1
|
Spirandelli I, Coles R, Friesecke G, Evans ME. Exotic self-assembly of hard spheres in a morphometric solvent. Proc Natl Acad Sci U S A 2024; 121:e2314959121. [PMID: 38573965 PMCID: PMC11009619 DOI: 10.1073/pnas.2314959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
The self-assembly of spheres into geometric structures, under various theoretical conditions, offers valuable insights into complex self-assembly processes in soft systems. Previous studies have utilized pair potentials between spheres to assemble maximum contact clusters in simulations and experiments. The morphometric approach to solvation free energy that we utilize here goes beyond pair potentials; it is a geometry-based theory that incorporates a weighted combination of geometric measures over the solvent accessible surface for solute configurations in a solvent. In this paper, we demonstrate that employing the morphometric model of solvation free energy in simulating the self-assembly of sphere clusters results, under most conditions, in the previously observed maximum contact clusters. Under other conditions, it unveils an assortment of extraordinary sphere configurations, such as double helices and rhombohedra. These exotic structures arise specifically under conditions where the interactions take multibody potentials into account. This investigation establishes a foundation for comprehending the diverse range of geometric forms in self-assembled structures, emphasizing the significance of the morphometric approach in this context.
Collapse
Affiliation(s)
- Ivan Spirandelli
- Institute for Mathematics, University of Potsdam, Potsdam14476, Germany
| | - Rhoslyn Coles
- Institute for Mathematics, Technical University Berlin, Berlin10623, Germany
- Faculty of Mathematics, Technical University Chemnitz, Chemnitz09107, Germany
| | - Gero Friesecke
- Department of Mathematics, Technische Universität München, Garching85748, Germany
| | - Myfanwy E. Evans
- Institute for Mathematics, University of Potsdam, Potsdam14476, Germany
| |
Collapse
|
2
|
Koehl P, Akopyan A, Edelsbrunner H. Computing the Volume, Surface Area, Mean, and Gaussian Curvatures of Molecules and Their Derivatives. J Chem Inf Model 2023; 63:973-985. [PMID: 36638318 PMCID: PMC9930125 DOI: 10.1021/acs.jcim.2c01346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume, surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones, however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as an OpenSource software.
Collapse
Affiliation(s)
- Patrice Koehl
- Department
of Computer Science, University of California, Davis, California95616, United States,
| | | | | |
Collapse
|
3
|
Borgis D, Luukkonen S, Belloni L, Jeanmairet G. Accurate prediction of hydration free energies and solvation structures using molecular density functional theory with a simple bridge functional. J Chem Phys 2021; 155:024117. [PMID: 34266282 DOI: 10.1063/5.0057506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper assesses the ability of molecular density functional theory to predict efficiently and accurately the hydration free energies of molecular solutes and the surrounding microscopic water structure. A wide range of solutes were investigated, including hydrophobes, water as a solute, and the FreeSolv database containing 642 drug-like molecules having a variety of shapes and sizes. The usual second-order approximation of the theory is corrected by a third-order, angular-independent bridge functional. The overall functional is parameter-free in the sense that the only inputs are bulk water properties, independent of the solutes considered. These inputs are the direct correlation function, compressibility, liquid-gas surface tension, and excess chemical potential of the solvent. Compared to molecular simulations with the same force field and the same fixed solute geometries, the present theory is shown to describe accurately the solvation free energy and structure of both hydrophobic and hydrophilic solutes. Overall, the method yields a precision of order 0.5 kBT for the hydration free energies of the FreeSolv database, with a computer speedup of 3 orders of magnitude. The theory remains to be improved for a better description of the H-bonding structure and the hydration free energy of charged solutes.
Collapse
Affiliation(s)
- Daniel Borgis
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Sohvi Luukkonen
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Luc Belloni
- Universié Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| |
Collapse
|
4
|
Akopyan A, Edelsbrunner H. The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2020. [DOI: 10.1515/cmb-2020-0101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.
Collapse
Affiliation(s)
- Arsenyi Akopyan
- IST Austria (Institute of Science and Technology Austria) , Klosterneuburg , Austria
| | - Herbert Edelsbrunner
- IST Austria (Institute of Science and Technology Austria) , Klosterneuburg , Austria
| |
Collapse
|
5
|
The Weighted Mean Curvature Derivative of a Space-Filling Diagram. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2020. [DOI: 10.1515/cmb-2020-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.
Collapse
|
6
|
Luukkonen S, Levesque M, Belloni L, Borgis D. Hydration free energies and solvation structures with molecular density functional theory in the hypernetted chain approximation. J Chem Phys 2020; 152:064110. [DOI: 10.1063/1.5142651] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Sohvi Luukkonen
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Maximilien Levesque
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Luc Belloni
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Daniel Borgis
- Maison de la Simulation, USR 3441 CNRS-CEA-Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
7
|
Molavi Tabrizi A, Goossens S, Mehdizadeh Rahimi A, Cooper CD, Knepley MG, Bardhan JP. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson–Boltzmann Solvent. J Chem Theory Comput 2017; 13:2897-2914. [DOI: 10.1021/acs.jctc.6b00832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amirhossein Molavi Tabrizi
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Spencer Goossens
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ali Mehdizadeh Rahimi
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher D. Cooper
- Departamento
de Ingeniería Mecánica and Centro Científico
Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Valparaiso, Chile
| | - Matthew G. Knepley
- Department
of Computational and Applied Mathematics, Rice University, Houston, Texas 77005, United States
| | - Jaydeep P. Bardhan
- Department
of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Oshima H, Kinoshita M. A highly efficient hybrid method for calculating the hydration free energy of a protein. J Comput Chem 2015; 37:712-23. [DOI: 10.1002/jcc.24253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Hiraku Oshima
- Institute of Advanced Energy, Kyoto University; Uji Kyoto 611-0011 Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
9
|
Kim J, Tian Y, Wu J. Thermodynamic and Structural Evidence for Reduced Hydrogen Bonding among Water Molecules near Small Hydrophobic Solutes. J Phys Chem B 2015; 119:12108-16. [PMID: 26264740 DOI: 10.1021/acs.jpcb.5b05281] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structure of water molecules near a hydrophobic solute remains elusive despite a long history of scrutiny. Here, we re-examine the subtle issue by a combination of thermodynamic analysis for Henry's constants of several nonpolar gases over a broad range of temperatures and molecular dynamic simulations for the water structure in the hydration shell using several popular semiempirical models of liquid water. Both the structural and thermodynamic data indicate that hydrophobic hydration reduces the degree of the hydrogen bonding among water molecules, and the effect becomes more prominent at high temperatures. Hydrogen-bond formation is slightly hindered near a hydrophobic solute due to the restriction of the degree of freedom for water molecules in the solvation shell, and the confinement effect becomes more significant as temperature increases. Reduction in the extent of hydrogen bonding is fully consistent with a positive contribution of a small hydrophobic solute to the solution heat capacity. As predicted by the scaled-particle theory, both Henry's constants and simulation results suggest that the hydration entropy is determined primarily by cavity formation in liquid water, with its magnitude rising with the solute size but declining with temperature.
Collapse
Affiliation(s)
- Jehoon Kim
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| | - Yun Tian
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California , Riverside, California 92521, United States
| |
Collapse
|
10
|
Yoshidome T, Ekimoto T, Matubayasi N, Harano Y, Kinoshita M, Ikeguchi M. An accurate and efficient computation method of the hydration free energy of a large, complex molecule. J Chem Phys 2015; 142:175101. [DOI: 10.1063/1.4919636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Takashi Yoshidome
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamino, Himeji-shi, Hyogo 670-8524, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|