1
|
Bian L, Shan S, Lian Y, Xiao L, Liu D, Lv H, Xu H, Yan B. Electronic excited states of monobromosilylene molecules including the spin-orbit-coupling. Phys Chem Chem Phys 2023. [PMID: 38037855 DOI: 10.1039/d3cp04970a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We employ the internally contracted multireference configuration interaction (icMRCI-F12) with Davidson corrections to explore the electronic states of monobromosilylene molecules (HSiBr). A total of 20 states with energy up to 8.7 eV and the corresponding 50 states after taking the spin-orbit coupling (SOC) effects into account are investigated. The spectroscopic constants of the low-lying states, as well as oscillator strengths, vertical transition energies and potential energy curves (PECs) for all the 20 spin-free states and the 50 spin-orbit-coupled states of HSiBr are presented. The results indicate that the SOC effect significantly affects the dissociation pathways and the PECs of electronic excited states of HSiBr. Based on our calculation results, the interactions between the states and the dissociation of HSiBr in the UV region are discussed. Our study sheds some light on the complex interactions and dynamics of the electronic excited states of HSiBr, which would provide valuable information for future experimental investigations.
Collapse
Affiliation(s)
- Lili Bian
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Shimin Shan
- School of Semiconductors and Physics, North University of China, Taiyuan 030051, China
| | - Yi Lian
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Lidan Xiao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Di Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Hang Lv
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Haifeng Xu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Bing Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Coccia E, Fregoni J, Guido CA, Marsili M, Pipolo S, Corni S. Hybrid theoretical models for molecular nanoplasmonics. J Chem Phys 2020; 153:200901. [PMID: 33261492 DOI: 10.1063/5.0027935] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The multidisciplinary nature of the research in molecular nanoplasmonics, i.e., the use of plasmonic nanostructures to enhance, control, or suppress properties of molecules interacting with light, led to contributions from different theory communities over the years, with the aim of understanding, interpreting, and predicting the physical and chemical phenomena occurring at molecular- and nano-scale in the presence of light. Multiscale hybrid techniques, using a different level of description for the molecule and the plasmonic nanosystems, permit a reliable representation of the atomistic details and of collective features, such as plasmons, in such complex systems. Here, we focus on a selected set of topics of current interest in molecular plasmonics (control of electronic excitations in light-harvesting systems, polaritonic chemistry, hot-carrier generation, and plasmon-enhanced catalysis). We discuss how their description may benefit from a hybrid modeling approach and what are the main challenges for the application of such models. In doing so, we also provide an introduction to such models and to the selected topics, as well as general discussions on their theoretical descriptions.
Collapse
Affiliation(s)
- E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universit di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - J Fregoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universit di Modena e Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - C A Guido
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - M Marsili
- Dipartimento di Scienze Chimiche, Universit di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - S Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d'Artois UMR 8181-UCCS Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - S Corni
- Istituto Nanoscienze-CNR, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
4
|
Fregoni J, Corni S, Persico M, Granucci G. Photochemistry in the strong coupling regime: A trajectory surface hopping scheme. J Comput Chem 2020; 41:2033-2044. [PMID: 32609934 PMCID: PMC7891387 DOI: 10.1002/jcc.26369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
Abstract
The strong coupling regime between confined light and organic molecules turned out to be promising in modifying both the ground state and the excited states properties. Under this peculiar condition, the electronic states of the molecule are mixed with the quantum states of light. The dynamical processes occurring on such hybrid states undergo several modifications accordingly. Hence, the dynamical description of chemical reactivity in polaritonic systems needs to explicitly take into account the photon degrees of freedom and nonadiabatic events. With the aim of describing photochemical polaritonic processes, in the present work, we extend the direct trajectory surface hopping scheme to investigate photochemistry under strong coupling between light and matter.
Collapse
Affiliation(s)
- Jacopo Fregoni
- Dipartimento di Scienze Fisiche Informatiche e MatematicheUniversity of Modena and Reggio EmiliaModenaItaly
| | - Stefano Corni
- Dipartimento di Scienze ChimicheUniversity of PadovaPadovaItaly
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaPisaItaly
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica IndustrialeUniversity of PisaPisaItaly
| |
Collapse
|
5
|
Talotta F, Morisset S, Rougeau N, Lauvergnat D, Agostini F. Internal Conversion and Intersystem Crossing with the Exact Factorization. J Chem Theory Comput 2020; 16:4833-4848. [PMID: 32633509 DOI: 10.1021/acs.jctc.0c00493] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a detailed derivation of the generalized coupled-trajectory mixed quantum-classical (G-CT-MQC) algorithm based on the exact-factorization equations. The ultimate goal is to propose an algorithm that can be employed for molecular dynamics simulations of nonradiative phenomena, as the spin-allowed internal conversions and the spin-forbidden intersystem crossings. Internal conversions are nonadiabatic processes driven by the kinetic coupling between electronic states, whereas intersystem crossings are mediated by the spin-orbit coupling. In this paper, we discuss computational issues related to the suitable representation for electronic dynamics and the different natures of kinetic and spin-orbit coupling. Numerical studies on model systems allow us to test the performance of the G-CT-MQC algorithm in different situations.
Collapse
Affiliation(s)
- Francesco Talotta
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France.,Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Sabine Morisset
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Nathalie Rougeau
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - David Lauvergnat
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Federica Agostini
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
6
|
Bellonzi N, Alguire E, Fatehi S, Shao Y, Subotnik JE. TD-DFT spin-adiabats with analytic nonadiabatic derivative couplings. J Chem Phys 2020; 152:044112. [PMID: 32007078 PMCID: PMC7043850 DOI: 10.1063/1.5126440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/22/2019] [Indexed: 11/14/2022] Open
Abstract
We present an algorithm for efficient calculation of analytic nonadiabatic derivative couplings between spin-adiabatic, time-dependent density functional theory states within the Tamm-Dancoff approximation. Our derivation is based on the direct differentiation of the Kohn-Sham pseudowavefunction using the framework of Ou et al. Our implementation is limited to the case of a system with an even number of electrons in a closed shell ground state, and we validate our algorithm against finite difference at an S1/T2 crossing of benzaldehyde. Through the introduction of a magnetic field spin-coupling operator, we break time-reversal symmetry to generate complex valued nonadiabatic derivative couplings. Although the nonadiabatic derivative couplings are complex valued, we find that a phase rotation can generate an almost entirely real-valued derivative coupling vector for the case of benzaldehyde.
Collapse
Affiliation(s)
- Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Shervin Fatehi
- Department of Chemistry, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
7
|
Talotta F, Morisset S, Rougeau N, Lauvergnat D, Agostini F. Spin-Orbit Interactions in Ultrafast Molecular Processes. PHYSICAL REVIEW LETTERS 2020; 124:033001. [PMID: 32031839 DOI: 10.1103/physrevlett.124.033001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 06/10/2023]
Abstract
We investigate spin-orbit interactions in ultrafast molecular processes employing the exact factorization of the electron-nuclear wave function. We revisit the original derivation by including spin-orbit coupling, and show how the dynamics driven by the time-dependent potential energy surface alleviates inconsistencies arising from different electronic representations. We propose a novel trajectory-based scheme to simulate spin-forbidden non-radiative processes, and we show its performance in the treatment of excited-state dynamics where spin-orbit effects couple different spin multiplets.
Collapse
Affiliation(s)
- Francesco Talotta
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
- Institut de Sciences Moléculaires d'Orsay, UMR 8214 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Sabine Morisset
- Institut de Sciences Moléculaires d'Orsay, UMR 8214 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Nathalie Rougeau
- Institut de Sciences Moléculaires d'Orsay, UMR 8214 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - David Lauvergnat
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| | - Federica Agostini
- Laboratoire de Chimie Physique, UMR 8000 CNRS/University Paris-Sud, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
8
|
Valentine AJS, Li X. Toward the evaluation of intersystem crossing rates with variational relativistic methods. J Chem Phys 2019; 151:084107. [PMID: 31470709 DOI: 10.1063/1.5113815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The change in electronic state from one spin multiplicity to another, known as intersystem crossing, occurs in molecules via the relativistic phenomenon of spin-orbit coupling. Current means of estimating intersystem crossing rates rely on the perturbative evaluation of spin-orbit coupling effects. This perturbative approach, valid in lighter atoms where spin-orbit coupling is weaker, is expected to break down for heavier elements where relativistic effects become dominant. Methods which incorporate spin-orbit effects variationally, such as the exact-two-component (X2C) method, will be necessary to treat this strong-coupling regime. We present a novel procedure which produces a diabatic basis of spin-pure electronic states coupled by spin-orbit terms, generated from fully variational relativistic calculations. This method is implemented within X2C using time-dependent density-functional theory and is compared to results from a perturbative relativistic study in the weak spin-orbit coupling regime. Additional calculations on a more strongly spin-orbit-coupled [UO2Cl4]2- complex further illustrate the strengths of this method. This procedure will be valuable in the estimation of intersystem crossing rates within strongly spin-coupled species.
Collapse
Affiliation(s)
- Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
9
|
Zhou X, Cao Z, Wang F. Analytical energy gradients for ionized states using equation-of-motion coupled-cluster theory with spin-orbit coupling. J Chem Phys 2019; 150:154114. [PMID: 31005096 DOI: 10.1063/1.5088639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Spin-orbit coupling (SOC) may have a significant effect on the structure and harmonic frequencies of particularly heavy p-block element compounds. However, reports on analytical energy gradients with SOC are scarce, especially for excited states. In this work, we implemented analytical energy gradients for ionized states using the equation-of-motion coupled-cluster (CC) theory at the CC singles and doubles level (EOM-IP-CCSD) with SOC. Effects of SOC on structure and harmonic frequencies as well as properties for both the ground and some excited states of open-shell compounds with one unpaired electron can be investigated efficiently with the present implementation. A closed-shell reference is required in the calculations, and SOC is included in post-Hartree-Fock treatment. Relativistic effective core potentials are employed in dealing with both scalar relativistic effects and SOC, and we treat perturbations that are even under time reversal in this work. Both time-reversal symmetry and double point group symmetry for D2h * and its subgroups are exploited in the implementation. The method is applicable to states which can be reached by removing one electron from a closed-shell reference state. The results of some open-shell cations indicate the importance of SOC on structures and harmonic frequencies of heavy element compounds.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| | - Zhanli Cao
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, People's Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Aguilera-Porta N, Granucci G, Munoz-Muriedas J, Corral I. Unveiling the photophysics of thiourea from CASPT2/CASSCF potential energy surfaces and singlet/triplet excited state molecular dynamics simulations. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Aguilera-Porta N, Corral I, Munoz-Muriedas J, Granucci G. Excited state dynamics of some nonsteroidal anti-inflammatory drugs: A surface-hopping investigation. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Bellonzi N, Medders GR, Epifanovsky E, Subotnik JE. Configuration interaction singles with spin-orbit coupling: Constructing spin-adiabatic states and their analytical nuclear gradients. J Chem Phys 2019; 150:014106. [PMID: 30621414 DOI: 10.1063/1.5045484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
For future use in modeling photoexcited dynamics and intersystem crossing, we calculate spin-adiabatic states and their analytical nuclear gradients within configuration interaction singles theory. These energies and forces should be immediately useful for surface hopping dynamics, which are natural within an adiabatic framework. The resulting code has been implemented within the Q-Chem software and preliminary results suggest that the additional cost of including spin-orbit coupling within the singles-singles block is not large.
Collapse
Affiliation(s)
- Nicole Bellonzi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gregory R Medders
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Fregoni J, Granucci G, Coccia E, Persico M, Corni S. Manipulating azobenzene photoisomerization through strong light-molecule coupling. Nat Commun 2018; 9:4688. [PMID: 30409994 PMCID: PMC6224570 DOI: 10.1038/s41467-018-06971-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
The formation of hybrid light–molecule states (polaritons) offers a new strategy to manipulate the photochemistry of molecules. To fully exploit its potential, one needs to build a toolbox of polaritonic phenomenologies that supplement those of standard photochemistry. By means of a state-of-the-art computational photochemistry approach extended to the strong-coupling regime, here we disclose various mechanisms peculiar of polaritonic chemistry: coherent population oscillations between polaritons, quenching by trapping in dead-end polaritonic states and the alteration of the photochemical reaction pathway and quantum yields. We focus on azobenzene photoisomerization, that encompasses the essential features of complex photochemical reactions such as the presence of conical intersections and reaction coordinates involving multiple internal modes. In the strong coupling regime, a polaritonic conical intersection arises and we characterize its role in the photochemical process. Our chemically detailed simulations provide a framework to rationalize how the strong coupling impacts the photochemistry of realistic molecules. Manipulation of the photochemistry of molecules is traditionally achieved through synthetic chemical modifications. Here the authors use computational photochemistry to show how to control azobenzene photoisomerization through hybrid light–molecule states (polaritons).
Collapse
Affiliation(s)
- J Fregoni
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, University of Modena and Reggio Emilia, I-41125, Modena, Italy.,Istituto Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, I-41125, Modena, Italy
| | - G Granucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, I-56124, Pisa, Italy.
| | - E Coccia
- Dipartimento di Scienze Chimiche, University of Padova, I-35131, Padova, Italy
| | - M Persico
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, I-56124, Pisa, Italy
| | - S Corni
- Istituto Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, I-41125, Modena, Italy. .,Dipartimento di Scienze Chimiche, University of Padova, I-35131, Padova, Italy.
| |
Collapse
|
14
|
Duan JX, Zhou Y, Xie ZZ, Sun TL, Cao J. Incorporating spin–orbit effects into surface hopping dynamics using the diagonal representation: a linear-response time-dependent density functional theory implementation with applications to 2-thiouracil. Phys Chem Chem Phys 2018; 20:15445-15454. [DOI: 10.1039/c8cp01852a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evaluation of SOC values employs Casida's wave functions and the Breit–Pauli spin–orbit Hamiltonian with effective charge approximation.
Collapse
Affiliation(s)
- Jun-Xin Duan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Yun Zhou
- Guizhou Provincial Key Laboratory of Computational Nano-material Science
- Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology
- Guizhou Normal College
- Guiyang
- China
| | - Zhi-Zhong Xie
- Department of Chemistry
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
| | - Tao-Lei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Jun Cao
- Guizhou Provincial Key Laboratory of Computational Nano-material Science
- Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology
- Guizhou Normal College
- Guiyang
- China
| |
Collapse
|
15
|
Favero L, Granucci G, Persico M. Surface hopping investigation of benzophenone excited state dynamics. Phys Chem Chem Phys 2016; 18:10499-506. [DOI: 10.1039/c6cp00328a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A mechanism of S1 decay in benzophenone: S1 → T1 is the main pathway, although transitions to T2 and higher triplets play a relevant role.
Collapse
Affiliation(s)
- Lucilla Favero
- Università di Pisa
- Dipartimento di Farmacia
- 56126 Pisa
- Italy
| | - Giovanni Granucci
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- 56124 Pisa
- Italy
| | - Maurizio Persico
- Università di Pisa
- Dipartimento di Chimica e Chimica Industriale
- 56124 Pisa
- Italy
| |
Collapse
|
16
|
Cui G, Thiel W. Generalized trajectory surface-hopping method for internal conversion and intersystem crossing. J Chem Phys 2015; 141:124101. [PMID: 25273406 DOI: 10.1063/1.4894849] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Trajectory-based fewest-switches surface-hopping (FSSH) dynamics simulations have become a popular and reliable theoretical tool to simulate nonadiabatic photophysical and photochemical processes. Most available FSSH methods model internal conversion. We present a generalized trajectory surface-hopping (GTSH) method for simulating both internal conversion and intersystem crossing processes on an equal footing. We consider hops between adiabatic eigenstates of the non-relativistic electronic Hamiltonian (pure spin states), which is appropriate for sufficiently small spin-orbit coupling. This choice allows us to make maximum use of existing electronic structure programs and to minimize the changes to available implementations of the traditional FSSH method. The GTSH method is formulated within the quantum mechanics (QM)/molecular mechanics framework, but can of course also be applied at the pure QM level. The algorithm implemented in the GTSH code is specified step by step. As an initial GTSH application, we report simulations of the nonadiabatic processes in the lowest four electronic states (S0, S1, T1, and T2) of acrolein both in vacuo and in acetonitrile solution, in which the acrolein molecule is treated at the ab initio complete-active-space self-consistent-field level. These dynamics simulations provide detailed mechanistic insight by identifying and characterizing two nonadiabatic routes to the lowest triplet state, namely, direct S1 → T1 hopping as major pathway and sequential S1 → T2 → T1 hopping as minor pathway, with the T2 state acting as a relay state. They illustrate the potential of the GTSH approach to explore photoinduced processes in complex systems, in which intersystem crossing plays an important role.
Collapse
Affiliation(s)
- Ganglong Cui
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Sun R, Granucci G, Paul AK, Siebert M, Liang HJ, Cheong G, Hase WL, Persico M. Potential energy surfaces for the HBr(+) + CO2 → Br + HOCO(+) reaction in the HBr(+) (2)Π3/2 and (2)Π1/2 spin-orbit states. J Chem Phys 2015; 142:104302. [PMID: 25770535 DOI: 10.1063/1.4913767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum mechanical (QM) + molecular mechanics (MM) models are developed to represent potential energy surfaces (PESs) for the HBr(+) + CO2 → Br + HOCO(+) reaction with HBr(+) in the (2)Π3/2 and (2)Π1/2 spin-orbit states. The QM component is the spin-free PES and spin-orbit coupling for each state is represented by a MM-like analytic potential fit to spin-orbit electronic structure calculations. Coupled-cluster single double and perturbative triple excitation (CCSD(T)) calculations are performed to obtain "benchmark" reaction energies without spin-orbit coupling. With zero-point energies removed, the "experimental" reaction energy is 44 ± 5 meV for HBr(+)((2)Π3/2) + CO2 → Br((2)P3/2) + HOCO(+), while the CCSD(T) value with spin-orbit effects included is 87 meV. Electronic structure calculations were performed to determine properties of the BrHOCO(+) reaction intermediate and [HBr⋯OCO](+) van der Waals intermediate. The results of different electronic structure methods were compared with those obtained with CCSD(T), and UMP2/cc-pVTZ/PP was found to be a practical and accurate QM method to use in QM/MM direct dynamics simulations. The spin-orbit coupling calculations show that the spin-free QM PES gives a quite good representation of the shape of the PES originated by (2)Π3/2HBr(+). This is also the case for the reactant region of the PES for (2)Π1/2 HBr(+), but spin-orbit coupling effects are important for the exit-channel region of this PES. A MM model was developed to represent these effects, which were combined with the spin-free QM PES.
Collapse
Affiliation(s)
- Rui Sun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Amit K Paul
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Matthew Siebert
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Hongliang J Liang
- Department of Engineering, Swarthmore College, Swarthmore, Pennsylvania 19081, USA
| | - Grace Cheong
- Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, USA
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1526-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Martínez-Fernández L, Corral I, Granucci G, Persico M. Competing ultrafast intersystem crossing and internal conversion: a time resolved picture for the deactivation of 6-thioguanine. Chem Sci 2014. [DOI: 10.1039/c3sc52856a] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
20
|
Favero L, Granucci G, Persico M. Dynamics of acetone photodissociation: a surface hopping study. Phys Chem Chem Phys 2013; 15:20651-61. [DOI: 10.1039/c3cp54016b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Granucci G, Persico M, Spighi G. Surface hopping trajectory simulations with spin-orbit and dynamical couplings. J Chem Phys 2012; 137:22A501. [DOI: 10.1063/1.4707737] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Cusati T, Granucci G, Martínez-Núñez E, Martini F, Persico M, Vázquez S. Semiempirical Hamiltonian for simulation of azobenzene photochemistry. J Phys Chem A 2011; 116:98-110. [PMID: 22107348 DOI: 10.1021/jp208574q] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a semiempirical Hamiltonian that provides an accurate description of the first singlet and triplet potential energy surfaces of azobenzene for use in direct simulations of the excited-state dynamics. The parameterization made use of spectroscopic and thermochemical data and the best ab initio results available to date. Two-dimensional potential energy surfaces based on constrained geometry optimizations are presented for the states that are most relevant for the photochemistry of azobenzene, namely, S(0), S(1), and S(2). In order to run simulations of the photodynamics of azobenzene in hydrocarbons or hydroxylic solvents, we determined the interactions of methane and methanol with the azo group by ab initio calculations and fitted the interactions with a QM/MM interaction Hamiltonian.
Collapse
Affiliation(s)
- Teresa Cusati
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, v. Risorgimento 35, I-56126 Pisa, Italy
| | | | | | | | | | | |
Collapse
|