1
|
Habbit NL, Anbiah B, Suresh J, Anderson L, Davies ML, Hassani I, Ghosh TM, Greene MW, Prabhakarpandian B, Arnold RD, Lipke EA. Ratiometric Inclusion of Fibroblasts Promotes Both Castration-Resistant and Androgen-Dependent Tumorigenic Progression in Engineered Prostate Cancer Tissues. Adv Healthc Mater 2023; 12:e2301139. [PMID: 37450342 DOI: 10.1002/adhm.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
To investigate the ratiometric role of fibroblasts in prostate cancer (PCa) progression, this work establishes a matrix-inclusive, 3D engineered prostate cancer tissue (EPCaT) model that enables direct coculture of neuroendocrine-variant castration-resistant (CPRC-ne) or androgen-dependent (ADPC) PCa cells with tumor-supporting stromal cell types. Results show that the inclusion of fibroblasts within CRPC-ne and ADPC EPCaTs drives PCa aggression through significant matrix remodeling and increased proliferative cell populations. Interestingly, this is observed to a much greater degree in EPCaTs formed with a small number of fibroblasts relative to the number of PCa cells. Fibroblast coculture also results in ADPC behavior more similar to the aggressive CRPC-ne condition, suggesting fibroblasts play a role in elevating PCa disease state and may contribute to the ADPC to CRPC-ne switch. Bulk transcriptomic analyses additionally elucidate fibroblast-driven enrichment of hallmark gene sets associated with tumorigenic progression. Finally, the EPCaT model clinical relevancy is probed through a comparison to the Cancer Genome Atlas (TCGA) PCa patient cohort; notably, similar gene set enrichment is observed between EPCaT models and the patient primary tumor transcriptome. Taken together, study results demonstrate the potential of the EPCaT model to serve as a PCa-mimetic tool in future therapeutic development efforts.
Collapse
Affiliation(s)
- Nicole L Habbit
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Joshita Suresh
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Luke Anderson
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Megan L Davies
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Iman Hassani
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Taraswi M Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 So. Donahue Dr., Pharmaceutical Research Building, Auburn, AL, 36849, USA
| | - Michael W Greene
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, 210 Spidle Hall, Auburn, AL, 36849, USA
| | | | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 So. Donahue Dr., Pharmaceutical Research Building, Auburn, AL, 36849, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| |
Collapse
|
2
|
ChallaSivaKanaka S, Vickman RE, Kakarla M, Hayward SW, Franco OE. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett 2022; 525:76-83. [PMID: 34715252 PMCID: PMC8788937 DOI: 10.1016/j.canlet.2021.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 01/30/2023]
Abstract
Our understanding of stromal components, specifically cancer-associated fibroblasts (CAF), in prostate cancer (PCa), has evolved from considering these cells as inert bystanders to acknowledging their significance as players in prostate tumorigenesis. CAF are multifaceted-they promote cancer cell growth, migration and remodel the tumor microenvironment. Although targeting CAF could be a promising strategy for PCa treatment, they incorporate a high but undefined degree of intrinsic cellular heterogeneity. The interaction between CAF subpopulations, with the normal and tumor epithelium and with other cell types is not yet characterized. Defining these interactions and the critical signaling nodes that support tumorigenesis will enable the development of novel strategies to control prostate cancer progression. Here we will discuss the origins, molecular and functional heterogeneity of CAF in PCa. We highlight the challenges associated with delineating CAF heterogeneity and discuss potential areas of research that would assist in expanding our knowledge of CAF and their role in PCa tumorigenesis.
Collapse
Affiliation(s)
- Sathyavathi ChallaSivaKanaka
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Renee E Vickman
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Mamatha Kakarla
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA. http://
| |
Collapse
|
3
|
Fontana F, Marzagalli M, Sommariva M, Gagliano N, Limonta P. In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13122970. [PMID: 34199324 PMCID: PMC8231786 DOI: 10.3390/cancers13122970] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Tumor stroma is known to significantly influence cancer initiation and progression. In the last decade, 3D cell cultures have shown potential in modeling the tumor microenvironment. This review summarizes the main features of current 3D models, shedding light on their importance in the study of cancer biology and treatment. Abstract It is now well established that the tumor microenvironment plays a key role in determining cancer growth, metastasis and drug resistance. Thus, it is fundamental to understand how cancer cells interact and communicate with their stroma and how this crosstalk regulates disease initiation and progression. In this setting, 3D cell cultures have gained a lot of interest in the last two decades, due to their ability to better recapitulate the complexity of tumor microenvironment and therefore to bridge the gap between 2D monolayers and animal models. Herein, we present an overview of the 3D systems commonly used for studying tumor–stroma interactions, with a focus on recent advances in cancer modeling and drug discovery and testing.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.M.); (P.L.)
- Correspondence: ; Tel.: +39-02-503-18427
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.M.); (P.L.)
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.M.); (P.L.)
| |
Collapse
|