1
|
Maruyama Y, Yoshida N. RISMiCal: A software package to perform fast RISM/3D-RISM calculations. J Comput Chem 2024; 45:1470-1482. [PMID: 38472097 DOI: 10.1002/jcc.27340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Solvent plays an essential role in a variety of chemical, physical, and biological processes that occur in the solution phase. The reference interaction site model (RISM) and its three-dimensional extension (3D-RISM) serve as powerful computational tools for modeling solvation effects in chemical reactions, biological functions, and structure formations. We present the RISM integrated calculator (RISMiCal) program package, which is based on RISM and 3D-RISM theories with fast GPU code. RISMiCal has been developed as an integrated RISM/3D-RISM program that has interfaces with external programs such as Gaussian16, GAMESS, and Tinker. Fast 3D-RISM programs for single- and multi-GPU codes written in CUDA would enhance the availability of these hybrid methods because they require the performance of many computationally expensive 3D-RISM calculations. We expect that our package can be widely applied for chemical and biological processes in solvent. The RISMiCal package is available at https://rismical-dev.github.io.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki-shi, Kanagawa, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
2
|
Maruyama Y, Mitsutake A. Effect of Main and Side Chains on the Folding Mechanism of the Trp-Cage Miniprotein. ACS OMEGA 2023; 8:43827-43835. [PMID: 38027385 PMCID: PMC10666239 DOI: 10.1021/acsomega.3c05809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Proteins that do not fold into their functional native state have been linked to diseases. In this study, the influence of the main and side chains of individual amino acids on the folding of the tryptophan cage (Trp-cage), a designed 20-residue miniprotein, was analyzed. For this purpose, we calculated the solvation free energy (SFE) contributions of individual atoms by using the 3D-reference interaction site model with the atomic decomposition method. The mechanism by which the Trp-cage is stabilized during the folding process was examined by calculating the total energy, which is the sum of the conformational energy and SFE. The folding process of the Trp-cage resulted in a stable native state, with a total energy that was 62.4 kcal/mol lower than that of the unfolded state. The solvation entropy, which is considered to be responsible for the hydrophobic effect, contributed 31.3 kcal/mol to structural stabilization. In other words, the contribution of the solvation entropy accounted for approximately half of the total contribution to Trp-cage folding. The hydrophobic core centered on Trp6 contributed 15.6 kcal/mol to the total energy, whereas the solvation entropy contribution was 6.3 kcal/mol. The salt bridge formed by the hydrophilic side chains of Asp9 and Arg16 contributed 10.9 and 5.0 kcal/mol, respectively. This indicates that not only the hydrophobic core but also the salt bridge of the hydrophilic side chains gain solvation entropy and contribute to stabilizing the native structure of the Trp-cage.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Data
Science Center for Creative Design and Manufacturing, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
- Department
of Physics, School of Science and Technology, Meiji University, 1-1-1
Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Ayori Mitsutake
- Department
of Physics, School of Science and Technology, Meiji University, 1-1-1
Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
3
|
Maruyama Y, Igarashi R, Ushiku Y, Mitsutake A. Analysis of Protein Folding Simulation with Moving Root Mean Square Deviation. J Chem Inf Model 2023; 63:1529-1541. [PMID: 36821519 PMCID: PMC10015464 DOI: 10.1021/acs.jcim.2c01444] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We apply moving root-mean-square deviation (mRMSD), which does not require a reference structure, as a method for analyzing protein dynamics. This method can be used to calculate the root-mean-square deviation (RMSD) of structure between two specified time points and to analyze protein dynamics behavior through time series analysis. We applied this method to the Trp-cage trajectory calculated by the Anton supercomputer and found that it shows regions of stable states as well as the conventional RMSD. In addition, we extracted a characteristic structure in which the side chains of Asp1 and Arg16 form hydrogen bonds near the most stable structure of the Trp-cage. We also determined that ≥20 ns is an appropriate time interval to investigate protein dynamics using mRMSD. Applying this method to NuG2 protein, we found that mRMSD can be used to detect regions of metastable states in addition to the stable state. This method can be applied to molecular dynamics simulations of proteins whose stable structures are unknown.
Collapse
Affiliation(s)
- Yutaka Maruyama
- OMRON SINIC X Corporation, Tokyo 113-0033, Japan.,Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| | - Ryo Igarashi
- OMRON SINIC X Corporation, Tokyo 113-0033, Japan
| | | | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Fowles DJ, Palmer DS. Solvation entropy, enthalpy and free energy prediction using a multi-task deep learning functional in 1D-RISM. Phys Chem Chem Phys 2023; 25:6944-6954. [PMID: 36806875 DOI: 10.1039/d3cp00199g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Simultaneous calculation of entropies, enthalpies and free energies has been a long-standing challenge in computational chemistry, partly because of the difficulty in obtaining estimates of all three properties from a single consistent simulation methodology. This has been particularly true for methods from the Integral Equation Theory of Molecular Liquids such as the Reference Interaction Site Model which have traditionally given large errors in solvation thermodynamics. Recently, we presented pyRISM-CNN, a combination of the 1 Dimensional Reference Interaction Site Model (1D-RISM) solver, pyRISM, with a deep learning based free energy functional, as a method of predicting solvation free energy (SFE). With this approach, a 40-fold improvement in prediction accuracy was delivered for a multi-solvent, multi-temperature dataset when compared to the standard 1D-RISM theory [Fowles et al., Digital Discovery, 2023, 2, 177-188]. Here, we report three further developments to the pyRISM-CNN methodology. Firstly, solvation free energies have been introduced for organic molecular ions in methanol or water solvent systems at 298 K, with errors below 4 kcal mol-1 obtained without the need for corrections or additional descriptors. Secondly, the number of solvents in the training data has been expanded from carbon tetrachloride, water and chloroform to now also include methanol. For neutral solutes, prediction errors nearing or below 1 kcal mol-1 are obtained for each organic solvent system at 298 K and water solvent systems at 273-373 K. Lastly, pyRISM-CNN was successfully applied to the simultaneous prediction of solvation enthalpy, entropy and free energy through a multi-task learning approach, with errors of 1.04, 0.98 and 0.47 kcal mol-1, respectively, for water solvent systems at 298 K.
Collapse
Affiliation(s)
- Daniel J Fowles
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, UK.
| | - David S Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland G1 1XL, UK.
| |
Collapse
|
5
|
Casillas L, Grigorian VM, Luchko T. Identifying Systematic Force Field Errors Using a 3D-RISM Element Counting Correction. Molecules 2023; 28:molecules28030925. [PMID: 36770599 PMCID: PMC9921782 DOI: 10.3390/molecules28030925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Hydration free energies of small molecules are commonly used as benchmarks for solvation models. However, errors in predicting hydration free energies are partially due to the force fields used and not just the solvation model. To address this, we have used the 3D reference interaction site model (3D-RISM) of molecular solvation and existing benchmark explicit solvent calculations with a simple element count correction (ECC) to identify problems with the non-bond parameters in the general AMBER force field (GAFF). 3D-RISM was used to calculate hydration free energies of all 642 molecules in the FreeSolv database, and a partial molar volume correction (PMVC), ECC, and their combination (PMVECC) were applied to the results. The PMVECC produced a mean unsigned error of 1.01±0.04kcal/mol and root mean squared error of 1.44±0.07kcal/mol, better than the benchmark explicit solvent calculations from FreeSolv, and required less than 15 s of computing time per molecule on a single CPU core. Importantly, parameters for PMVECC showed systematic errors for molecules containing Cl, Br, I, and P. Applying ECC to the explicit solvent hydration free energies found the same systematic errors. The results strongly suggest that some small adjustments to the Lennard-Jones parameters for GAFF will lead to improved hydration free energy calculations for all solvent models.
Collapse
|
6
|
Wu H, Zhang Y, Chang P, Hao H, Zhai L, Wang B. Solubility, dissolution properties and molecular dynamic simulation of 2,6-bis(picrylamino)-3,5-dinitropyridine in pure and binary solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Wan Y, He H, Zhang P, Li F, Gao X, Li Y. Investigation on solubility behavior of 2-chloronicotinamide in ten mono-solvents: Measurement, correlation, molecular simulation and thermodynamic analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Structural Stability Analysis of Proteins Using End-to-End Distance: A 3D-RISM Approach. J 2022. [DOI: 10.3390/j5010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The stability of a protein is determined from its properties and surrounding solvent. In our previous study, the total energy as a sum of the conformational and solvation free energies was demonstrated to be an appropriate energy function for evaluating the stability of a protein in a protein folding system. We plotted the various energies against the root mean square deviation, required as a reference structure. Herein, we replotted the various energies against the end-to-end distance between the N- and C-termini, which is not a required reference and is experimentally measurable. The solvation free energies for all proteins tend to be low as the end-to-end distance increases, whereas the conformational energies tend to be low as the end-to-end distance decreases. The end-to-end distance is one of interesting measures to study the behavior of proteins.
Collapse
|
9
|
Jia L, Yang J, Cui P, Wu D, Wang S, Hou B, Zhou L, Yin Q. Uncovering solubility behavior of Prednisolone form II in eleven pure solvents by thermodynamic analysis and molecular simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Sumi T, Imamura H. Water-mediated interactions destabilize proteins. Protein Sci 2021; 30:2132-2143. [PMID: 34382697 PMCID: PMC8442971 DOI: 10.1002/pro.4168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/29/2023]
Abstract
Proteins are folded to avoid exposure of the nonpolar groups to water because water-mediated interactions between nonpolar groups are a promising factor in the thermodynamic stabilities of proteins-which is a well-accepted view as one of the unique effects of hydrophobic interactions. This article poses a critical question for this classical view by conducting an accurate solvation free-energy calculation for a thermodynamic cycle of a protein folding using a liquid-state density functional theory. Here, the solvation-free energy for a leucine zipper formation was examined in the coiled-coil protein GCN4-p1, a typical model for hydrophobic interactions, which demonstrated that water-mediated interactions were unfavorable for the association of nonpolar groups in the native state, while the dispersion forces between them were, instead, responsible for the association. Furthermore, the present analysis well predicted the isolated helical state stabilized by pressure, which was previously observed in an experiment. We reviewed the problems in the classical concept and semiempirical presumption that the energetic cost of the hydration of nonpolar groups is a driving force of folding.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary ScienceOkayama UniversityKita‐kuJapan
- Department of Chemistry, Faculty of ScienceOkayama UniversityKita‐kuJapan
| | - Hiroshi Imamura
- Department of Applied Chemistry, College of Life SciencesRitsumeikan UniversityKusatsuJapan
| |
Collapse
|
11
|
Isogai Y, Imamura H, Nakae S, Sumi T, Takahashi KI, Shirai T. Common and unique strategies of myoglobin evolution for deep-sea adaptation of diving mammals. iScience 2021; 24:102920. [PMID: 34430810 PMCID: PMC8374505 DOI: 10.1016/j.isci.2021.102920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Myoglobin (Mb) is highly concentrated in the myocytes of diving mammals such as whales and seals, in comparison with land animals, and its molecular evolution has played a crucial role in their deep-sea adaptation. We previously resurrected ancestral whale Mbs and demonstrated the evolutional strategies for higher solubility under macromolecular crowding conditions. Pinnipeds, such as seals and sea lions, are also expert diving mammals with Mb-rich muscles. In the present study, we resurrected ancestral pinniped Mbs and investigated their biochemical and structural properties. Comparisons between pinniped and whale Mbs revealed the common and distinctive strategies for the deep-sea adaptation. The overall evolution processes, gaining precipitant tolerance and improving thermodynamic stability, were commonly observed. However, the strategies for improving the folding stability differed, and the pinniped Mbs exploited the shielding of hydrophobic surfaces more effectively than the whale Mbs.
Collapse
Affiliation(s)
- Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Hiroshi Imamura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Setsu Nakae
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829, Japan
| | - Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Ken-ichi Takahashi
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829, Japan
| |
Collapse
|
12
|
Maruyama Y, Koroku S, Imai M, Takeuchi K, Mitsutake A. Mutation-induced change in chignolin stability from π-turn to α-turn. RSC Adv 2020; 10:22797-22808. [PMID: 35514567 PMCID: PMC9054626 DOI: 10.1039/d0ra01148g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/20/2020] [Indexed: 11/21/2022] Open
Abstract
A mutation from threonine to proline at the eighth residue in chignolin changes π-turn to α-turn.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Architecture Development Team
- FLAGSHIP 2020 Project
- RIKEN Center for Computational Science
- Kobe 650-0047
- Japan
| | - Shunpei Koroku
- Department of Physics
- School of Science and Technology
- Meiji University
- Kawasaki-shi
- Japan
| | - Misaki Imai
- Cellular and Molecular Biotechnology Research Institute
- National Institute of Advanced Industrial Science and Technology
- Koto
- Japan
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute
- National Institute of Advanced Industrial Science and Technology
- Koto
- Japan
| | - Ayori Mitsutake
- Department of Physics
- School of Science and Technology
- Meiji University
- Kawasaki-shi
- Japan
| |
Collapse
|
13
|
Maruyama Y, Takano H, Mitsutake A. Analysis of molecular dynamics simulations of 10-residue peptide, chignolin, using statistical mechanics: Relaxation mode analysis and three-dimensional reference interaction site model theory. Biophys Physicobiol 2019; 16:407-429. [PMID: 31984194 PMCID: PMC6975981 DOI: 10.2142/biophysico.16.0_407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/29/2019] [Indexed: 01/03/2023] Open
Abstract
Molecular dynamics simulation is a fruitful tool for investigating the structural stability, dynamics, and functions of biopolymers at an atomic level. In recent years, simulations can be performed on time scales of the order of milliseconds using special purpose systems. Since the most stable structure, as well as meta-stable structures and intermediate structures, is included in trajectories in long simulations, it is necessary to develop analysis methods for extracting them from trajectories of simulations. For these structures, methods for evaluating the stabilities, including the solvent effect, are also needed. We have developed relaxation mode analysis to investigate dynamics and kinetics of simulations based on statistical mechanics. We have also applied the three-dimensional reference interaction site model theory to investigate stabilities with solvent effects. In this paper, we review the results for designing amino-acid substitution of the 10-residue peptide, chignolin, to stabilize the misfolded structure using these developed analysis methods.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Architecture Development Team, FLAGSHIP 2020 Project, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Takano
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ayori Mitsutake
- Department of Physics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
14
|
Maruyama Y. Correction terms for the solvation free energy functional of three-dimensional reference interaction site model based on the reference-modified density functional theory. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
An assessment of the sigma enlarging bridge function for a Lennard-Jones solution using a solvent-solvent correlation function obtained from molecular dynamics simulation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Tanimoto S, Yoshida N, Yamaguchi T, Ten-no SL, Nakano H. Effect of Molecular Orientational Correlations on Solvation Free Energy Computed by Reference Interaction Site Model Theory. J Chem Inf Model 2019; 59:3770-3781. [DOI: 10.1021/acs.jcim.9b00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shoichi Tanimoto
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Seiichiro L. Ten-no
- Graduate School of Science, Technology, and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Haruyuki Nakano
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
17
|
Sumi T, Koga K. Theoretical analysis on thermodynamic stability of chignolin. Sci Rep 2019; 9:5186. [PMID: 30914684 PMCID: PMC6435801 DOI: 10.1038/s41598-019-41518-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/11/2019] [Indexed: 11/28/2022] Open
Abstract
Understanding the dominant factor in thermodynamic stability of proteins remains an open challenge. Kauzmann's hydrophobic interaction hypothesis, which considers hydrophobic interactions between nonpolar groups as the dominant factor, has been widely accepted for about sixty years and attracted many scientists. The hypothesis, however, has not been verified or disproved because it is difficult, both theoretically and experimentally, to quantify the solvent effects on the free energy change in protein folding. Here, we developed a computational method for extracting the dominant factor behind thermodynamic stability of proteins and applied it to a small, designed protein, chignolin. The resulting free energy profile quantitatively agreed with the molecular dynamics simulations. Decomposition of the free energy profile indicated that intramolecular interactions predominantly stabilized collapsed conformations, whereas solvent-induced interactions, including hydrophobic ones, destabilized them. These results obtained for chignolin were consistent with the site-directed mutagenesis and calorimetry experiments for globular proteins with hydrophobic interior cores.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
- Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Kenichiro Koga
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
- Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
18
|
Wang N, Huang X, Gong H, Zhou Y, Li X, Li F, Bao Y, Xie C, Wang Z, Yin Q, Hao H. Thermodynamic mechanism of selective cocrystallization explored by MD simulation and phase diagram analysis. AIChE J 2019. [DOI: 10.1002/aic.16570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Na Wang
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Hao Gong
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical TechnologyTianjin University Tianjin China
| | - Yanan Zhou
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Xin Li
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Fei Li
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
| | - Ying Bao
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Chuang Xie
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Zhao Wang
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Qiuxiang Yin
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization TechnologySchool of Chemical Engineering and Technology, Tianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin China
| |
Collapse
|
19
|
Isogai Y, Imamura H, Nakae S, Sumi T, Takahashi KI, Nakagawa T, Tsuneshige A, Shirai T. Tracing whale myoglobin evolution by resurrecting ancient proteins. Sci Rep 2018; 8:16883. [PMID: 30442991 PMCID: PMC6237822 DOI: 10.1038/s41598-018-34984-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022] Open
Abstract
Extant cetaceans, such as sperm whale, acquired the great ability to dive into the ocean depths during the evolution from their terrestrial ancestor that lived about 50 million years ago. Myoglobin (Mb) is highly concentrated in the myocytes of diving animals, in comparison with those of land animals, and is thought to play a crucial role in their adaptation as the molecular aqualung. Here, we resurrected ancestral whale Mbs, which are from the common ancestor between toothed and baleen whales (Basilosaurus), and from a further common quadrupedal ancestor between whale and hippopotamus (Pakicetus). The experimental and theoretical analyses demonstrated that whale Mb adopted two distinguished strategies to increase the protein concentration in vivo along the evolutionary history of deep sea adaptation; gaining precipitant tolerance in the early phase of the evolution, and increase of folding stability in the late phase.
Collapse
Affiliation(s)
- Yasuhiro Isogai
- Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu, Toyama, 939-0398, Japan.
| | - Hiroshi Imamura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Setsu Nakae
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga, 526-0829, Japan
| | - Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Ken-Ichi Takahashi
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga, 526-0829, Japan
| | - Taro Nakagawa
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga, 526-0829, Japan
| | - Antonio Tsuneshige
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Tsuyoshi Shirai
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga, 526-0829, Japan.
| |
Collapse
|
20
|
Sumi T, Maruyama Y, Mitsutake A, Mochizuki K, Koga K. Application of reference‐modified density functional theory: Temperature and pressure dependences of solvation free energy. J Comput Chem 2017; 39:202-217. [DOI: 10.1002/jcc.25101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Tomonari Sumi
- Division of Superconducting and Functional MaterialsResearch Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
- Department of Chemistry, Faculty of ScienceOkayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
| | - Yutaka Maruyama
- Co‐Design Team, FLAGSHIP 2020 Project, RIKEN Advanced Institute for Computational Science, 7‐1‐26, Minatojima‐minami‐machiKobe650‐0047 Japan
| | - Ayori Mitsutake
- Department of PhysicsKeio University, 3‐14‐1 Hiyoshi, Kohoku‐kuYokohama Kanagawa223–8522 Japan
| | - Kenji Mochizuki
- Division of Superconducting and Functional MaterialsResearch Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
| | - Kenichiro Koga
- Division of Superconducting and Functional MaterialsResearch Institute for Interdisciplinary Science, Okayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
- Department of Chemistry, Faculty of ScienceOkayama University, 3‐1‐1 Tsushima‐Naka, Kita‐kuOkayama700‐8530 Japan
| |
Collapse
|
21
|
Yoshida N. Role of Solvation in Drug Design as Revealed by the Statistical Mechanics Integral Equation Theory of Liquids. J Chem Inf Model 2017; 57:2646-2656. [DOI: 10.1021/acs.jcim.7b00389] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Norio Yoshida
- Department of Chemistry,
Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan
| |
Collapse
|
22
|
Maruyama Y, Mitsutake A. Stability of Unfolded and Folded Protein Structures Using a 3D-RISM with the RMDFT. J Phys Chem B 2017; 121:9881-9885. [DOI: 10.1021/acs.jpcb.7b08487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yutaka Maruyama
- Co-Design Team,
FLAGSHIP 2020 Project, RIKEN Advanced Institute for Computational Science, Kobe 650-0047, Japan
| | - Ayori Mitsutake
- Department
of Physics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
23
|
Misin M, Vainikka PA, Fedorov MV, Palmer DS. Salting-out effects by pressure-corrected 3D-RISM. J Chem Phys 2016; 145:194501. [DOI: 10.1063/1.4966973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Maksim Misin
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
| | - Petteri A. Vainikka
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Maxim V. Fedorov
- Department of Physics, SUPA, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom
- Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 143026, Russian Federation
| | - David S. Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
24
|
McDonagh JL, Palmer DS, Mourik TV, Mitchell JBO. Are the Sublimation Thermodynamics of Organic Molecules Predictable? J Chem Inf Model 2016; 56:2162-2179. [PMID: 27749062 DOI: 10.1021/acs.jcim.6b00033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We compare a range of computational methods for the prediction of sublimation thermodynamics (enthalpy, entropy, and free energy of sublimation). These include a model from theoretical chemistry that utilizes crystal lattice energy minimization (with the DMACRYS program) and quantitative structure property relationship (QSPR) models generated by both machine learning (random forest and support vector machines) and regression (partial least squares) methods. Using these methods we investigate the predictability of the enthalpy, entropy and free energy of sublimation, with consideration of whether such a method may be able to improve solubility prediction schemes. Previous work has suggested that the major source of error in solubility prediction schemes involving a thermodynamic cycle via the solid state is in the modeling of the free energy change away from the solid state. Yet contrary to this conclusion other work has found that the inclusion of terms such as the enthalpy of sublimation in QSPR methods does not improve the predictions of solubility. We suggest the use of theoretical chemistry terms, detailed explicitly in the Methods section, as descriptors for the prediction of the enthalpy and free energy of sublimation. A data set of 158 molecules with experimental sublimation thermodynamics values and some CSD refcodes has been collected from the literature and is provided with their original source references.
Collapse
Affiliation(s)
- James L McDonagh
- Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, U.K.,School of Chemistry, University of St Andrews , North Haugh, St Andrews, Fife, Scotland, United Kingdom , KY16 9ST
| | - David S Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde , Thomas Graham Building, 295 Cathedral Street, Glasgow, Scotland, United Kingdom , G1 1XL
| | - Tanja van Mourik
- School of Chemistry, University of St Andrews , North Haugh, St Andrews, Fife, Scotland, United Kingdom , KY16 9ST
| | - John B O Mitchell
- School of Chemistry, University of St Andrews , North Haugh, St Andrews, Fife, Scotland, United Kingdom , KY16 9ST
| |
Collapse
|
25
|
Sumi T, Maruyama Y, Mitsutake A, Koga K. A reference-modified density functional theory: An application to solvation free-energy calculations for a Lennard-Jones solution. J Chem Phys 2016; 144:224104. [DOI: 10.1063/1.4953191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
26
|
Chung KC, Park H. Accuracy enhancement in the estimation of molecular hydration free energies by implementing the intramolecular hydrogen bond effects. J Cheminform 2015; 7:57. [PMID: 26613005 PMCID: PMC4660792 DOI: 10.1186/s13321-015-0106-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The formation of intramolecular hydrogen bonds (IHBs) may induce the remarkable changes in molecular physicochemical properties. Within the framework of the extended solvent-contact model, we investigate the effect of implementing the IHB interactions on the accuracy in estimating the molecular hydration free energies. Results The performances of hydration free energy functions including and excluding the IHB parameters are compared using the molecules distributed for SAMPL4 blind prediction challenge and those in Free Solvation Database (FSD). The calculated hydration free energies with IHB effects are found to be in considerably better agreement with the experimental data than those without them. For example, the root mean square error of the estimation decreases from 2.56 to 1.66 and from 1.73 to 1.54 kcal/mol for SAMPL4 and FSD molecules, respectively, due to the extension of atomic parameter space to cope with IHBs. Conclusions These improvements are made possible by reducing the overestimation of attractive interactions between water and the solute molecules involving IHBs. The modified hydration free energy function is thus anticipated to be useful for estimating the desolvation cost for various organic molecules. Electronic supplementary material The online version of this article (doi:10.1186/s13321-015-0106-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kee-Choo Chung
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 143-747 Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 143-747 Republic of Korea
| |
Collapse
|