1
|
Tasneem A, Sultan A, Singh P, Bairagya HR, Almasoudi HH, Alhazmi AYM, Binshaya AS, Hakami MA, Alotaibi BS, Abdulaziz Eisa A, Alolaiqy ASI, Hasan MR, Dev K, Dohare R. Identification of potential therapeutic targets for COVID-19 through a structural-based similarity approach between SARS-CoV-2 and its human host proteins. Front Genet 2024; 15:1292280. [PMID: 38370514 PMCID: PMC10869566 DOI: 10.3389/fgene.2024.1292280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Background: The COVID-19 pandemic caused by SARS-CoV-2 has led to millions of deaths worldwide, and vaccination efficacy has been decreasing with each lineage, necessitating the need for alternative antiviral therapies. Predicting host-virus protein-protein interactions (HV-PPIs) is essential for identifying potential host-targeting drug targets against SARS-CoV-2 infection. Objective: This study aims to identify therapeutic target proteins in humans that could act as virus-host-targeting drug targets against SARS-CoV-2 and study their interaction against antiviral inhibitors. Methods: A structure-based similarity approach was used to predict human proteins similar to SARS-CoV-2 ("hCoV-2"), followed by identifying PPIs between hCoV-2 and its target human proteins. Overlapping genes were identified between the protein-coding genes of the target and COVID-19-infected patient's mRNA expression data. Pathway and Gene Ontology (GO) term analyses, the construction of PPI networks, and the detection of hub gene modules were performed. Structure-based virtual screening with antiviral compounds was performed to identify potential hits against target gene-encoded protein. Results: This study predicted 19,051 unique target human proteins that interact with hCoV-2, and compared to the microarray dataset, 1,120 target and infected group differentially expressed genes (TIG-DEGs) were identified. The significant pathway and GO enrichment analyses revealed the involvement of these genes in several biological processes and molecular functions. PPI network analysis identified a significant hub gene with maximum neighboring partners. Virtual screening analysis identified three potential antiviral compounds against the target gene-encoded protein. Conclusion: This study provides potential targets for host-targeting drug development against SARS-CoV-2 infection, and further experimental validation of the target protein is required for pharmaceutical intervention.
Collapse
Affiliation(s)
- Alvea Tasneem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Armiya Sultan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hridoy R. Bairagya
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Haringhata, West Bengal, India
| | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | | - Abdulkarim S. Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | | | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Hoti Q, Akan G, Tuncel G, Evren EU, Evren H, Suer K, Sanlidag T, Ergoren MC. Altered expression levels of TAS1R2 and TAS1R3 genes among SARS-CoV-2 variants of concerns. Mol Biol Rep 2023; 50:9343-9351. [PMID: 37817023 DOI: 10.1007/s11033-023-08893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND The most common symptoms of coronavirus infections are fever, cough, shortness of breath, headache, ache of joints, a loss of smell and loss of taste, and etc. Early studies suggested that smell and taste receptors were associated with pathogenic detection and immunity. Thus, we aimed to evaluate the expression profile of gene receptors that are related to taste, smell, and appetite control in COVID-19 patients and their putative correlation with SARS-CoV-19 variants. METHOD Gene expression levels of TAS1R2, TAS1R3, TAS2R38, OR51E1, LEPR, GHRL were analyzed in 100 COVID-19 patients and 100 SARS-CoV-2 RT-qPCR negative group. RESULTS The expression levels of TAS1R2 and TAS1R3 genes were significantly decreased in COVID-19 patients who were infected with Delta variant. However, the TAS2R38 gene expression level was significantly lower when compared to the control group. The TAS1R2 gene expression was positively correlated with TAS1R3, and TAS2R38 genes (p = 0.001, p = 0.025, respectively). CONCLUSION TAS1R2, TAS1R3, and TAS2R38 gene expression levels were decreased in the Delta variant compared to the Omicron BA.1 variant in the studied groups. These results provided a significant clue for the temporary taste loss, especially in patients infected with the Delta variant, which is the most disruptive and symptomatic variant causing hospitalizations, and deaths compared to other variants may be because ACE2 is expressed in the taste buds and high replication of SARS-CoV-2 in the infected gustatory cells in the taste bud generates inflammation and then could eventually destroy the cells. This gustatory cell damage may cause malfunction of the gustatory system.
Collapse
Affiliation(s)
- Qendresa Hoti
- Faculty of Medicine, Department of Medical Biochemistry, Near East University, 99138, Nicosia, Cyprus
| | - Gokce Akan
- DESAM Research Institute, Near East University, 99138, Nicosia, Cyprus
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, 99138, Nicosia, Cyprus
| | - Emine Unal Evren
- Faculty of Medicine, Department of Clinical Microbiology and Infectious Diseases, Girne University, Kyrenia, Cyprus
| | - Hakan Evren
- Faculty of Medicine, Department of Clinical Microbiology and Infectious Diseases, Girne University, Kyrenia, Cyprus
| | - Kaya Suer
- Faculty of Medicine, Department of Clinical Microbiology and Infectious Diseases, Near East University, 99138, Nicosia, Cyprus
| | - Tamer Sanlidag
- DESAM Research Institute, Near East University, 99138, Nicosia, Cyprus
| | - Mahmut Cerkez Ergoren
- Faculty of Medicine, Department of Medical Genetics, Near East University, 99138, Nicosia, Cyprus.
| |
Collapse
|
3
|
Sounart H, Lázár E, Masarapu Y, Wu J, Várkonyi T, Glasz T, Kiss A, Borgström E, Hill A, Rezene S, Gupta S, Jurek A, Niesnerová A, Druid H, Bergmann O, Giacomello S. Dual spatially resolved transcriptomics for human host-pathogen colocalization studies in FFPE tissue sections. Genome Biol 2023; 24:237. [PMID: 37858234 PMCID: PMC10588020 DOI: 10.1186/s13059-023-03080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Technologies to study localized host-pathogen interactions are urgently needed. Here, we present a spatial transcriptomics approach to simultaneously capture host and pathogen transcriptome-wide spatial gene expression information from human formalin-fixed paraffin-embedded (FFPE) tissue sections at a near single-cell resolution. We demonstrate this methodology in lung samples from COVID-19 patients and validate our spatial detection of SARS-CoV-2 against RNAScope and in situ sequencing. Host-pathogen colocalization analysis identified putative modulators of SARS-CoV-2 infection in human lung cells. Our approach provides new insights into host response to pathogen infection through the simultaneous, unbiased detection of two transcriptomes in FFPE samples.
Collapse
Affiliation(s)
- Hailey Sounart
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Enikő Lázár
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yuvarani Masarapu
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Jian Wu
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Tibor Várkonyi
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Tibor Glasz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | | | | | - Sefanit Rezene
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Soham Gupta
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Henrik Druid
- Department of Oncology-Pathology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Olaf Bergmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
- Universitätsmedizin Göttingen, Institute of Pharmacology and Toxicology, Göttingen, Germany
| | - Stefania Giacomello
- Department of Gene Technology, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.
| |
Collapse
|
4
|
Kant R, Jha P, Saluja D, Chopra M. Identification of novel inhibitors of Neisseria gonorrhoeae MurI using homology modeling, structure-based pharmacophore, molecular docking, and molecular dynamics simulation-based approach. J Biomol Struct Dyn 2023; 41:7433-7446. [PMID: 36106953 DOI: 10.1080/07391102.2022.2121943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
MurI is one of the most significant role players in the biosynthesis of the peptidoglycan layer in Neisseria gonorrhoeae (Ng). We attempted to highlight the structural and functional relationship between Ng-MurI and D-glutamate to design novel molecules targeting this interaction. The three-dimensional (3D) model of the protein was constructed by homology modeling and the quality and consistency of generated model were assessed. The binding site of the protein was identified by molecular docking studies and a pharmacophore was identified using the interactions of the control ligand. The structure-based pharmacophore model was validated and employed for high-throughput virtual screening and molecular docking to identify novel Ng-MurI inhibitors. Finally, the model was optimized by molecular dynamics (MD) simulations and the optimized model complex with the substrate glutamate and novel molecules facilitated us to confirm the stability of the protein-ligand docked complexes. The 100 ns MD simulations of the potential lead compounds with protein confirmed that the modeled complexes were stable. This study identifies novel potential compounds with good fitness and docking scores, which made the interactions of biological significance within the protein active site. Hence, the identified compounds may act as new leads to design and develop Ng-MurI inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Kant
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research & Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Daman Saluja
- Medical Biotechnology Laboratory, Dr. B. R. Ambedkar Center for Biomedical Research & Delhi School of Public Health, IoE, University of Delhi, Delhi, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
5
|
Khan MJ, Singh P, Jha P, Nayek A, Malik MZ, Bagler G, Kumar B, Ponnusamy K, Ali S, Chopra M, Dohare R, Singh IK, Syed MA. Investigating the link between miR-34a-5p and TLR6 signaling in sepsis-induced ARDS. 3 Biotech 2023; 13:282. [PMID: 37496978 PMCID: PMC10366072 DOI: 10.1007/s13205-023-03700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 07/28/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are lung complications diagnosed by impaired gaseous exchanges leading to mortality. From the diverse etiologies, sepsis is a prominent contributor to ALI/ARDS. In the present study, we retrieved sepsis-induced ARDS mRNA expression profile and identified 883 differentially expressed genes (DEGs). Next, we established an ARDS-specific weighted gene co-expression network (WGCN) and picked the blue module as our hub module based on highly correlated network properties. Later we subjected all hub module DEGs to form an ARDS-specific 3-node feed-forward loop (FFL) whose highest-order subnetwork motif revealed one TF (STAT6), one miRNA (miR-34a-5p), and one mRNA (TLR6). Thereafter, we screened a natural product library and identified three lead molecules that showed promising binding affinity against TLR6. We then performed molecular dynamics simulations to evaluate the stability and binding free energy of the TLR6-lead molecule complexes. Our results suggest these lead molecules may be potential therapeutic candidates for treating sepsis-induced ALI/ARDS. In-silico studies on clinical datasets for sepsis-induced ARDS indicate a possible positive interaction between miR-34a and TLR6 and an antagonizing effect on STAT6 to promote inflammation. Also, the translational study on septic mice lungs by IHC staining reveals a hike in the expression of TLR6. We report here that miR-34a actively augments the effect of sepsis on lung epithelial cell apoptosis. This study suggests that miR-34a promotes TLR6 to heighten inflammation in sepsis-induced ALI/ARDS. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03700-1.
Collapse
Affiliation(s)
- Mohd Junaid Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007 India
| | - Arnab Nayek
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Md. Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, 15462 Kuwait City, Kuwait
| | - Ganesh Bagler
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020 India
| | - Bhupender Kumar
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, 110036 India
| | - Kalaiarasan Ponnusamy
- Biotechnology and Viral Hepatitis Division, National Centre for Disease Control, Sham Nath Marg, New Delhi, 110054 India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, 110062 India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007 India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019 India
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019 India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
6
|
Singh P, Rathi A, Minocha R, Sinha A, Haque MM, Hassan MI, Dohare R. Breast Cancer Prognostic Hub Genes Identified by Integrated Transcriptomic and Weighted Network Analysis: A Road Toward Personalized Medicine. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:227-236. [PMID: 37155625 DOI: 10.1089/omi.2023.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Breast cancer (BC) is the second-most common type and among the leading causes of worldwide cancer-related deaths. There is marked person-to-person variability in susceptibility to, and phenotypic expression and prognosis of BC, a predicament that calls for personalized medicine and individually tailored therapeutics. In this study, we report new observations on prognostic hub genes and key pathways involved in BC. We used the data set GSE109169, comprising 25 pairs of BC and adjacent normal tissues. Using a high-throughput transcriptomic approach, we selected data on 293 differentially expressed genes to establish a weighted gene coexpression network. We identified three age-linked modules where the light-gray module strongly correlated with BC. Based on the gene significance and module membership features, peptidase inhibitor 15 (PI15) and KRT5 were identified as our hub genes from the light-gray module. These genes were further verified at transcriptional and translational levels across 25 pairs of BC and adjacent normal tissues. Their promoter methylation profiles were assessed based on various clinical parameters. In addition, these hub genes were used for Kaplan-Meier survival analysis, and their correlation with tumor-infiltrating immune cells was investigated. We found that PI15 and KRT5 may be potential biomarkers and potential drug targets. These findings call for future research in a larger sample size, which could inform diagnosis and clinical management of BC, thus paving the way toward personalized medicine.
Collapse
Affiliation(s)
- Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rashmi Minocha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anuradha Sinha
- Department of Preventive Oncology, Homi Bhabha Cancer Hospital and Research Centre, Muzaffarpur, India
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|