1
|
Xu Z, Wise MC, Chokkalingam N, Walker S, Tello‐Ruiz E, Elliott STC, Perales‐Puchalt A, Xiao P, Zhu X, Pumroy RA, Fisher PD, Schultheis K, Schade E, Menis S, Guzman S, Andersen H, Broderick KE, Humeau LM, Muthumani K, Moiseenkova‐Bell V, Schief WR, Weiner DB, Kulp DW. In Vivo Assembly of Nanoparticles Achieved through Synergy of Structure-Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902802. [PMID: 32328416 PMCID: PMC7175333 DOI: 10.1002/advs.201902802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/28/2019] [Indexed: 05/25/2023]
Abstract
Nanotechnologies are considered to be of growing importance to the vaccine field. Through decoration of immunogens on multivalent nanoparticles, designed nanovaccines can elicit improved humoral immunity. However, significant practical and monetary challenges in large-scale production of nanovaccines have impeded their widespread clinical translation. Here, an alternative approach is illustrated integrating computational protein modeling and adaptive electroporation-mediated synthetic DNA delivery, thus enabling direct in vivo production of nanovaccines. DNA-launched nanoparticles are demonstrated displaying an HIV immunogen spontaneously self-assembled in vivo. DNA-launched nanovaccines induce stronger humoral responses than their monomeric counterparts in both mice and guinea pigs, and uniquely elicit CD8+ effector T-cell immunity as compared to recombinant protein nanovaccines. Improvements in vaccine responses recapitulate when DNA-launched nanovaccines with alternative scaffolds and decorated antigen are designed and evaluated. Finally, evaluation of functional immune responses induced by DLnanovaccines demonstrates that, in comparison to control mice or mice immunized with DNA-encoded hemagglutinin monomer, mice immunized with a DNA-launched hemagglutinin nanoparticle vaccine fully survive a lethal influenza challenge, and have substantially lower viral load, weight loss, and influenza-induced lung pathology. Additional study of these next-generation in vivo-produced nanovaccines may offer advantages for immunization against multiple disease targets.
Collapse
Affiliation(s)
- Ziyang Xu
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
- Department of PharmacologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Megan C. Wise
- Inovio PharmaceuticalsPlymouth MeetingPhiladelphiaPA19422USA
| | - Neethu Chokkalingam
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Susanne Walker
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Edgar Tello‐Ruiz
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Sarah T. C. Elliott
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | | | - Peng Xiao
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Xizhou Zhu
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Ruth A. Pumroy
- Department of PharmacologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Paul D. Fisher
- Inovio PharmaceuticalsPlymouth MeetingPhiladelphiaPA19422USA
| | | | - Eric Schade
- Inovio PharmaceuticalsPlymouth MeetingPhiladelphiaPA19422USA
| | - Sergey Menis
- Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCA92037USA
- IAVI Neutralizing Antibody CenterThe Scripps Research InstituteLa JollaCA92037USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen DiscoveryThe Scripps Research InstituteLa JollaCA92037USA
| | - Stacy Guzman
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | | | | | | | - Kar Muthumani
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Vera Moiseenkova‐Bell
- Department of PharmacologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - William R. Schief
- Department of Immunology and MicrobiologyThe Scripps Research InstituteLa JollaCA92037USA
- IAVI Neutralizing Antibody CenterThe Scripps Research InstituteLa JollaCA92037USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen DiscoveryThe Scripps Research InstituteLa JollaCA92037USA
- Ragon Institute of MGHMIT and HarvardCambridgeMA02139USA
| | - David B. Weiner
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
| | - Daniel W. Kulp
- The Vaccine and Immunotherapy CenterThe Wistar InstitutePhiladelphiaPA19104USA
- Department of MicrobiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
2
|
Niemann MCE, Weber H, Hluska T, Leonte G, Anderson SM, Novák O, Senes A, Werner T. The Cytokinin Oxidase/Dehydrogenase CKX1 Is a Membrane-Bound Protein Requiring Homooligomerization in the Endoplasmic Reticulum for Its Cellular Activity. PLANT PHYSIOLOGY 2018; 176:2024-2039. [PMID: 29301955 PMCID: PMC5841711 DOI: 10.1104/pp.17.00925] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/29/2017] [Indexed: 05/05/2023]
Abstract
Degradation of the plant hormone cytokinin is controlled by cytokinin oxidase/dehydrogenase (CKX) enzymes. The molecular and cellular behavior of these proteins is still largely unknown. In this study, we show that CKX1 is a type II single-pass membrane protein that localizes predominantly to the endoplasmic reticulum (ER) in Arabidopsis (Arabidopsis thaliana). This indicates that this CKX isoform is a bona fide ER protein directly controlling the cytokinin, which triggers the signaling from the ER. By using various approaches, we demonstrate that CKX1 forms homodimers and homooligomers in vivo. The amino-terminal part of CKX1 was necessary and sufficient for the protein oligomerization as well as for targeting and retention in the ER. Moreover, we show that protein-protein interaction is largely facilitated by transmembrane helices and depends on a functional GxxxG-like interaction motif. Importantly, mutations rendering CKX1 monomeric interfere with its steady-state localization in the ER and cause a loss of the CKX1 biological activity by increasing its ER-associated degradation. Therefore, our study provides evidence that oligomerization is a crucial parameter regulating CKX1 biological activity and the cytokinin concentration in the ER. The work also lends strong support for the cytokinin signaling from the ER and for the functional relevance of the cytokinin pool in this compartment.
Collapse
Affiliation(s)
- Michael C E Niemann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Henriette Weber
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Tomáš Hluska
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 78371 Olomouc, Czech Republic
| | - Georgeta Leonte
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Samantha M Anderson
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195 Berlin, Germany
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, 78371 Olomouc, Czech Republic
- Institute of Plant Sciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
3
|
Condon SGF, Mahbuba DA, Armstrong CR, Diaz-Vazquez G, Craven SJ, LaPointe LM, Khadria AS, Chadda R, Crooks JA, Rangarajan N, Weibel DB, Hoskins AA, Robertson JL, Cui Q, Senes A. The FtsLB subcomplex of the bacterial divisome is a tetramer with an uninterrupted FtsL helix linking the transmembrane and periplasmic regions. J Biol Chem 2018; 293:1623-1641. [PMID: 29233891 PMCID: PMC5798294 DOI: 10.1074/jbc.ra117.000426] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/04/2017] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, FtsLB plays a central role in the initiation of cell division, possibly transducing a signal that will eventually lead to the activation of peptidoglycan remodeling at the forming septum. The molecular mechanisms by which FtsLB operates in the divisome, however, are not understood. Here, we present a structural analysis of the FtsLB complex, performed with biophysical, computational, and in vivo methods, that establishes the organization of the transmembrane region and proximal coiled coil of the complex. FRET analysis in vitro is consistent with formation of a tetramer composed of two FtsL and two FtsB subunits. We predicted subunit contacts through co-evolutionary analysis and used them to compute a structural model of the complex. The transmembrane region of FtsLB is stabilized by hydrophobic packing and by a complex network of hydrogen bonds. The coiled coil domain probably terminates near the critical constriction control domain, which might correspond to a structural transition. The presence of strongly polar amino acids within the core of the tetrameric coiled coil suggests that the coil may split into two independent FtsQ-binding domains. The helix of FtsB is interrupted between the transmembrane and coiled coil regions by a flexible Gly-rich linker. Conversely, the data suggest that FtsL forms an uninterrupted helix across the two regions and that the integrity of this helix is indispensable for the function of the complex. The FtsL helix is thus a candidate for acting as a potential mechanical connection to communicate conformational changes between periplasmic, membrane, and cytoplasmic regions.
Collapse
Affiliation(s)
- Samson G F Condon
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | - Deena-Al Mahbuba
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | | | | | - Samuel J Craven
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | - Loren M LaPointe
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | - Ambalika S Khadria
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | - Rahul Chadda
- the Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - John A Crooks
- From the Department of Biochemistry
- the Integrated Program in Biochemistry
| | | | | | | | - Janice L Robertson
- the Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Qiang Cui
- the Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 and
| | | |
Collapse
|
4
|
Kulp DW, Steichen JM, Pauthner M, Hu X, Schiffner T, Liguori A, Cottrell CA, Havenar-Daughton C, Ozorowski G, Georgeson E, Kalyuzhniy O, Willis JR, Kubitz M, Adachi Y, Reiss SM, Shin M, de Val N, Ward AB, Crotty S, Burton DR, Schief WR. Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nat Commun 2017; 8:1655. [PMID: 29162799 PMCID: PMC5698488 DOI: 10.1038/s41467-017-01549-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Elicitation of broadly neutralizing antibodies (bnAbs) is a primary HIV vaccine goal. Native-like trimers mimicking virion-associated spikes present nearly all bnAb epitopes and are therefore promising vaccine antigens. However, first generation native-like trimers expose epitopes for non-neutralizing antibodies (non-nAbs), which may hinder bnAb induction. We here employ computational and structure-guided design to develop improved native-like trimers that reduce exposure of non-nAb epitopes in the V3-loop and trimer base, minimize both CD4 reactivity and CD4-induced non-nAb epitope exposure, and increase thermal stability while maintaining bnAb antigenicity. In rabbit immunizations with native-like trimers of the 327c isolate, improved trimers suppress elicitation of V3-directed and tier-1 neutralizing antibodies and induce robust autologous tier-2 neutralization, unlike a first-generation trimer. The improved native-like trimers from diverse HIV isolates, and the design methods, have promise to assist in the development of a HIV vaccine. Eliciting broadly neutralizing antibodies (bnAbs) is a primary HIV vaccine goal, but available immunogens expose epitopes for development of non-nAbs. Here, the authors use computational and structure-guided design to develop improved native-like envelope trimers and analyze Ab response in animal models.
Collapse
Affiliation(s)
- Daniel W Kulp
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Vaccine and Immune Therapy Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christopher A Cottrell
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Colin Havenar-Daughton
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Erik Georgeson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yumiko Adachi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Samantha M Reiss
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Mia Shin
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Natalia de Val
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shane Crotty
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA.,The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, 92037, USA. .,The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
Guo X, Niemi NM, Hutchins PD, Condon SGF, Jochem A, Ulbrich A, Higbee AJ, Russell JD, Senes A, Coon JJ, Pagliarini DJ. Ptc7p Dephosphorylates Select Mitochondrial Proteins to Enhance Metabolic Function. Cell Rep 2017; 18:307-313. [PMID: 28076776 DOI: 10.1016/j.celrep.2016.12.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/02/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Proper maintenance of mitochondrial activity is essential for metabolic homeostasis. Widespread phosphorylation of mitochondrial proteins may be an important element of this process; yet, little is known about which enzymes control mitochondrial phosphorylation or which phosphosites have functional impact. We investigate these issues by disrupting Ptc7p, a conserved but largely uncharacterized mitochondrial matrix PP2C-type phosphatase. Loss of Ptc7p causes respiratory growth defects concomitant with elevated phosphorylation of select matrix proteins. Among these, Δptc7 yeast exhibit an increase in phosphorylation of Cit1p, the canonical citrate synthase of the tricarboxylic acid (TCA) cycle, that diminishes its activity. We find that phosphorylation of S462 can eliminate Cit1p enzymatic activity likely by disrupting its proper dimerization, and that Ptc7p-driven dephosphorylation rescues Cit1p activity. Collectively, our work connects Ptc7p to an essential TCA cycle function and to additional phosphorylation events that may affect mitochondrial activity inadvertently or in a regulatory manner.
Collapse
Affiliation(s)
- Xiao Guo
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Natalie M Niemi
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul D Hutchins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Genome Center of Wisconsin, Madison, WI 53706, USA
| | - Samson G F Condon
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Adam Jochem
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Arne Ulbrich
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Genome Center of Wisconsin, Madison, WI 53706, USA
| | - Alan J Higbee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Genome Center of Wisconsin, Madison, WI 53706, USA
| | - Jason D Russell
- Morgridge Institute for Research, Madison, WI 53715, USA; Genome Center of Wisconsin, Madison, WI 53706, USA
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
6
|
Anderson SM, Mueller BK, Lange EJ, Senes A. Combination of Cα-H Hydrogen Bonds and van der Waals Packing Modulates the Stability of GxxxG-Mediated Dimers in Membranes. J Am Chem Soc 2017; 139:15774-15783. [PMID: 29028318 PMCID: PMC5927632 DOI: 10.1021/jacs.7b07505] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The GxxxG motif is frequently found at the dimerization interface of a transmembrane structural motif called GASright, which is characterized by a short interhelical distance and a right-handed crossing angle between the helices. In GASright dimers, such as glycophorin A (GpA), BNIP3, and members of the ErbB family, the backbones of the helices are in contact, and they invariably display networks of 4 to 8 weak hydrogen bonds between Cα-H carbon donors and carbonyl acceptors on opposing helices (Cα-H···O═C hydrogen bonds). These networks of weak hydrogen bonds at the helix-helix interface are presumably stabilizing, but their energetic contribution to dimerization has yet to be determined experimentally. Here, we present a computational and experimental structure-based analysis of GASright dimers of different predicted stabilities, which show that a combination of van der Waals packing and Cα-H hydrogen bonding predicts the experimental trend of dimerization propensities. This finding provides experimental support for the hypothesis that the networks of Cα-H hydrogen bonds are major contributors to the free energy of association of GxxxG-mediated dimers. The structural comparison between groups of GASright dimers of different stabilities reveals distinct sequence as well as conformational preferences. Stability correlates with shorter interhelical distances, narrower crossing angles, better packing, and the formation of larger networks of Cα-H hydrogen bonds. The identification of these structural rules provides insight on how nature could modulate stability in GASright and finely tune dimerization to support biological function.
Collapse
Affiliation(s)
- Samantha M Anderson
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Benjamin K Mueller
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Evan J Lange
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Mustata GM, Kim YH, Zhang J, DeGrado WF, Grigoryan G, Wanunu M. Graphene Symmetry Amplified by Designed Peptide Self-Assembly. Biophys J 2017; 110:2507-2516. [PMID: 27276268 PMCID: PMC4906377 DOI: 10.1016/j.bpj.2016.04.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 11/28/2022] Open
Abstract
We present a strategy for designed self-assembly of peptides into two-dimensional monolayer crystals on the surface of graphene and graphite. As predicted by computation, designed peptides assemble on the surface of graphene to form very long, parallel, in-register β-sheets, which we call β-tapes. Peptides extend perpendicularly to the long axis of each β-tape, defining its width, with hydrogen bonds running along the axis. Tapes align on the surface to create highly regular microdomains containing 4-nm pitch striations. Moreover, in agreement with calculations, the atomic structure of the underlying graphene dictates the arrangement of the β-tapes, as they orient along one of six directions defined by graphene’s sixfold symmetry. A cationic-assembled peptide surface is shown here to strongly adhere to DNA, preferentially orienting the double helix along β-tape axes. This orientational preference is well anticipated from calculations, given the underlying peptide layer structure. These studies illustrate how designed peptides can amplify the Ångstrom-level atomic symmetry of a surface onto the micrometer scale, further imparting long-range directional order onto the next level of assembly. The remarkably stable nature of these assemblies under various environmental conditions suggests applications in enzymelike catalysis, biological interfaces for cellular recognition, and two-dimensional platforms for studying DNA-peptide interactions.
Collapse
Affiliation(s)
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology and Department of Chemistry, Sungkyunkwan University, Seoul, Korea; Center for Neuroscience Imaging Research, Institute for Basic Science(IBS), Suwon, Korea.
| | - Jian Zhang
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire.
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
8
|
Abstract
Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working environment. This chapter describes the birth and maturation of the field by presenting 101 CPD examples in a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents the plethora of CPD approaches with the hope of providing a "CPD 101". These reflect on the broader structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic differential approaches towards different protein regions, (4) identification of key hot-spot residues and the relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects, (6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential designs. Future challenges also include dissemination of CPD software to the general use of life-sciences researchers and the emphasis of success within an in vivo milieu. CPD increases our understanding of protein structure and function and the relationships between the two along with the application of such know-how for the benefit of mankind. Applied aspects range from biological drugs, via healthier and tastier food products to nanotechnology and environmentally friendly enzymes replacing toxic chemicals utilized in the industry.
Collapse
|
9
|
Zhang Z, Subramaniam S, Kale J, Liao C, Huang B, Brahmbhatt H, Condon SGF, Lapolla SM, Hays FA, Ding J, He F, Zhang XC, Li J, Senes A, Andrews DW, Lin J. BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO J 2015; 35:208-36. [PMID: 26702098 DOI: 10.15252/embj.201591552] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
Pro-apoptotic Bax induces mitochondrial outer membrane permeabilization (MOMP) by forming oligomers through a largely undefined process. Using site-specific disulfide crosslinking, compartment-specific chemical labeling, and mutational analysis, we found that activated integral membrane Bax proteins form a BH3-in-groove dimer interface on the MOM surface similar to that observed in crystals. However, after the α5 helix was released into the MOM, the remaining interface with α2, α3, and α4 helices was rearranged. Another dimer interface was formed inside the MOM by two intersected or parallel α9 helices. Combinations of these interfaces generated oligomers in the MOM. Oligomerization was initiated by BH3-in-groove dimerization, without which neither the other dimerizations nor MOMP occurred. In contrast, α9 dimerization occurred downstream and was required for release of large but not small proteins from mitochondria. Moreover, the release of large proteins was facilitated by α9 insertion into the MOM and localization to the pore rim. Therefore, the BH3-in-groove dimerization on the MOM nucleates the assembly of an oligomeric Bax pore that is enlarged by α9 dimerization at the rim.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Justin Kale
- Biological Sciences, Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Bo Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hetal Brahmbhatt
- Biological Sciences, Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Samson G F Condon
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Suzanne M Lapolla
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jingzhen Ding
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Feng He
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xuejun C Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jialing Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Ma G, Wei M, He L, Liu C, Wu B, Zhang SL, Jing J, Liang X, Senes A, Tan P, Li S, Sun A, Bi Y, Zhong L, Si H, Shen Y, Li M, Lee MS, Zhou W, Wang J, Wang Y, Zhou Y. Inside-out Ca(2+) signalling prompted by STIM1 conformational switch. Nat Commun 2015; 6:7826. [PMID: 26184105 PMCID: PMC4509486 DOI: 10.1038/ncomms8826] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca(2+) entry mediated by STIM1 and ORAI1 constitutes one of the major Ca(2+) entry routes in mammalian cells. The molecular choreography of STIM1-ORAI1 coupling is initiated by endoplasmic reticulum (ER) Ca(2+) store depletion with subsequent oligomerization of the STIM1 ER-luminal domain, followed by its redistribution towards the plasma membrane to gate ORAI1 channels. The mechanistic underpinnings of this inside-out Ca(2+) signalling were largely undefined. By taking advantage of a unique gain-of-function mutation within the STIM1 transmembrane domain (STIM1-TM), here we show that local rearrangement, rather than alteration in the oligomeric state of STIM1-TM, prompts conformational changes in the cytosolic juxtamembrane coiled-coil region. Importantly, we further identify critical residues within the cytoplasmic domain of STIM1 (STIM1-CT) that entail autoinhibition. On the basis of these findings, we propose a model in which STIM1-TM reorganization switches STIM1-CT into an extended conformation, thereby projecting the ORAI-activating domain to gate ORAI1 channels.
Collapse
Affiliation(s)
- Guolin Ma
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Ming Wei
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lian He
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Chongxu Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Bo Wu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shenyuan L. Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas 76504, USA
| | - Ji Jing
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Xiaowen Liang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Peng Tan
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Siwei Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yunchen Bi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Zhong
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Hongjiang Si
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas 76504, USA
| | - Yuequan Shen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Minyong Li
- Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Mi-Sun Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas 76504, USA
| |
Collapse
|
11
|
The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions. Structure 2015; 23:527-541. [PMID: 25703378 DOI: 10.1016/j.str.2015.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Abstract
α Helices are a basic unit of protein secondary structure and therefore the interaction between helices is crucial to understanding tertiary and higher-order folds. Comparing subtle variations in the structural and sequence motifs between membrane and soluble proteins sheds light on the different constraints faced by each environment and elucidates the complex puzzle of membrane protein folding. Here, we demonstrate that membrane and water-soluble helix pairs share a small number of similar folds with various interhelical distances. The composition of the residues that pack at the interface between corresponding motifs shows that hydrophobic residues tend to be more enriched in the water-soluble class of structures and small residues in the transmembrane class. The latter group facilitates packing via sidechain- and backbone-mediated hydrogen bonds within the low-dielectric membrane milieu. The helix-helix interactome space, with its associated sequence preferences and accompanying hydrogen-bonding patterns, should be useful for engineering, prediction, and design of protein structure.
Collapse
|
12
|
Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL, Ramos A, Kulp DW, Julien JP, Menis S, Wickramasinghe L, Seaman MS, Schief WR, Wilson IA, Poignard P, Burton DR. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci Transl Med 2014; 6:236ra63. [PMID: 24828077 DOI: 10.1126/scitranslmed.3008104] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Broadly neutralizing monoclonal antibodies (bnmAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates because they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viremia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site, and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnmAbs can use alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/N334 glycan site and up to 66% coverage for viruses that lack the N332/N334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near-equivalent coverage as a combination of bnmAbs targeting multiple epitopes. Additionally, the ability of some bnmAbs to use other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnmAbs to the high-mannose patch for optimal antiviral activity in either protective or therapeutic modalities.
Collapse
Affiliation(s)
- Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katie J Doores
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK.
| | - Bryan Briney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Khoa M Le
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Daniel W Kulp
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Jean-Philippe Julien
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sergey Menis
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Lalinda Wickramasinghe
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | | | - William R Schief
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02142, USA
| | - Ian A Wilson
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pascal Poignard
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative, New York, NY 10038, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, MA 02142, USA.
| |
Collapse
|
13
|
Hirsh L, Piovesan D, Giollo M, Ferrari C, Tosatto SCE. The Victor C++ library for protein representation and advanced manipulation. Bioinformatics 2014; 31:1138-40. [PMID: 25414364 DOI: 10.1093/bioinformatics/btu773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/15/2014] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Protein sequence and structure representation and manipulation require dedicated software libraries to support methods of increasing complexity. Here, we describe the VIrtual Constrution TOol for pRoteins (Victor) C++ library, an open source platform dedicated to enabling inexperienced users to develop advanced tools and gathering contributions from the community. The provided application examples cover statistical energy potentials, profile-profile sequence alignments and ab initio loop modeling. Victor was used over the last 15 years in several publications and optimized for efficiency. It is provided as a GitHub repository with source files and unit tests, plus extensive online documentation, including a Wiki with help files and tutorials, examples and Doxygen documentation. AVAILABILITY AND IMPLEMENTATION The C++ library and online documentation, distributed under a GPL license are available from URL: http://protein.bio.unipd.it/victor/.
Collapse
Affiliation(s)
- Layla Hirsh
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| | - Manuel Giollo
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| | - Carlo Ferrari
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy, Department of Engineering, Pontificia Universidad Católica del Perú, San Miguel, 32 Lima, Perú and Department of Information Engineering, University of Padua, Via Gradenigo 6, 35121 Padova, Italy
| |
Collapse
|
14
|
Subramaniam S, Senes A. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL). Proteins 2014; 82:3177-87. [PMID: 25212195 DOI: 10.1002/prot.24685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/21/2014] [Accepted: 09/03/2014] [Indexed: 12/11/2022]
Abstract
Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone-independent version of the library.
Collapse
Affiliation(s)
- Sabareesh Subramaniam
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | | |
Collapse
|
15
|
Khadria AS, Mueller BK, Stefely JA, Tan CH, Pagliarini DJ, Senes A. A Gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3. J Am Chem Soc 2014; 136:14068-77. [PMID: 25216398 PMCID: PMC4195374 DOI: 10.1021/ja505017f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions between α-helices within the hydrophobic environment of lipid bilayers are integral to the folding and function of transmembrane proteins; however, the major forces that mediate these interactions remain debated, and our ability to predict these interactions is still largely untested. We recently demonstrated that the frequent transmembrane association motif GASright, the GxxxG-containing fold of the glycophorin A dimer, is optimal for the formation of extended networks of Cα-H hydrogen bonds, supporting the hypothesis that these bonds are major contributors to association. We also found that optimization of Cα-H hydrogen bonding and interhelical packing is sufficient to computationally predict the structure of known GASright dimers at near atomic level. Here, we demonstrate that this computational method can be used to characterize the structure of a protein not previously known to dimerize, by predicting and validating the transmembrane dimer of ADCK3, a mitochondrial kinase. ADCK3 is involved in the biosynthesis of the redox active lipid, ubiquinone, and human ADCK3 mutations cause a cerebellar ataxia associated with ubiquinone deficiency, but the biochemical functions of ADCK3 remain largely undefined. Our experimental analyses show that the transmembrane helix of ADCK3 oligomerizes, with an interface based on an extended Gly-zipper motif, as predicted by our models. The data provide strong evidence for the hypothesis that optimization of Cα-H hydrogen bonding is an important factor in the association of transmembrane helices. This work also provides a structural foundation for investigating the role of transmembrane association in regulating the biological activity of ADCK3.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
16
|
A frequent, GxxxG-mediated, transmembrane association motif is optimized for the formation of interhelical Cα-H hydrogen bonds. Proc Natl Acad Sci U S A 2014; 111:E888-95. [PMID: 24569864 DOI: 10.1073/pnas.1319944111] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon hydrogen bonds between Cα-H donors and carbonyl acceptors are frequently observed between transmembrane helices (Cα-H···O=C). Networks of these interactions occur often at helix-helix interfaces mediated by GxxxG and similar patterns. Cα-H hydrogen bonds have been hypothesized to be important in membrane protein folding and association, but evidence that they are major determinants of helix association is still lacking. Here we present a comprehensive geometric analysis of homodimeric helices that demonstrates the existence of a single region in conformational space with high propensity for Cα-H···O=C hydrogen bond formation. This region corresponds to the most frequent motif for parallel dimers, GASright, whose best-known example is glycophorin A. The finding suggests a causal link between the high frequency of occurrence of GASright and its propensity for carbon hydrogen bond formation. Investigation of the sequence dependency of the motif determined that Gly residues are required at specific positions where only Gly can act as a donor with its "side chain" Hα. Gly also reduces the steric barrier for non-Gly amino acids at other positions to act as Cα donors, promoting the formation of cooperative hydrogen bonding networks. These findings offer a structural rationale for the occurrence of GxxxG patterns at the GASright interface. The analysis identified the conformational space and the sequence requirement of Cα-H···O=C mediated motifs; we took advantage of these results to develop a structural prediction method. The resulting program, CATM, predicts ab initio the known high-resolution structures of homodimeric GASright motifs at near-atomic level.
Collapse
|
17
|
Faiella M, Roy A, Sommer D, Ghirlanda G. De novo design of functional proteins: Toward artificial hydrogenases. Biopolymers 2013; 100:558-71. [DOI: 10.1002/bip.22420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/08/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Marina Faiella
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Anindya Roy
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Dayn Sommer
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Giovanna Ghirlanda
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| |
Collapse
|
18
|
Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation. Proc Natl Acad Sci U S A 2013; 110:E3577-86. [PMID: 24003111 DOI: 10.1073/pnas.1313331110] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) produced by NO synthase (NOS) participates in diverse physiological processes such as vasodilation, neurotransmission, and the innate immune response. Mammalian NOS isoforms are homodimers composed of two domains connected by an intervening calmodulin-binding region. The N-terminal oxidase domain binds heme and tetrahydrobiopterin and the arginine substrate. The C-terminal reductase domain binds FAD and FMN and the cosubstrate NADPH. Although several high-resolution structures of individual NOS domains have been reported, a structure of a NOS holoenzyme has remained elusive. Determination of the higher-order domain architecture of NOS is essential to elucidate the molecular underpinnings of NO formation. In particular, the pathway of electron transfer from FMN to heme, and the mechanism through which calmodulin activates this electron transfer, are largely unknown. In this report, hydrogen-deuterium exchange mass spectrometry was used to map critical NOS interaction surfaces. Direct interactions between the heme domain, the FMN subdomain, and calmodulin were observed. These interaction surfaces were confirmed by kinetic studies of site-specific interface mutants. Integration of the hydrogen-deuterium exchange mass spectrometry results with computational docking resulted in models of the NOS heme and FMN subdomain bound to calmodulin. These models suggest a pathway for electron transfer from FMN to heme and a mechanism for calmodulin activation of this critical step.
Collapse
|
19
|
LaPointe LM, Taylor KC, Subramaniam S, Khadria A, Rayment I, Senes A. Structural organization of FtsB, a transmembrane protein of the bacterial divisome. Biochemistry 2013; 52:2574-85. [PMID: 23520975 PMCID: PMC3702382 DOI: 10.1021/bi400222r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report the first structural analysis of an integral membrane protein of the bacterial divisome. FtsB is a single-pass membrane protein with a periplasmic coiled coil. Its heterologous association with its partner FtsL represents an essential event for the recruitment of the late components to the division site. Using a combination of mutagenesis, computational modeling, and X-ray crystallography, we determined that FtsB self-associates, and we investigated its structural organization. We found that the transmembrane domain of FtsB homo-oligomerizes through an evolutionarily conserved interaction interface where a polar residue (Gln 16) plays a critical role through the formation of an interhelical hydrogen bond. The crystal structure of the periplasmic domain, solved as a fusion with Gp7, shows that 30 juxta-membrane amino acids of FtsB form a canonical coiled coil. The presence of conserved Gly residue in the linker region suggests that flexibility between the transmembrane and coiled coil domains is functionally important. We hypothesize that the transmembrane helices of FtsB form a stable dimeric core for its association with FtsL into a higher-order oligomer and that FtsL is required to stabilize the periplasmic domain of FtsB, leading to the formation of a complex that is competent for binding to FtsQ, and to their consequent recruitment to the divisome. The study provides an experimentally validated structural model and identifies point mutations that disrupt association, thereby establishing important groundwork for the functional characterization of FtsB in vivo.
Collapse
|
20
|
Abstract
The observation of a limited secondary-structural alphabet in native proteins, with significant sequence preferences, has profoundly influenced the fields of protein design and structure prediction (Simons, Kooperberg, Huang, & Baker, 1997; Verschueren et al., 2011). In the era of structural genomics, as the size of the structural dataset continues to grow rapidly, it is becoming possible to extend this analysis to tertiary structural motifs and their sequences. For a hypothetical tertiary motif, the rate of its utilization in natural proteins may be used to assess its designability-the ease with which the motif can be realized with natural amino acids. This requires a structural similarity search methodology, which rather than looking for global topological agreement (more appropriate for categorization of full proteins or domains), identifies detailed geometric matches. In this chapter, we introduce such a method, called MaDCaT, and demonstrate its use by assessing the designability landscapes of two tertiary structural motifs. We also show that such analysis can establish structure/sequence links by providing the sequence constraints necessary to encode designable motifs. As logical extension of their secondary-structure counterparts, tertiary structural preferences will likely prove extremely useful in de novo protein design and structure prediction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Computer Science, Dartmouth College, Fax: 603-646-1672, 6211 Sudikoff Lab, Room 210, Hanover, NH 03755-3510, USA
| | - Gevorg Grigoryan
- Adjunct Professor of Biology, Dartmouth College, Phone: 603-646-3173, Fax: 603-646-1672, 6211 Sudikoff Lab, Room 113, Hanover, NH 03755-3510, USA
| |
Collapse
|
21
|
Reig AJ, Pires MM, Snyder RA, Wu Y, Jo H, Kulp DW, Butch SE, Calhoun JR, Szyperski T, Szyperski TG, Solomon EI, DeGrado WF. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nat Chem 2012; 4:900-6. [PMID: 23089864 PMCID: PMC3568993 DOI: 10.1038/nchem.1454] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
De novo proteins provide a unique opportunity for investigating the structure-function relationships of metalloproteins in a minimal, well-defined, and controlled scaffold. Herein, we describe the rational programming of function in a de novo designed di-iron carboxylate protein from the due ferri family. Originally created to catalyze O2-dependent, two-electron oxidation of hydroquinones, the protein was reprogrammed to catalyze the selective N-hydroxylation of arylamines by remodeling the substrate access cavity and introducing a critical third His ligand to the metal binding cavity. Additional second-and third-shell modifications were required to stabilize the His ligand in the core of the protein. These changes resulted in at least a 106 –fold increase in the relative rates of the two reactions. This result highlights the potential for using de novo proteins as scaffolds for future investigations of geometric and electronic factors that influence the catalytic tuning of di-iron active sites.
Collapse
Affiliation(s)
- Amanda J Reig
- Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Subramaniam S, Senes A. An energy-based conformer library for side chain optimization: improved prediction and adjustable sampling. Proteins 2012; 80:2218-34. [PMID: 22576292 DOI: 10.1002/prot.24111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/22/2012] [Accepted: 05/02/2012] [Indexed: 11/11/2022]
Abstract
Side chain optimization is a fundamental component of protein modeling applications such as docking, structural prediction, and design. In these applications side chain flexibility is often provided by rotamer or conformer libraries, which are collections of representative side chain conformations. Here we demonstrate that the sampling provided by the library can be substantially improved by adding an energetic criterion to its creation. The result of the new procedure is the Energy-Based library, a conformer library selected according to the propensity of its elements to fit energetically into natural protein environments. The new library performs outstandingly well in side chain optimization, producing structures with significantly lower energies and resulting in improved side chain conformation prediction. In addition, because the library was created as an ordered list, its size can be adjusted to any desired level. This feature provides unprecedented versatility in tuning sampling. It allows to precisely balance the number of conformers required by each amino acid type, equalizing their chances to fit into structural environments. It also allows to scale the amount of sampling to the specific requirement of any given side optimization problem. A rotameric version of the library was also produced with the same method to support applications that require a dihedral-only description of side chain conformation. The libraries are available at http://seneslab.org/EBL.
Collapse
Affiliation(s)
- Sabareesh Subramaniam
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|