1
|
Hashemi M, Mousavian Roshanzamir S, Orouei S, Daneii P, Raesi R, Zokaee H, Bikarannejad P, Salmani K, Khorrami R, Deldar Abad Paskeh M, Salimimoghadam S, Rashidi M, Hushmandi K, Taheriazam A, Entezari M. Shedding light on function of long non-coding RNAs (lncRNAs) in glioblastoma. Noncoding RNA Res 2024; 9:508-522. [PMID: 38511060 PMCID: PMC10950594 DOI: 10.1016/j.ncrna.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 03/22/2024] Open
Abstract
The brain tumors and especially glioblastoma, are affecting life of many people worldwide and due to their high mortality and morbidity, their treatment is of importance and has gained attention in recent years. The abnormal expression of genes is commonly observed in GBM and long non-coding RNAs (lncRNAs) have demonstrated dysregulation in this tumor. LncRNAs have length more than 200 nucleotides and they have been located in cytoplasm and nucleus. The current review focuses on the role of lncRNAs in GBM. There two types of lncRNAs in GBM including tumor-promoting and tumor-suppressor lncRNAs and overexpression of oncogenic lncRNAs increases progression of GBM. LncRNAs can regulate proliferation, cell cycle arrest and metastasis of GBM cells. Wnt, STAT3 and EZH2 are among the molecular pathways affected by lncRNAs in GBM and for regulating metastasis of GBM cells, these RNA molecules mainly affect EMT mechanism. LncRNAs are involved in drug resistance and can induce resistance of GBM cells to temozolomide chemotherapy. Furthermore, lncRNAs stimulate radio-resistance in GBM cells. LncRNAs increase PD-1 expression to mediate immune evasion. LncRNAs can be considered as diagnostic and prognostic tools in GBM and researchers have developed signature from lncRNAs in GBM.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sophie Mousavian Roshanzamir
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haleh Zokaee
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Salmani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Arias-Diaz AE, Ferreiro-Pantin M, Barbazan J, Perez-Beliz E, Ruiz-Bañobre J, Casas-Arozamena C, Muinelo-Romay L, Lopez-Lopez R, Vilar A, Curiel T, Abal M. Ascites-Derived Organoids to Depict Platinum Resistance in Gynaecological Serous Carcinomas. Int J Mol Sci 2023; 24:13208. [PMID: 37686015 PMCID: PMC10487816 DOI: 10.3390/ijms241713208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Gynaecological serous carcinomas (GSCs) constitute a distinctive entity among female tumours characterised by a very poor prognosis. In addition to late-stage diagnosis and a high rate of recurrent disease associated with massive peritoneal carcinomatosis, the systematic acquisition of resistance to first-line chemotherapy based on platinum determines the unfavourable outcome of GSC patients. To explore the molecular mechanisms associated with platinum resistance, we generated patient-derived organoids (PDOs) from liquid biopsies of GSC patients. PDOs are emerging as a relevant preclinical model system to assist in clinical decision making, mainly from tumoural tissue and particularly for personalised therapeutic options. To approach platinum resistance in a GSC context, proficient PDOs were generated from the ascitic fluid of ovarian, primary peritoneal and uterine serous carcinoma patients in platinum-sensitive and platinum-resistant clinical settings from the uterine aspirate of a uterine serous carcinoma patient, and we also induced platinum resistance in vitro in a representative platinum-sensitive PDO. Histological and immunofluorescent characterisation of these ascites-derived organoids showed resemblance to the corresponding original tumours, and assessment of platinum sensitivity in these preclinical models replicated the clinical setting of the corresponding GSC patients. Differential gene expression profiling of a panel of 770 genes representing major canonical cancer pathways, comparing platinum-sensitive and platinum-resistant PDOs, revealed cellular response to DNA damage stimulus as the principal biological process associated with the acquisition of resistance to the first-line therapy for GSC. Additionally, candidate genes involved in regulation of cell adhesion, cell cycles, and transcription emerged from this proof-of-concept study. In conclusion, we describe the generation of PDOs from liquid biopsies in the context of gynaecological serous carcinomas to explore the molecular determinants of platinum resistance.
Collapse
Affiliation(s)
- Andrea Estrella Arias-Diaz
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Department of Medicine, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Miriam Ferreiro-Pantin
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
| | - Jorge Barbazan
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edurne Perez-Beliz
- Department of Pathology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Juan Ruiz-Bañobre
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rafael Lopez-Lopez
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ana Vilar
- Department of Gynecology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Teresa Curiel
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
3
|
Shen Y, Ye YR, Tang ZQ. Expression, Significance, and Correlation of Histone Deacetylase 1/RE-1 Silencing Transcription Factor and Neuronal Markers in Glioma. World Neurosurg 2023; 172:e267-e277. [PMID: 36623722 DOI: 10.1016/j.wneu.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND Inducing the differentiation of glioma cells into neuron-like cells may be an effective strategy to combat glioma. The histone deacetylase 1/RE-1 silencing transcription factor (HDAC1/REST) complex regulates the expression of multiple neuronal genes. In this study, we analyzed the presence and significance of this regulatory effect in glioma based on bioinformatics methods. METHODS The Human Protein Atlas database was used to obtain immunohistochemical staining images. The Gene Expression Profiling Interactive Analysis and Chinese Glioma Genome Atlas databases were used to analyze the expression of HDAC1/REST and neuronal markers in glioma, their effects on survival, and the association between HDAC1/REST and the expression of neuronal markers and stem cell markers. The differentially expressed genes between the high and low HDAC1/REST groups were explored. The Database for Annotation, Visualization and Integrated Discovery database was used for gene ontology and kyoto encyclopedia of genes and genomes pathway enrichment analysis. RESULTS The results showed that the expression of HDAC1 and REST increased with the grade of glioma, while the expression of neuronal markers decreased with the grade of glioma. High expression of HDAC1/REST and low expression of neuronal markers were associated with poor prognosis. HDAC1/REST expression was negatively correlated with the expression of neuronal markers, and positively correlated with the expression of neural stem cell markers. The genes up-regulated in the high HDAC1/REST group were mainly related to extracellular matrix and inflammation, and the down-regulated genes were mainly related to synapsis. CONCLUSIONS This study suggested that HDAC1/REST may be involved in maintaining the malignant phenotype of glioma cells and the stem cell status of glioma stem cells by inhibiting the expression of neuronal markers, which promote the progression of glioma.
Collapse
Affiliation(s)
- Yun Shen
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China; Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Rong Ye
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China; Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-Qi Tang
- Department of Pharmacy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China; Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China.
| |
Collapse
|
4
|
Lee YM. RUNX Family in Hypoxic Microenvironment and Angiogenesis in Cancers. Cells 2022; 11:cells11193098. [PMID: 36231060 PMCID: PMC9564080 DOI: 10.3390/cells11193098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
The tumor microenvironment (TME) is broadly implicated in tumorigenesis, as tumor cells interact with surrounding cells to influence the development and progression of the tumor. Blood vessels are a major component of the TME and are attributed to the creation of a hypoxic microenvironment, which is a common feature of advanced cancers and inflamed premalignant tissues. Runt-related transcription factor (RUNX) proteins, a transcription factor family of developmental master regulators, are involved in vital cellular processes such as differentiation, proliferation, cell lineage specification, and apoptosis. Furthermore, the RUNX family is involved in the regulation of various oncogenic processes and signaling pathways as well as tumor suppressive functions, suggesting that the RUNX family plays a strategic role in tumorigenesis. In this review, we have discussed the relevant findings that describe the crosstalk of the RUNX family with the hypoxic TME and tumor angiogenesis or with their signaling molecules in cancer development and progression.
Collapse
Affiliation(s)
- You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Lab of Molecular Pathophysiology, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-8566; Fax:+82-53-950-8557
| |
Collapse
|
5
|
Hu N, Zou L, Wang C, Song G. RUNX1T1 function in cell fate. Stem Cell Res Ther 2022; 13:369. [PMID: 35902872 PMCID: PMC9330642 DOI: 10.1186/s13287-022-03074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
RUNX1T1 (Runt-related transcription factor 1, translocated to 1), a myeloid translocation gene (MTG) family member, is usually investigated as part of the fusion protein RUNX1-RUNX1T1 for its role in acute myeloid leukemia. In the main, by recruiting histone deacetylases, RUNX1T1 negatively influences transcription, enabling it to regulate the proliferation and differentiation of hematopoietic progenitors. Moreover, the formation of blood vessels, neuronal differentiation, microglial activation following injury, and intestinal development all relate closely to the expression of RUNX1T1. Furthermore, through alternative splicing of RUNX1T1, short and long isoforms have been noted to mediate adipogenesis by balancing the differentiation and proliferation of adipocytes. In addition, RUNX1T1 plays wide-ranging and diverse roles in carcinoma as a biomarker, suppressor, or positive regulator of carcinogenesis, closely correlated to specific organs and dominant signaling pathways. The aim of this work was to investigate the structure of RUNX1T1, which contains four conserved nervy homolog domains, and to demonstrate crosstalk with the Notch signaling pathway. Moreover, we endeavored to illustrate the effects of RUNX1T1 on cell fate from multiple aspects, including its influence on hematopoiesis, neuronal differentiation, microglial activation, intestinal development, adipogenesis, angiogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Nan Hu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Linqing Zou
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Cheng Wang
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|