye Res 2021; 206:108529. [PMID: 33676964 DOI: 10.1016/j.exer.2021.108529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
Retinoblastoma (RB) is an intraocular malignancy that occurs in children. Circular RNAs (circRNAs) have been confirmed to play an essential role in tumorigenesis and development. This study aimed to ascertain the role and potential mechanism of hsa_circ_0099198 in RB. The levels of circ_0099198, microRNA-1287 (miR-1287) and low-density lipoprotein receptor-related protein 6 (LRP6) were determined by real-time quantitative polymerase chain reaction and Western blot. Cell proliferation was assessed by colony formation assay. Cell cycle arrest and apoptosis were evaluated by flow cytometry. Cell migration and invasion were tested using transwell assay. The activity of caspase-3/caspase-9 was examined with commercial kits. The interaction among circ_0099198, miR-1287 and LRP6 were verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay or RNA pull-down assay. Xenograft experiment was used to assess tumor growth in vivo. circ_0099198 and LRP6 levels were increased, while miR-1287 level was reduced in RB cells. circ_0099198 silencing suppressed proliferation and metastasis and expedited cell cycle arrest and apoptosis in Y79 and So-RB50 cells. In addition, depletion of circ_0099198 inhibited RB cell progression via regulating miR-1287/LRP6 axis. Moreover, knockdown of circ_0099198 blocked the growth of xenograft tumors. circ_0099198 contributed to RB progression by sponging miR-1287 and up-regulating LRP6, which provided novel biomarkers for RB therapy.
Collapse
Affiliation(s)
- Yanhua Jiang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Fan Xiao
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Lin Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Ting Wang
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China
| | - Linlin Chen
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang City, Liaoning Province, China.
| |
Collapse
|
30
|
Wu X, Yan L, Liu Y, Shang L. Circ_0000527 promotes osteosarcoma cell progression through modulating miR-646/ARL2 axis. Aging (Albany NY) 2021; 13:6091-6102. [PMID: 33617480 PMCID: PMC7950279 DOI: 10.18632/aging.202602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/25/2020] [Indexed: 01/04/2023]
Abstract
Accumulating evidence shows that circRNAs play critical roles in the development of human tumors. We observed that circ_0000527 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared in hFOB1.19 cells. We demonstrated that the circ_0000527 level was higher in osteosarcoma specimens than in non-tumor specimens. The ectopic expression of circ_0000527 was shown to induce cell growth, cell cycle progression and the secretion of inflammatory mediators, including IL-1β, IL-6, IL-8 and TNF-α. We demonstrated that circ_0000527 sponges miR-646 in osteosarcoma cells and that ARL2 is a target gene of miR-646. MiR-646 expression was decreased and ARL2 was overexpressed in osteosarcoma cells (SAOS-2, HOS, MG-63 and U2OS) compared to hFOB1.19 cells. Overexpression of circ_0000527 was demonstrated to induce ARL2 expression in MG-63 cells. We showed that miR-646 was downregulated in osteosarcoma specimens compared to that of non-tumor specimens and that the level of circ_0000527 was negatively correlated with miR-646 expression in osteosarcoma specimens. The elevated expression of circ_0000527 was shown to promote cell growth and cell cycle progression by modulating miR-646 expression. The ectopic expression of circ_0000527 was shown to promote cell growth, cell cycle progression and the secretion of inflammatory mediators by modulating ARL2. The present study suggested that the circ_0000527/miR-646/ARL2 axis may be a potential treatment target for osteosarcoma.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang 473000, Henan, China
| |
Collapse
|
31
|
Wang X, Li H, Lu Y, Cheng L. Regulatory Effects of Circular RNAs on Host Genes in Human Cancer. Front Oncol 2021; 10:586163. [PMID: 33643900 PMCID: PMC7905086 DOI: 10.3389/fonc.2020.586163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded, covalent closed-loop RNAs with tissue-/development-specific expression patterns. circRNAs are stable and play oncogenic or tumor suppressive roles in various aspects of cancer, including tumorigenesis, proliferation, apoptosis, metastasis, invasion, chemo-therapeutic resistance, and prognosis. circRNAs act as miRNA/protein sponges, protein scaffold, or template for translation. Increasing evidence shows circRNAs contribute to cancer progression via modulating the expression or function of their host genes. In this review, we summarize the latest progress in the regulation of host genes by circRNAs in human cancer. The works on circRNAs mediated regulation of host genes enhance us to understand the interaction between circRNAs and their host genes in human cancer.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Wang X, Li H, Lu Y, Cheng L. Circular RNAs in Human Cancer. Front Oncol 2021; 10:577118. [PMID: 33537235 PMCID: PMC7848167 DOI: 10.3389/fonc.2020.577118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/02/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous single-stranded covalently closed RNAs, primarily produced from pre-mRNAs via non-canonical back-splicing. circRNAs are highly conserved, stable, and expressed in tissue- and development-specific pattern. circRNAs play essential roles in physiological process as well as cancer biology. By the advances of deep sequencing and bioinformatics, the number of circRNAs have increased explosively. circRNAs function as miRNA/protein sponge, protein scaffold, protein recruitment, enhancer of protein function, as well as templates for translation involved in the regulation of transcription/splicing, translation, protein degradation, and pri-miRNA processing in human cancers and contributed to the pathogenesis of cancer. Numerous circRNAs may function in diverse manners. In this review, we survey the current understanding of circRNA functions in human cancer including miRNA sponge, circRNA-protein interaction, and circRNA-encoded protein, and summarize available databases for circRNA annotation and functional prediction.
Collapse
Affiliation(s)
| | | | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ, Xu RH. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer 2020; 19:172. [PMID: 33317550 PMCID: PMC7734744 DOI: 10.1186/s12943-020-01286-3] [Citation(s) in RCA: 611] [Impact Index Per Article: 152.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/20/2020] [Indexed: 01/17/2023] Open
Abstract
Circular RNAs (CircRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across species ranging from viruses to mammals. Important advances have been made in the biogenesis, regulation, localization, degradation and modification of circRNAs. CircRNAs exert biological functions by acting as transcriptional regulators, microRNA (miR) sponges and protein templates. Moreover, emerging evidence has revealed that a group of circRNAs can serve as protein decoys, scaffolds and recruiters. However, the existing research on circRNA-protein interactions is quite limited. Hence, in this review, we briefly summarize recent progress in the metabolism and functions of circRNAs and elaborately discuss the patterns of circRNA-protein interactions, including altering interactions between proteins, tethering or sequestering proteins, recruiting proteins to chromatin, forming circRNA-protein-mRNA ternary complexes and translocating or redistributing proteins. Many discoveries have revealed that circRNAs have unique expression signatures and play crucial roles in a variety of diseases, enabling them to potentially act as diagnostic biomarkers and therapeutic targets. This review systematically evaluates the roles and mechanisms of circRNAs, with the hope of advancing translational medicine involving circRNAs.
Collapse
Affiliation(s)
- Wei-Yi Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ze-Rong Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jia Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - De-Shen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, P. R. China.
| |
Collapse
|
34
|
Sun Z, Zhang A, Hou M, Jiang T. Circular RNA hsa_circ_0000034 promotes the progression of retinoblastoma via sponging microRNA-361-3p. Bioengineered 2020; 11:949-957. [PMID: 32892696 PMCID: PMC8291869 DOI: 10.1080/21655979.2020.1814670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/09/2023] Open
Abstract
Retinoblastoma is the commonest eye cancer occurring in the pediatric population. Circular RNAs (circRNAs) are essential regulators of tumorigenesis and development. The current experiment delves into the function and molecular basis of hsa_circ_0000034 in retinoblastoma progression. In the study, these series of experiments noted an upregulation of hsa_circ_0000034 in retinoblastoma cell lines and tissues. Retinoblastoma patients with raised hsa_circ_0000034 expressions were more likely to possess a more progressive International Integrated Reporting Council (IIRC) stage and optic nerve invasion. hsa_circ_0000034 knockdown caused a marked suppression in the proliferation and invasion of retinoblastoma cells in vitro. Mechanistically, hsa_circ_0000034 appeared to serve as a competitive endogenous RNA (ceRNA) in retinoblastoma through miR-361-3p sponging. In conclusion, our data proved that hsa_circ_0000034 promoted the oncogenicity of retinoblastoma via regulation of miR-361-3p expression, a finding that may contribute toward retinoblastoma therapeutics.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, P.R. China
| | - Ai Zhang
- Fetal Medicine Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, P.R. China
| | - Mingyu Hou
- Department of Anesthesiology, Shanghai East Hospital, Ji’an Hospital, Jiangxi 343000, P. R. China
- Department of Anesthesiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Tao Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
35
|
Zhang C, Hu J, Yu Y. CircRNA Is a Rising Star in Researches of Ocular Diseases. Front Cell Dev Biol 2020; 8:850. [PMID: 33015046 PMCID: PMC7494781 DOI: 10.3389/fcell.2020.00850] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
A newly rediscovered subclass of noncoding RNAs, circular RNAs (circRNAs), is produced by a back-splicing mechanism with a covalently closed loop structure. They not only serve as the sponge for microRNAs (miRNAs) and proteins but also regulate gene expression and epigenetic modification, translate into peptides, and generate pseudogenes. Dysregulation of circRNA expression has opened a new chapter in the etiology of various human disorders, including cancer and cardiovascular, neurodegenerative, and ocular diseases. Recent studies recognized the vital roles that circRNAs played in the pathogenesis of various eye diseases, highlighting circRNAs as promising biomarkers for diagnosis and assessment of progression and prognosis. Interventions targeting circRNAs provide insights for developing novel treatments for these ocular diseases. This review summarizes our current perception of the properties, biogenesis, and functions of circRNAs and the development of circRNA researches related to ophthalmologic diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, glaucoma, corneal neovascularization, cataract, pterygium, proliferative vitreoretinopathy, retinoblastoma, and ocular melanoma.
Collapse
Affiliation(s)
- Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Xu B, Yang N, Liu Y, Kong P, Han M, Li B. Circ_cse1l Inhibits Colorectal Cancer Proliferation by Binding to eIF4A3. Med Sci Monit 2020; 26:e923876. [PMID: 32857753 PMCID: PMC7477927 DOI: 10.12659/msm.923876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) are involved in the growth of many tumors. However, the expression and possible role of circ_cse1l (hsa_circ_0060745) in colorectal cancer (CRC) are unclear. The present study was designed to explore the role of circ_cse1l in CRC. Material/Methods The levels of circ_cse1l expression in cancer tissues and serum samples of 50 patients with CRC and in control subjects were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). CCK-8, colony formation, transwell and wound healing assays were performed to assess the functions of circ_cse1l in CRC cell lines after overexpression. The relationship between circ_cse1l and eIF4A3 during cell proliferation was analyzed by western blotting and RNA-binding protein immunoprecipitation (RIP). Results qRT-PCR assays showed that the levels of expression of circ_cse1l were lower in CRC cell lines and in tissue and serum samples from patients with CRC than in control samples. The expression of circ_cse11 in CRC tissues had clinical significance, as its level of expression was inversely associated with the depth of tumor invasion. Overexpression of circ_cse1l in HT29 and HCT116 cells markedly reduced cell proliferation and metastasis. Western blotting showed that circ_cse1l overexpression dowregulated the expression of PCNA protein. RIP results demonstrated that circ_cse1l inhibited the proliferation of CRC cells by binding to eIF4A3. Conclusions The expression of circ_cse1l is downregulated in CRC. Furthermore, circ_cse1l downregulated PCNA expression by binding to eIF4A3, inhibiting the proliferation of CRC cells.
Collapse
Affiliation(s)
- Bin Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ning Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Yabin Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Mei Han
- Department of Biochemistry and Molecular Biology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Binghui Li
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
37
|
Zhang T, Yang J, Gong F, Li L, Li A. Long non-coding RNA CASC9 promotes the progression of retinoblastoma via interacting with miR-145-5p. Cell Cycle 2020; 19:2270-2280. [PMID: 32772636 DOI: 10.1080/15384101.2020.1802813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abnormal expression of long non-coding RNA cancer susceptibility candidate 9 (CASC9) has been found to play vital roles in many human tumors. However, the role and the regulatory mechanism of CASC9 have not yet been demonstrated in retinoblastoma (RB). Hence, we performed this study to explore the function and mechanism of CASC9 in RB. CASC9 expression was firstly detected in human RB tissues and cells. The influence of CASC9 on the malignant phenotypes of RB cells, including cell proliferation, invasion, epithelial-mesenchymal transition (EMT) and apoptosis, was analyzed by overexpressing or silencing CASC9. The association between CASC9, miR-145-5p and E2F transcription factor 3 (E2F3) was determined by dual-luciferase reporter assay and RNA immunoprecipitation. We found that CASC9 expression was elevated in RB tissues and cells. Overexpression of CASC9 significantly facilitated the proliferation, invasion and EMT of RB cells. On the contrary, knockdown of CASC9 inhibited the proliferation, invasion and EMT, while enhanced the apoptosis of RB cells. CASC9 acted as a competing endogenous RNA (ceRNA) for miR-145-5p to regulate E2F3. Additionally, miR-145-5p inhibitor and E2F3 overexpression both partly reversed the malignant phenotypes of RB cells affected by CASC9 knockdown. However, miR-145-5p overexpression further strengthened these features induced by CASC9 downregulation. These findings suggested that CASC9 contributed to RB development by regulating E2F3 via sponging miR-145-5p. CASC9 might be a possible therapeutic target for RB.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Abdomen Ultrasound, The First Hospital of Jilin University , Changchun, China
| | - Jingpu Yang
- Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Jilin University , Changchun, China
| | - Fangchao Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University , Changchun, China
| | - Lin Li
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University , Changchun, China
| | - Aipeng Li
- Department of Ophthalmology, The First Hospital of Jilin University , Changchun, Jilin, China
| |
Collapse
|