1
|
Roozitalab MR, Prekete N, Allen M, Grose RP, Louise Jones J. The Microenvironment in DCIS and Its Role in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:211-235. [PMID: 39821028 DOI: 10.1007/978-3-031-70875-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).The DCIS ME is unique, complex and dynamic. Myoepithelial cells form the wall of the ductal-lobular tree and exhibit broad tumour suppressor functions. However, in DCIS they acquire phenotypic changes that bestow them with tumour promoter properties, an important evolution since they act as the primary barrier for invasion. Changes in the peri-ductal stromal environment also arise in DCIS, including transformation of fibroblasts into cancer-associated fibroblasts (CAFs). CAFs orchestrate other changes in the stroma, including the physical structure of the extracellular matrix (ECM) through altered protein synthesis, as well as release of a plethora of factors including proteases, cytokines and chemokines that remodel the ECM. CAFs can also modulate the immune ME as well as impact on tumour cell signalling pathways. The heterogeneity of CAFs, including recognition of anti-tumourigenic populations, is becoming evident, as well as heterogeneity of immune cells and the interplay between these and the adipocyte and vascular compartments. Knowledge of the impact of these changes is more advanced in IBC but evidence is starting to accumulate for a role in DCIS. Detailed in vitro, in vivo and tissue studies focusing on the interplay between DCIS epithelial cells and the ME should help to define features that can better predict DCIS behaviour.
Collapse
Affiliation(s)
- Mohammad Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Niki Prekete
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
3
|
Sofroniou MM, Lemmon CA. Differential regulation of fibronectin expression and fibrillogenesis by autocrine TGF-β1 signaling in malignant and benign mammary epithelial cells. Int J Biochem Cell Biol 2023; 165:106478. [PMID: 37866655 PMCID: PMC10775780 DOI: 10.1016/j.biocel.2023.106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Remodeling of the extracellular matrix (ECM) is a key hallmark of cancer progression. A critical component of ECM remodeling is the assembly of the glycoprotein fibronectin (FN) into insoluble fibrils, which provide a scaffold for invading vascular endothelial cells and escaping cancer cells, as well as a framework for collagen deposition and oncogenic cytokine tethering. FN fibril assembly is induced by Transforming Growth Factor-β1 (TGF-β1), which was originally identified for its role in malignant transformation. Addition of exogenous TGF-β1 drives FN fibril assembly while also upregulating endogenous TGF-β1 expression and autocrine signaling. In the current study, we sought to determine if autocrine TGF-β1 signaling plays a role in FN fibril formation in either MCF10A mammary epithelial cells, which behave similarly to healthy epithelia, or malignant MDA- MB-231 breast cancer cells. Our results show two interesting findings: first, malignant MDA-MB- 231 cells assemble less FN into fibrils, despite expressing and secreting more soluble FN; second, autocrine TGF-β1 signaling is required for FN fibril formation in MCF10A epithelial cells, even in the presence of exogenous, active TGF-β1. This suggests that autocrine TGF-β1 is signaling through distinct pathways from active exogenous TGF-β1. We hypothesized that this signaling was mediated by interactions between the TGF-β1 latency associated peptide (LAP) and αv integrins; indeed, incubating MCF10As with soluble LAP, even in the absence of the active TGF-β1 ligand, partially recovered FN fibril assembly. Taken together, these data suggests that autocrine TGF-β1 plays a critical role in FN fibril assembly, and this interaction is mediated by LAP-integrin signaling.
Collapse
Affiliation(s)
- Michael M Sofroniou
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA 23284, USA
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 410 West Main St., Richmond, VA 23284, USA.
| |
Collapse
|
4
|
Waddell SH, Yao Y, Olaizola P, Walker A, Jarman EJ, Gournopanos K, Gradinaru A, Christodoulou E, Gautier P, Boerrigter MM, Cadamuro M, Fabris L, Drenth JPH, Kendall TJ, Banales JM, Khamseh A, Mill P, Boulter L. A TGFβ-ECM-integrin signaling axis drives structural reconfiguration of the bile duct to promote polycystic liver disease. Sci Transl Med 2023; 15:eabq5930. [PMID: 37703354 PMCID: PMC7615241 DOI: 10.1126/scitranslmed.abq5930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
The formation of multiple cysts in the liver occurs in a number of isolated monogenic diseases or multisystemic syndromes, during which bile ducts develop into fluid-filled biliary cysts. For patients with polycystic liver disease (PCLD), nonsurgical treatments are limited, and managing life-long abdominal swelling, pain, and increasing risk of cyst rupture and infection is common. We demonstrate here that loss of the primary cilium on postnatal biliary epithelial cells (via the deletion of the cilia gene Wdr35) drives ongoing pathological remodeling of the biliary tree, resulting in progressive cyst formation and growth. The development of cystic tissue requires the activation of transforming growth factor-β (TGFβ) signaling, which promotes the expression of a procystic, fibronectin-rich extracellular matrix and which itself is perceived by a changing profile of integrin receptors on the cystic epithelium. This signaling axis is conserved in liver cysts from patients with either autosomal dominant polycystic kidney disease or autosomal dominant polycystic liver disease, indicating that there are common cellular mechanisms for liver cyst growth regardless of the underlying genetic cause. Cyst number and size can be reduced by inhibiting TGFβ signaling or integrin signaling in vivo. We suggest that our findings represent a therapeutic route for patients with polycystic liver disease, most of whom would not be amenable to surgery.
Collapse
Affiliation(s)
- Scott H Waddell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Yuelin Yao
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
- School of Informatics- University of Edinburgh- Edinburgh- UK, EH8 9AB
| | - Paula Olaizola
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain, 20014
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK EH16 4TJ
| | - Alexander Walker
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Edward J Jarman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Konstantinos Gournopanos
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Andreea Gradinaru
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Ersi Christodoulou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Philippe Gautier
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Melissa M Boerrigter
- Department of Gastroenterology and Hepatology, Radboud University, Nijmegen Medical Center- 6525 GA Nijmegen- Netherlands
| | | | - Luca Fabris
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joost PH Drenth
- Department of Gastroenterology and Hepatology, Radboud University, Nijmegen Medical Center- 6525 GA Nijmegen- Netherlands
| | - Timothy J Kendall
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK EH16 4TJ
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain, 20014
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, “Instituto de Salud Carlos III”, 28029 Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ava Khamseh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
- School of Informatics- University of Edinburgh- Edinburgh- UK, EH8 9AB
| | - Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh- Edinburgh- UK, EH4 2XU
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, Edinburgh, UK, EH4 2XU
| |
Collapse
|
5
|
Pawar JS, Al-Amin MY, Hu CD. JNJ-64619178 radiosensitizes and suppresses fractionated ionizing radiation-induced neuroendocrine differentiation (NED) in prostate cancer. Front Oncol 2023; 13:1126482. [PMID: 36959798 PMCID: PMC10028149 DOI: 10.3389/fonc.2023.1126482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Background Radiation therapy (RT) is a standard treatment regimen for locally advanced prostate cancer; however, its failure results in tumor recurrence, metastasis, and cancer-related death. The recurrence of cancer after radiotherapy is one of the major challenges in prostate cancer treatment. Despite overall cure rate of 93.3% initially, prostate cancer relapse in 20-30% patients after radiation therapy. Cancer cells acquire radioresistance upon fractionated ionizing radiation (FIR) treatment, eventually undergo neuroendocrine differentiation (NED) and transform into neuroendocrine-like cells, a mechanism involved in acquiring resistance to radiation therapy. Radiosensitizers are agents that inhibit the repair of radiation-induced DNA damage. Protein arginine methyltransferase 5 (PRMT5) gets upregulated upon ionizing radiation treatment and epigenetically activates DNA damage repair genes in prostate cancer cells. In this study, we targeted PRMT5 with JNJ-64619178 and assessed its effect on DNA damage repair gene activation, radiosensitization, and FIR-induced NED in prostate cancer. Methods γH2AX foci analysis was performed to evaluate the DNA damage repair after radiation therapy. RT-qPCR and western blot were carried out to analyze the expression of DNA damage repair genes. Clonogenic assay was conducted to find out the surviving fraction after radiation therapy. NED was targeted with JNJ-64619178 in androgen receptor (AR) positive and negative prostate cancer cells undergoing FIR treatment. Results JNJ-64619178 inhibits DNA damage repair in prostate cancer cells independent of their AR status. JNJ-64619178 impairs the repair of ionizing radiation-induced damaged DNA by transcriptionally inhibiting the DNA damage repair gene expression and radiosensitizes prostate, glioblastoma and lung cancer cell line. It targets NED induced by FIR in prostate cancer cells. Conclusion JNJ-64619178 can radiosensitize and suppress NED induced by FIR in prostate cancer cells and can be a potential radiosensitizer for prostate cancer treatment.
Collapse
Affiliation(s)
- Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Jogendra Singh Pawar, ;
| | - Md. Yusuf Al-Amin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, United States
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Pawar JS, Mustafa S, Ghosh I. Chrysin and Capsaicin Induces Premature Senescence and Apoptosis via Mitochondrial dysfunction and p53 elevation in Cervical Cancer cells. Saudi J Biol Sci 2022; 29:3838-3847. [PMID: 35844432 PMCID: PMC9280242 DOI: 10.1016/j.sjbs.2022.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Current studies are focusing on the anti-cancerous properties of natural bioactive compounds, primarily those included in the human diet. These compounds have the potential to alter the redox balance that can hinder cancer cell's growth. In cancer cells, an abnormal rate of ROS production is balanced with higher antioxidant activities, which if not maintained, results in cancer cells being prone to cell death due to oxidative stress. Here, we have analyzed the effects of Chrysin and Capsaicin on the HeLa cells viability and cellular redox signaling. Both these compounds stimulate cellular and mitochondrial ROS overproduction that perturbs the cellular redox state and results in mitochondrial membrane potential loss. Apart from this, these compounds induce cell cycle arrest and induce premature senescence, along with the overexpression of p21, p53, and p16 protein at lower concentration treatment of Chrysin or Capsaicin. Moreover, at higher concentration treatment with these compounds, pro-apoptotic activity was observed with the high level of Bax and cleaved caspase-3 along with suppression of the Bcl-2 protein levels. In-Silico analysis with STITCH v5 also confirms the direct interaction of Chrysin and Capsaicin with target protein p53. This suggests that Chrysin and Capsaicin trigger an increase in mitochondrial ROS, and p53 interaction leading to premature senescence and apoptosis in concentration dependent manner and have therapeutic potential for cancer treatment.
Collapse
|
7
|
Magdaleno C, House T, Pawar JS, Carvalho S, Rajasekaran N, Varadaraj A. Fibronectin assembly regulates lumen formation in breast acini. J Cell Biochem 2021; 122:524-537. [PMID: 33438770 PMCID: PMC8016724 DOI: 10.1002/jcb.29885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 02/01/2023]
Abstract
Fibronectin (FN) is an extracellular matrix (ECM) glycoprotein that self-assembles into FN fibrils, forming a FN matrix contributing to the stiffness of the ECM. Stromal FN stiffness in cancer has been shown to impact epithelial functions such as migration, cancer metastasis, and epithelial-to-mesenchymal transition. The role of the FN matrix of epithelial cells in driving such processes remains less well understood and is the focus of this study. Hypoxia, defined by low oxygen tension (<5%) is one of the hallmarks of tumor microenvironments impacting fibril reorganization in stromal and epithelial cells. Here, using the MCF10 breast epithelial progression series of cell lines encompassing normal, preinvasive, and invasive states, we show that FN fibril formation decreases during hypoxia, coinciding with a decrease in migratory potential of these cells. Conversely, we find that FN fibril disruption during three-dimensional acinar growth of normal breast cells resulted in acinar luminal filling. Our data also demonstrates that the luminal filling upon fibril disruption in untransformed MCF10A cells results in a loss of apicobasal polarity, characteristic of pre-invasive and invasive breast cell lines MCF10AT and MCF10 DCIS.com. Overall this is the first study that relates fibril-mediated changes in epithelial cells as critical players in lumen clearing of breast acini and maintenance of the untransformed growth characteristic.
Collapse
Affiliation(s)
- Carina Magdaleno
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Trenton House
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Jogendra S. Pawar
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
- Present address:
Jogendra S. Pawar, Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
| | - Sophia Carvalho
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
| | | | - Archana Varadaraj
- Department of Chemistry and BiochemistryNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|