1
|
Huan X, Zhan J, Gao H. Research progress of spike protein mutation of SARS-CoV-2 mutant strain and antibody development. Front Immunol 2024; 15:1407149. [PMID: 39624100 PMCID: PMC11609190 DOI: 10.3389/fimmu.2024.1407149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/28/2024] [Indexed: 01/03/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a respiratory disease with a very high infectious rate caused by the Severe Acute Respiratory Syndrome Coronavirus-2(SARS-CoV-2). Because SARS-CoV-2 is easy to mutate, the continuous emergence of SARS-CoV-2 variant strains not only enhances the infectivity of the SARS-CoV-2 but also brings great obstacles to the treatment of COVID-19. Neutralizing antibodies have achieved good results in the clinical application of the novel coronavirus pneumonia, which can be used for pre-infection protection and treatment of novel coronavirus patients. This review makes a detailed introduction to the mutation characteristics of SARS-CoV-2, focusing on the molecular mechanism of mutation affecting the infectivity of SARS-CoV-2, and the impact of mutation on monoclonal antibody therapy, providing scientific reference for the prevention of SARS-CoV-2 variant strains and the research and development of antibody drugs.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
2
|
Chebaibi M, Bourhia M, Amrati FEZ, Slighoua M, Mssillou I, Aboul-Soud MAM, Khalid A, Hassani R, Bousta D, Achour S, Benhida R, Daoud R. Salsoline derivatives, genistein, semisynthetic derivative of kojic acid, and naringenin as inhibitors of A42R profilin-like protein of monkeypox virus: in silico studies. Front Chem 2024; 12:1445606. [PMID: 39318419 PMCID: PMC11420140 DOI: 10.3389/fchem.2024.1445606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Monkeypox virus (MPV) infection has developed into a re-emerging disease, and despite the potential of tecovirimat and cidofovir drugs, there is currently no conclusive treatment. The treatment's effectiveness and cost challenges motivate us to use In Silico approaches to seek natural compounds as candidate antiviral inhibitors. Using Maestro 11.5 in Schrodinger suite 2018, available natural molecules with validated chemical structures collected from Eximed Laboratory were subjected to molecular docking and ADMET analysis against the highly conserved A42R Profilin-like Protein of Monkeypox Virus Zaire-96-I-16 (PDB: 4QWO) with resolution of 1.52 Å solved 3D structure. Compared to the FDA-approved Tecovirimat, molecular docking revealed that Salsoline derivatives, Genistein, Semisynthetic derivative of kojic acid, and Naringenin had strengthened affinity (-8.9 to -10 kcal/mol) to 4QWO, and the molecular dynamic's simulation confirmed their high binding stability. In support of these results, the hydrogen bond analysis indicated that the Salsoline derivative had the most robust interaction with the binding pockets of 4QWO among the four molecules. Moreover, the comparative free energy analyses using MM-PBSA revealed an average binding free energy of the complexes of Salsoline derivative, Genistein, Semisynthetic derivative of kojic acid, Naringenin, of -106.418, -46.808, -50.770, and -63.319 kJ/mol, respectively which are lower than -33.855 kJ/mol of the Tecovirimat complex. Interestingly, these results and the ADMET predictions suggest that the four compounds are promising inhibitors of 4QWO, which agrees with previous results showing their antiviral activities against other viruses.
Collapse
Affiliation(s)
- Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Fatima ez-zahra Amrati
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Environment, Agri-Food, and Health (LBEAS), Faculty of Sciences, University Sidi-Mohamed-Ben-Abdellah (USMBA), Fez, Morocco
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asaad Khalid
- Health Research Center, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Environment and Nature Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants Tounate, Taounate, Morocco
| | - Sanae Achour
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Rachid Benhida
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Processing Engineering, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Gomari MM, Arab SS, Balalaie S, Ramezanpour S, Hosseini A, Dokholyan NV, Tarighi P. Rational peptide design for targeting cancer cell invasion. Proteins 2024; 92:76-95. [PMID: 37646459 DOI: 10.1002/prot.26580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
Cell invasion is an important process in cancer progression and recurrence. Invasion and implantation of cancer cells from their original place to other tissues, by disabling vital organs, challenges the treatment of cancer patients. Given the importance of the matter, many molecular treatments have been developed to inhibit cancer cell invasion. Because of their low production cost and ease of production, peptides are valuable therapeutic molecules for inhibiting cancer cell invasion. In recent years, advances in the field of computational biology have facilitated the design of anti-cancer peptides. In our investigation, using computational biology approaches such as evolutionary analysis, residue scanning, protein-peptide interaction analysis, molecular dynamics, and free energy analysis, our team designed a peptide library with about 100 000 candidates based on A6 (acetyl-KPSSPPEE-amino) sequence which is an anti-invasion peptide. During computational studies, two of the designed peptides that give the highest scores and showed the greatest sequence similarity to A6 were entered into the experimental analysis workflow for further analysis. In experimental analysis steps, the anti-metastatic potency and other therapeutic effects of designed peptides were evaluated using MTT assay, RT-qPCR, zymography analysis, and invasion assay. Our study disclosed that the IK1 (acetyl-RPSFPPEE-amino) peptide, like A6, has great potency to inhibit the invasion of cancer cells.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, Tehran, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yang Y, Zhou L, Mo C, Hu L, Zhou Z, Fan Y, Liu W, Li X, Zhou R, Tian X. Identification of conserved linear epitopes in the SARS-CoV-2 receptor-binding region using monoclonal antibodies. Heliyon 2023; 9:e16847. [PMID: 37292282 PMCID: PMC10238280 DOI: 10.1016/j.heliyon.2023.e16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused millions of cases of infections, leading to a global health emergency. The SARS-CoV-2 spike (S) protein plays the most important role in viral infection, and S1 subunit and its receptor-binding domain (RBD) are widely considered the most attractive vaccine targets. The RBD is highly immunogenic and its linear epitopes are important for vaccine development and therapy, but linear epitopes on the RBD have rarely been reported. In this study, 151 mouse monoclonal antibodies (mAbs) against the SARS-CoV-2 S1 protein were characterized and used to identify epitopes. Fifty-one mAbs reacted with eukaryotic SARS-CoV-2 RBD. Sixty-nine mAbs reacted with the S proteins of Omicron variants B.1.1.529 and BA.5, indicating their potential as rapid diagnostic materials. Three novel linear epitopes of RBD, R6 (391CFTNVYADSFVIRGD405), R12 (463PFERDISTEIYQAGS477), and R16 (510VVVLSFELLHAPAT523), were identified; these were highly conserved in SARS-CoV-2 variants of concern and could be detected in the convalescent serum of COVID-19 patients. From pseudovirus neutralization assays, some mAbs including one detecting R12 were found to possess neutralizing activity. Together, from the reaction of mAbs with eukaryotic RBD (N501Y), RBD (E484K), and S1 (D614G), we found that a single amino acid mutation in the SARS-CoV-2 S protein may cause a structural alteration, exerting substantial impact on mAb recognition. Our results could, therefore, help us better understand the function of the SARS-CoV-2 S protein and develop diagnostic tools for COVID-19.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Liling Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Chuncong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
5
|
In silico protein engineering shows that novel mutations affecting NAD + binding sites may improve phosphite dehydrogenase stability and activity. Sci Rep 2023; 13:1878. [PMID: 36725973 PMCID: PMC9892502 DOI: 10.1038/s41598-023-28246-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Pseudomonas stutzeri phosphite dehydrogenase (PTDH) catalyzes the oxidation of phosphite to phosphate in the presence of NAD, resulting in the formation of NADH. The regeneration of NADH by PTDH is greater than any other enzyme due to the substantial change in the free energy of reaction (G°' = - 63.3 kJ/mol). Presently, improving the stability of PTDH is for a great importance to ensure an economically viable reaction process to produce phosphite as a byproduct for agronomic applications. The binding site of NAD+ with PTDH includes thirty-four residues; eight of which have been previously mutated and characterized for their roles in catalysis. In the present study, the unexplored twenty-six key residues involved in the binding of NAD+ were subjected to in silico mutagenesis based on the physicochemical properties of the amino acids. The effects of these mutations on the structure, stability, activity, and interaction of PTDH with NAD+ were investigated using molecular docking, molecular dynamics simulations, free energy calculations, and secondary structure analysis. We identified seven novel mutations, A155I, G157I, L217I, P235A, V262I, I293A, and I293L, that reduce the compactness of the protein while improving PTDH stability and binding to NAD+.
Collapse
|
6
|
Gomari MM, Tarighi P, Choupani E, Abkhiz S, Mohamadzadeh M, Rostami N, Sadroddiny E, Baammi S, Uversky VN, Dokholyan NV. Structural evolution of Delta lineage of SARS-CoV-2. Int J Biol Macromol 2023; 226:1116-1140. [PMID: 36435470 PMCID: PMC9683856 DOI: 10.1016/j.ijbiomac.2022.11.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
One of the main obstacles in prevention and treatment of COVID-19 is the rapid evolution of the SARS-CoV-2 Spike protein. Given that Spike is the main target of common treatments of COVID-19, mutations occurring at this virulent factor can affect the effectiveness of treatments. The B.1.617.2 lineage of SARS-CoV-2, being characterized by many Spike mutations inside and outside of its receptor-binding domain (RBD), shows high infectivity and relative resistance to existing cures. Here, utilizing a wide range of computational biology approaches, such as immunoinformatics, molecular dynamics (MD), analysis of intrinsically disordered regions (IDRs), protein-protein interaction analyses, residue scanning, and free energy calculations, we examine the structural and biological attributes of the B.1.617.2 Spike protein. Furthermore, the antibody design protocol of Rosetta was implemented for evaluation the stability and affinity improvement of the Bamlanivimab (LY-CoV55) antibody, which is not capable of interactions with the B.1.617.2 Spike. We observed that the detected mutations in the Spike of the B1.617.2 variant of concern can cause extensive structural changes compatible with the described variation in immunogenicity, secondary and tertiary structure, oligomerization potency, Furin cleavability, and drug targetability. Compared to the Spike of Wuhan lineage, the B.1.617.2 Spike is more stable and binds to the Angiotensin-converting enzyme 2 (ACE2) with higher affinity.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Edris Choupani
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Shadi Abkhiz
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Masoud Mohamadzadeh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Esmaeil Sadroddiny
- Medical Biotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir 43150, Morocco
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 16802, USA.
| |
Collapse
|
7
|
Hammed A, Badour M, Baqla S. Lethargy and quadraparesis as initial manifestations of covid-19 child: Case report. Ann Med Surg (Lond) 2022; 84:104911. [PMID: 36415678 PMCID: PMC9671604 DOI: 10.1016/j.amsu.2022.104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction and importance: SARS-CoV-2 infection classically presents with fever and respiratory illness. However, neurological manifestations are also being reported in the literature. Transverse myelitis is caused by inflammation of spinal cord. There are various possible etiologies for this neurologic condition that include viral or bacterial infections. Case presentation We present a case of 2 –year-old female complained of weakness of all four limbs and lethargy.She was febrile(39), respiratory rate 30/min and oxygensaturation of 89% on room air. Neurological examination revealed intact cranial nerves, GCS of 14/15 and upper and lower limbs weakness with medical research council(MRC) score of 2/5 Sensory examination showed decreased sensation of all modalities in lower limbs with a sensory level at T4. Clinical discussion Laboratory results and cerebrospinal fluid (CSF) analysis showed normal values. Brain MRI was normal. An urgent Gadolinium-enhanced magnetic resonance imaging of the whole spine was done and revealed extensive diffuse hyper intense signal involving predominantly the grey matter of the upper cervical spinal cord. Mild enlargement and swelling of the cervical cord were also note. She was given pulse doses of IV methylprednisolone 30mg/kg followed by oral prednisolone for 40 days. She was also given IV gamma globulin 400mg/kg for five days. A marked improvement of his neurological deficit was noted over a period of 16 days after treatment. Conclusion when a patient with myelopathy is systemically ill with fever andloss of consciousness, prompt investigation of the causative agent is needed for appropriate management. Even after the pandemic Status; COVID-19 should be considered a differential diagnosis in patients presenting with loss of consciousness, ataxia, convulsions, motor deficits, encephalitis, myelitis, or neuritis.
Collapse
Affiliation(s)
- Ali Hammed
- Tishreen University Hospital, Department of Neurosurgery. Lattakia, Syria
- Corresponding author.
| | | | | |
Collapse
|
8
|
The Comparison of Mutational Progression in SARS-CoV-2: A Short Updated Overview. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 pandemic has impacted the world population adversely, posing a threat to human health. In the past few years, various strains of SARS-CoV-2, each with different mutations in its structure, have impacted human health in negative ways. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations influence the virulence, antibody evasion, and Angiotensin-converting enzyme 2 (ACE2) affinity of the virus. These mutations are essential to understanding how a new strain of SARS-CoV-2 has changed and its possible effects on the human body. This review provides an insight into the spike mutations of SARS-CoV-2 variants. As the current scientific data offer a scattered outlook on the various type of mutations, we aimed to categorize the mutations of Beta (B.1.351), Gamma (P.1), Delta (B.1.612.2), and Omicron (B.1.1.529) systematically according to their location in the subunit 1 (S1) and subunit 2 (S2) domains and summarized their consequences as a result. We also compared the miscellany of mutations that have emerged in all four variants to date. The comparison shows that mutations such as D614G and N501Y have emerged in all four variants of concern and that all four variants have multiple mutations within the N-terminal domain (NTD), as in the case of the Delta variant. Other mutations are scattered in the receptor binding domain (RBD) and subdomain 2 (SD2) of the S1 domain. Mutations in RBD or NTD are often associated with antibody evasion. Few mutations lie in the S2 domain in the Beta, Gamma, and Delta variants. However, in the Omicron variant many mutations occupy the S2 domain, hinting towards a much more evasive virus.
Collapse
|
9
|
Gomari MM, Rostami N, Faradonbeh DR, Asemaneh HR, Esmailnia G, Arab S, Farsimadan M, Hosseini A, Dokholyan NV. Evaluation of pH change effects on the HSA folding and its drug binding characteristics, a computational biology investigation. Proteins 2022; 90:1908-1925. [DOI: 10.1002/prot.26386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Student Research Committee, Iran University of Medical Sciences Tehran Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering Arak University Arak Iran
| | - Davood Rabiei Faradonbeh
- Department of Medical Biotechnology School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Hamid Reza Asemaneh
- Polymer Research Center, Department of Chemical Engineering Razi University Kermanshah Iran
| | - Giti Esmailnia
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Shahriar Arab
- Department of Biophysics School of Biological Sciences, Tarbiat Modares University Tehran Iran
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences University of Guilan Rasht Iran
| | - Arshad Hosseini
- Department of Medical Biotechnology, Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology Pennsylvania State University College of Medicine Hershey Pennsylvania USA
| |
Collapse
|