1
|
Li T, Motta S, He Y. Deciphering the Mystery in p300 Taz2-p53 TAD2 Recognition. J Chem Theory Comput 2024. [PMID: 39141804 DOI: 10.1021/acs.jctc.4c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Intrinsically disordered proteins (IDPs) engage in various fundamental biological activities, and their behavior is of particular importance for a better understanding of the verbose but well-organized signal transduction in cells. IDPs exhibit uniquely paradoxical features with low affinity but simultaneously high specificity in recognizing their binding targets. The transcription factor p53 plays a crucial role in cancer suppression, carrying out some of its biological functions using its disordered regions, such as N-terminal transactivation domain 2 (TAD2). Exploration of the binding and unbinding processes between proteins is challenging, and the inherently disordered properties of these regions further complicate the issue. Computer simulations are a powerful tool to complement the experiments to fill gaps to explore the binding/unbinding processes between proteins. Here, we investigated the binding mechanism between p300 Taz2 and p53 TAD2 through extensive molecular dynamics (MD) simulations using the physics-based UNited RESidue (UNRES) force field with additional Go̅-like potentials. Distance restraints extracted from the NMR-resolved structures were imposed on intermolecular residue pairs to accelerate binding simulations, in which Taz2 was immobilized in a native-like conformation and disordered TAD2 was fully free. Starting from six structures with TAD2 placed at different positions around Taz2, we observed a metastable intermediate state in which the middle helical segment of TAD2 is anchored in the binding pocket, highlighting the significance of the TAD2 helix in directing protein recognition. Physics-based binding simulations show that successful binding is achieved after a series of stages, including (1) protein collisions to initiate the formation of encounter complexes, (2) partial attachment of TAD2, and finally (3) full attachment of TAD2 to the correct binding pocket of Taz2. Furthermore, machine-learning-based PathDetect-SOM was used to identify two binding pathways, the encounter complexes, and the intermediate states.
Collapse
Affiliation(s)
- Tongtong Li
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stefano Motta
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan 20126, Italy
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
2
|
Ghosh A, Ganguly D. Structural impairment of p53 C-terminal due to the effect of phosphorylation and acetylation: a study on the interdependence of PTM. J Biomol Struct Dyn 2023; 42:13854-13863. [PMID: 37937769 DOI: 10.1080/07391102.2023.2279270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
The C-terminal of tumor suppressor protein p53 is intrinsically disordered while unbound. This particular segment often shows structural plasticity when bound to other binding partners. The disordered component undergoes a disordered to ordered transition upon recognition. Post-translational modifications (PTMs), namely phosphorylation and acetylation, significantly alter the structural motifs of the segment. Among the various types of PTMs, phosphorylation, and acetylation of p53 at both N- and C- terminals lead to stabilization and activation. It has been noted experimentally that phosphorylation often regulates (enhances or reduces) the acetylation at specific sites. The phosphorylation of Thr377 and Ser378 reduces the acetylation of Lys373 and Lys382. Mutations of Thr377 and Ser378 to neutral Ala enhance and phospho mimic Asp reduce the acetylation of Lys373 and Lys382. Simulations of several single-point and pair-wise mutated systems have been generated to compare how the presence or absence of phosphorylation favors or disfavors the acetylation by thermodynamic and conformational analysis. We are using implicit solvent replica exchange molecular dynamics simulations to get 200 ns well-converged conformational ensembles of each system. Different sets of systems having both single and double PTMs are simulated. The results admit the appreciable change in the secondary structural level upon specific PTM. Also, the residual structure of the unbound p53 with single-point PTM varies significantly with pair-wise modifications. These observations further shed light on the relationship between the interdependencies of the specific PTM sites and the secondary structural levels.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anamika Ghosh
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, India
| | - Debabani Ganguly
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, India
| |
Collapse
|
3
|
Che X, Wu J, Liu H, Su J, Chen X. Cellular liquid-liquid phase separation: Concept, functions, regulations, and detections. J Cell Physiol 2023; 238:847-865. [PMID: 36870067 DOI: 10.1002/jcp.30980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023]
Abstract
Liquid-liquid phase separation is a multicomponent system separated into phases with different compositions and structures. It has been identified and explored in organisms after being introduced from the thermodynamic field. Condensate, the product of phase separation, exists in different scales of cellular structures, such as nucleolus, stress granules, and other organelles in nuclei or cytoplasm. And also play critical roles in different cellular behaviors. Here, we review the concept, thermodynamical and biochemical principles of phase separation. We summarized the main functions including the adjustment of biochemical reaction rates, the regulation of macromolecule folding state, subcellular structural support, the mediation of subcellular location, and intimately linked to different kinds of diseases, such as cancer and neurodegeneration. Advanced detection methods to investigate phase separation are collected and analyzed. We conclude with the discussion of anxiety of phase separation, and thought about how progress can be made to develop precise detection methods and disclose the potential application of condensates.
Collapse
Affiliation(s)
- Xuanlin Che
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Jiajun Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Gong X, Zhang Y, Chen J. Advanced Sampling Methods for Multiscale Simulation of Disordered Proteins and Dynamic Interactions. Biomolecules 2021; 11:1416. [PMID: 34680048 PMCID: PMC8533332 DOI: 10.3390/biom11101416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly prevalent and play important roles in biology and human diseases. It is now also recognized that many IDPs remain dynamic even in specific complexes and functional assemblies. Computer simulations are essential for deriving a molecular description of the disordered protein ensembles and dynamic interactions for a mechanistic understanding of IDPs in biology, diseases, and therapeutics. Here, we provide an in-depth review of recent advances in the multi-scale simulation of disordered protein states, with a particular emphasis on the development and application of advanced sampling techniques for studying IDPs. These techniques are critical for adequate sampling of the manifold functionally relevant conformational spaces of IDPs. Together with dramatically improved protein force fields, these advanced simulation approaches have achieved substantial success and demonstrated significant promise towards the quantitative and predictive modeling of IDPs and their dynamic interactions. We will also discuss important challenges remaining in the atomistic simulation of larger systems and how various coarse-grained approaches may help to bridge the remaining gaps in the accessible time- and length-scales of IDP simulations.
Collapse
Affiliation(s)
- Xiping Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA; (X.G.); (Y.Z.)
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Liwo A, Czaplewski C, Sieradzan AK, Lipska AG, Samsonov SA, Murarka RK. Theory and Practice of Coarse-Grained Molecular Dynamics of Biologically Important Systems. Biomolecules 2021; 11:1347. [PMID: 34572559 PMCID: PMC8465211 DOI: 10.3390/biom11091347] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular dynamics with coarse-grained models is nowadays extensively used to simulate biomolecular systems at large time and size scales, compared to those accessible to all-atom molecular dynamics. In this review article, we describe the physical basis of coarse-grained molecular dynamics, the coarse-grained force fields, the equations of motion and the respective numerical integration algorithms, and selected practical applications of coarse-grained molecular dynamics. We demonstrate that the motion of coarse-grained sites is governed by the potential of mean force and the friction and stochastic forces, resulting from integrating out the secondary degrees of freedom. Consequently, Langevin dynamics is a natural means of describing the motion of a system at the coarse-grained level and the potential of mean force is the physical basis of the coarse-grained force fields. Moreover, the choice of coarse-grained variables and the fact that coarse-grained sites often do not have spherical symmetry implies a non-diagonal inertia tensor. We describe selected coarse-grained models used in molecular dynamics simulations, including the most popular MARTINI model developed by Marrink's group and the UNICORN model of biological macromolecules developed in our laboratory. We conclude by discussing examples of the application of coarse-grained molecular dynamics to study biologically important processes.
Collapse
Affiliation(s)
- Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Cezary Czaplewski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Adam K. Sieradzan
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Agnieszka G. Lipska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (C.C.); (A.K.S.); (A.G.L.); (S.A.S.)
| | - Rajesh K. Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462066, MP, India;
| |
Collapse
|
6
|
Kubincová A, Riniker S, Hünenberger PH. Solvent-scaling as an alternative to coarse-graining in adaptive-resolution simulations: The adaptive solvent-scaling (AdSoS) scheme. J Chem Phys 2021; 155:094107. [PMID: 34496576 DOI: 10.1063/5.0057384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new approach termed Adaptive Solvent-Scaling (AdSoS) is introduced for performing simulations of a solute embedded in a fine-grained (FG) solvent region itself surrounded by a coarse-grained (CG) solvent region, with a continuous FG ↔ CG switching of the solvent resolution across a buffer layer. Instead of relying on a distinct CG solvent model, the AdSoS scheme is based on CG models defined by a dimensional scaling of the FG solvent by a factor s, accompanied by an s-dependent modulation of the atomic masses and interaction parameters. The latter changes are designed to achieve an isomorphism between the dynamics of the FG and CG models, and to preserve the dispersive and dielectric solvation properties of the solvent with respect to a solute at FG resolution. This scaling approach offers a number of advantages compared to traditional coarse-graining: (i) the CG parameters are immediately related to those of the FG model (no need to parameterize a distinct CG model); (ii) nearly ideal mixing is expected for CG variants with similar s-values (ideal mixing holding in the limit of identical s-values); (iii) the solvent relaxation timescales should be preserved (no dynamical acceleration typical for coarse-graining); (iv) the graining level NG (number of FG molecules represented by one CG molecule) can be chosen arbitrarily (in particular, NG = s3 is not necessarily an integer); and (v) in an adaptive-resolution scheme, this level can be varied continuously as a function of the position (without requiring a bundling mechanism), and this variation occurs at a constant number of particles per molecule (no occurrence of fractional degrees of freedom in the buffer layer). By construction, the AdSoS scheme minimizes the thermodynamic mismatch between the different regions of the adaptive-resolution system, leading to a nearly homogeneous scaled solvent density s3ρ. Residual density artifacts in and at the surface of the boundary layer can easily be corrected by means of a grid-based biasing potential constructed in a preliminary pure-solvent simulation. This article introduces the AdSoS scheme and provides an initial application to pure atomic liquids (no solute) with Lennard-Jones plus Coulomb interactions in a slab geometry.
Collapse
Affiliation(s)
- Alžbeta Kubincová
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Philippe H Hünenberger
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
7
|
Zhong Q, Li G. Adaptively Iterative Multiscale Switching Simulation Strategy and Applications to Protein Folding and Structure Prediction. J Phys Chem Lett 2021; 12:3151-3162. [PMID: 33755493 DOI: 10.1021/acs.jpclett.1c00618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Structure prediction is an important means to quickly understand new protein functions. However, the prediction of effects of proteins that have no detectable templates is still to be improved. Molecular dynamics simulation is supposed to be the primary research tool for structure predictions, but it still has limitations of huge computational cost in all-atom (AA) models and rough accuracy in coarse-grained (CG) models. We propose a universal multiscale simulation strategy named AIMS in which simulations can iteratively switch among multiple resolutions in order to adaptively trade off AA accuracy and CG high-efficiency. AIMS follows the idea of CG-guided enhanced sampling so that final results always keep AA accuracy. We successfully achieve four ab initio and four data-assisted protein structure predictions using AIMS. The prediction result is an ensemble rather than a structure and provides special insights on folding metastable states. AIMS is estimated to achieve a computational speed about 40 times faster than that of conventional AA simulations.
Collapse
Affiliation(s)
- Qinglu Zhong
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Liu X, Gong X, Chen J. Accelerating atomistic simulations of proteins using multiscale enhanced sampling with independent tempering. J Comput Chem 2021; 42:358-364. [PMID: 33301208 DOI: 10.1002/jcc.26461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/07/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Efficient sampling of the conformational space is essential for quantitative simulations of proteins. The multiscale enhanced sampling (MSES) method accelerates atomistic sampling by coupling it to a coarse-grained (CG) simulation. Bias from coupling to the CG model is removed using Hamiltonian replica exchange, such that one could benefit simultaneously from the high accuracy of atomistic models and fast dynamics of CG ones. Here, we extend MSES to allow independent control of the effective temperatures of atomistic and CG simulations, by directly scaling the atomistic and CG Hamiltonians. The new algorithm, named MSES with independent tempering (MSES-IT), supports more sophisticated Hamiltonian and temperature replica exchange protocols to further improve the sampling efficiency. Using a small but nontrivial β-hairpin, we show that setting the effective temperature of CG model in all conditions to its melting temperature maximizes structural transition rates at the CG level and promotes more efficient replica exchange and diffusion in the condition space. As the result, MSES-IT drive faster reversible transitions at the atomic level and leads to significant improvement in generating converged conformational ensembles compared to the original MSES scheme.
Collapse
Affiliation(s)
- Xiaorong Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xiping Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA.,Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Structure-based peptide design targeting intrinsically disordered proteins: Novel histone H4 and H2A peptidic inhibitors. Comput Struct Biotechnol J 2021; 19:934-948. [PMID: 33598107 PMCID: PMC7856395 DOI: 10.1016/j.csbj.2021.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Intrinsically disordered proteins/protein regions (IDPs/IDPRs) are emerging drug targets. Lack of fast methods hinders the discovery of inhibitors for IDPs/ IDPRs. Fast and inexpensive structure-based approaches have been developed. The developed methods were applied to succesfully design inhibitors targeting the disordered tail of histone H4 and H2A. The presented methods can be widely used to identify inhibitors for other IDPs/IDPRs.
A growing body of research has demonstrated that targeting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) is feasible and represents a new trending strategy in drug discovery. However, the number of inhibitors targeting IDPs/IDPRs is increasing slowly due to limitations of the methods that can be used to accelerate the discovery process. We have applied structure-based methods to successfully develop the first peptidic inhibitor (HIPe - Histone Inhibitory Peptide) that targets histone H4 that are released from NETs (Neutrophil Extracellular Traps). HIPe binds stably to the disordered N-terminal tail of histone H4, thereby preventing histone H4-induced cell death. Recently, by utilisation of the same state-of-the-art approaches, we have developed a novel peptidic inhibitor (CHIP - Cyclical Histone H2A Interference Peptide) that binds to NET-resident histone H2A, which results in a blockade of monocyte adhesion and consequently reduction in atheroprogression. Here, we present comprehensive details on the computational methods utilised to design and develop HIPe and CHIP. We have exploited protein–protein complexes as starting structures for rational peptide design and then applied binding free energy methods to predict and prioritise binding strength of the designed peptides with histone H4 and H2A. By doing this way, we have modelled only around 20 peptides and from these were able to select 4–5 peptides, from a total of more than a trillion candidate peptides, for functional characterisation in different experiments. The developed computational protocols are generic and can be widely used to design and develop novel inhibitors for other disordered proteins.
Collapse
Key Words
- ARDS, acute respiratory distress syndrome
- BFE, binding free energy
- BRCA-1, breast cancer type1 susceptibility protein
- CCL5, chemokine ligand 5
- CHIP, cyclical histone H2A interference peptide
- Computer-aided molecular design (CAMD)
- DC, decomposition
- Disordered proteins
- H2A, histone H2A
- H2B, histone H2B
- H3, histone H3
- H4, histone H4
- HIPe, histone inhibitory peptide
- HNP1, human neutrophil peptide 1
- Histones
- IDPRs, intrinsically disordered protein regions
- IDPs, intrinsically disordered proteins
- MD, molecular dynamics
- MM/GBSA, molecular mechanics/generalised born surface area
- NETs, neutrophil extracellular traps
- Neutrophil extracellular traps (NETs)
- PDB, protein data bank
- PPIs, protein-protein interactions
- PTP1B, protein tyrosine phosphatase 1B
- Peptides
- Protein-protein interactions (PPIs)
- SMCs, smooth muscle cells
- aMD, accelerated molecular dynamics
- p53, tumor protein 53
Collapse
|
10
|
Demerdash O, Shrestha UR, Petridis L, Smith JC, Mitchell JC, Ramanathan A. Using Small-Angle Scattering Data and Parametric Machine Learning to Optimize Force Field Parameters for Intrinsically Disordered Proteins. Front Mol Biosci 2019; 6:64. [PMID: 31475155 PMCID: PMC6705226 DOI: 10.3389/fmolb.2019.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) play important roles in many aspects of normal cell physiology, such as signal transduction and transcription, as well as pathological states, including Alzheimer's, Parkinson's, and Huntington's disease. Unlike their globular counterparts that are defined by a few structures and free energy minima, IDP/IDR comprise a large ensemble of rapidly interconverting structures and a corresponding free energy landscape characterized by multiple minima. This aspect has precluded the use of structural biological techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their structures. Instead, low-resolution techniques, such as small-angle X-ray or neutron scattering (SAXS/SANS), have become a mainstay in characterizing coarse features of the ensemble of structures. These are typically complemented with NMR data if possible or computational techniques, such as atomistic molecular dynamics, to further resolve the underlying ensemble of structures. However, over the past 10–15 years, it has become evident that the classical, pairwise-additive force fields that have enjoyed a high degree of success for globular proteins have been somewhat limited in modeling IDP/IDR structures that agree with experiment. There has thus been a significant effort to rehabilitate these models to obtain better agreement with experiment, typically done by optimizing parameters in a piecewise fashion. In this work, we take a different approach by optimizing a set of force field parameters simultaneously, using machine learning to adapt force field parameters to experimental SAXS scattering profiles. We demonstrate our approach in modeling three biologically IDP ensembles based on experimental SAXS profiles and show that our optimization approach significantly improve force field parameters that generate ensembles in better agreement with experiment.
Collapse
Affiliation(s)
- Omar Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Utsab R Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Loukas Petridis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Jeremy C Smith
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge, TN, United States
| | - Arvind Ramanathan
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
11
|
Wu H, Wolynes PG, Papoian GA. AWSEM-IDP: A Coarse-Grained Force Field for Intrinsically Disordered Proteins. J Phys Chem B 2018; 122:11115-11125. [PMID: 30091924 PMCID: PMC6713210 DOI: 10.1021/acs.jpcb.8b05791] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The associative memory, water-mediated, structure and energy model (AWSEM) has been successfully used to study protein folding, binding, and aggregation problems. In this work, we introduce AWSEM-IDP, a new AWSEM branch for simulating intrinsically disordered proteins (IDPs), where the weights of the potentials determining secondary structure formation have been finely tuned, and a novel potential is introduced that helps to precisely control both the average extent of protein chain collapse and the chain's fluctuations in size. AWSEM-IDP can efficiently sample large conformational spaces, while retaining sufficient molecular accuracy to realistically model proteins. We applied this new model to two IDPs, demonstrating that AWSEM-IDP can reasonably well reproduce higher-resolution reference data, thus providing the foundation for a transferable IDP force field. Finally, we used thermodynamic perturbation theory to show that, in general, the conformational ensembles of IDPs are highly sensitive to fine-tuning of force field parameters.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Peter G. Wolynes
- Departments of Chemistry and Physics and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Garegin A. Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Fujisaki H, Moritsugu K, Matsunaga Y. Exploring Configuration Space and Path Space of Biomolecules Using Enhanced Sampling Techniques-Searching for Mechanism and Kinetics of Biomolecular Functions. Int J Mol Sci 2018; 19:E3177. [PMID: 30326661 PMCID: PMC6213965 DOI: 10.3390/ijms19103177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 01/07/2023] Open
Abstract
To understand functions of biomolecules such as proteins, not only structures but their conformational change and kinetics need to be characterized, but its atomistic details are hard to obtain both experimentally and computationally. Here, we review our recent computational studies using novel enhanced sampling techniques for conformational sampling of biomolecules and calculations of their kinetics. For efficiently characterizing the free energy landscape of a biomolecule, we introduce the multiscale enhanced sampling method, which uses a combined system of atomistic and coarse-grained models. Based on the idea of Hamiltonian replica exchange, we can recover the statistical properties of the atomistic model without any biases. We next introduce the string method as a path search method to calculate the minimum free energy pathways along a multidimensional curve in high dimensional space. Finally we introduce novel methods to calculate kinetics of biomolecules based on the ideas of path sampling: one is the Onsager⁻Machlup action method, and the other is the weighted ensemble method. Some applications of the above methods to biomolecular systems are also discussed and illustrated.
Collapse
Grants
- JPMJPR1679 Japan Science and Technology Agency
- 16K00059 Ministry of Education, Culture, Sports, Science and Technology
- 17KT0101 Ministry of Education, Culture, Sports, Science and Technology
- 25840060 Ministry of Education, Culture, Sports, Science and Technology
- 15K18520 Ministry of Education, Culture, Sports, Science and Technology
- JP18am0101109 Japan Agency for Medical Research and Development
- 17gm0810012h0001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Hiroshi Fujisaki
- Department of Physics, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| | - Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Yasuhiro Matsunaga
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
13
|
Moritsugu K, Terada T, Kokubo H, Endo S, Tanaka T, Kidera A. Multiscale enhanced sampling of glucokinase: Regulation of the enzymatic reaction via a large scale domain motion. J Chem Phys 2018; 149:072314. [PMID: 30134720 DOI: 10.1063/1.5027444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Enhanced sampling yields a comprehensive structural ensemble or a free energy landscape, which is beyond the capability of a conventional molecular dynamics simulation. Our recently developed multiscale enhanced sampling (MSES) method employs a coarse-grained model coupled with the target physical system for the efficient acceleration of the dynamics. MSES has demonstrated applicability to large protein systems in solution, such as intrinsically disordered proteins and protein-protein and protein-ligand interactions. Here, we applied the MSES simulation to an important drug discovery target, glucokinase (GCK), to elucidate the structural basis of the positive cooperativity of the enzymatic reaction at an atomistic resolution. MSES enabled us to compare two sets of the free energy landscapes of GCK, for the glucose-bound and glucose-unbound forms, and thus demonstrated the drastic change of the free energy surface depending on the glucose concentration. In the glucose-bound form, we found two distinct basins separated by a high energy barrier originating from the domain motion and the folding/unfolding of the α13 helix. By contrast, in the glucose-unbound form, a single flat basin extended to the open and super-open states. These features illustrated the two distinct phases achieving the cooperativity, the fast reaction cycle staying in the closed state at a high glucose concentration and the slow cycle primarily in the open/super-open state at a low concentration. The weighted ensemble simulations revealed the kinetics of the structural changes in GCK with the synergetic use of the MSES results; the rate constant of the transition between the closed state and the open/super-open states, kC/O = 1.1 ms-1, is on the same order as the experimental catalytic rate, kcat = 0.22 ms-1. Finally, we discuss the pharmacological activities of GCK activators (small molecular drugs modulating the GCK activity) in terms of the slight changes in the domain motion, depending on their chemical structures as regulators. The present study demonstrated the capability of the enhanced sampling and the associated kinetic calculations for understanding the atomistic structural dynamics of protein systems in physiological environments.
Collapse
Affiliation(s)
- Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tohru Terada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hironori Kokubo
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Endo
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimasa Tanaka
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akinori Kidera
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
14
|
Folding a viral peptide in different membrane environments: pathway and sampling analyses. J Biol Phys 2018; 44:195-209. [PMID: 29644513 DOI: 10.1007/s10867-018-9490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/16/2018] [Indexed: 10/17/2022] Open
Abstract
Flock House virus (FHV) is a well-characterized model system to study infection mechanisms in non-enveloped viruses. A key stage of the infection cycle is the disruption of the endosomal membrane by a component of the FHV capsid, the membrane active γ peptide. In this study, we perform all-atom molecular dynamics simulations of the 21 N-terminal residues of the γ peptide interacting with membranes of differing compositions. We carry out umbrella sampling calculations to study the folding of the peptide to a helical state in homogenous and heterogeneous membranes consisting of neutral and anionic lipids. From the trajectory data, we evaluate folding energetics and dissect the mechanism of folding in the different membrane environments. We conclude the study by analyzing the extent of configurational sampling by performing time-lagged independent component analysis.
Collapse
|
15
|
Bhattacharya S, Xu L, Thompson D. Revisiting the earliest signatures of amyloidogenesis: Roadmaps emerging from computational modeling and experiment. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| | - Liang Xu
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| | - Damien Thompson
- Department of Physics, Bernal InstituteUniversity of LimerickLimerickIreland
| |
Collapse
|
16
|
Liu X, Chen J. HyRes: a coarse-grained model for multi-scale enhanced sampling of disordered protein conformations. Phys Chem Chem Phys 2017; 19:32421-32432. [PMID: 29186229 PMCID: PMC5729119 DOI: 10.1039/c7cp06736d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient coarse-grained (CG) models can be coupled with atomistic force fields to accelerate the sampling of atomistic energy landscapes in the multi-scale enhanced sampling (MSES) framework. This approach may be particularly suitable for generating atomistic conformational ensembles of intrinsically disordered proteins (IDPs). While MSES is relatively robust to inherent CG artifacts, achieving optimal sampling efficiency requires CG modeling to generate the local and long-range fluctuations that are largely consistent with those at the atomistic level. Here, we describe a new hybrid resolution CG model (HyRes) for MSES simulations of disordered protein states, which is specifically designed to provide semi-quantitative secondary structure propensities together with a qualitative description of long-range nonspecific interactions. The HyRes model contains an atomistic description of the backbone with intermediate resolution side chains. The secondary structure propensities are tuned by adjusting the backbone hydrogen-bonding strength and the ϕ/ψ torsion profile. The sizes and covalent geometries of the side chains are parameterized to reproduce distributions derived from atomistic simulations. Lennard-Jones parameters for sidechain beads are assigned to reproduce statistical potentials derived from the protein structural database, and then globally parameterized with nonspecific electrostatic interactions to reproduce the free energy profiles of pair wise interactions and the key conformational properties of model peptides. Application of HyRes to MSES simulations of small IDPs suggests that it is capable of driving faster structural transitions at the atomistic level and increasing the convergence rate compared to the Cα-only Gō-like models previously utilized. With further optimization, we believe that the new CG model could greatly improve the efficiency of MSES simulations of the larger and more complex IDPs frequently involved in cellular signalling and regulation.
Collapse
Affiliation(s)
- Xiaorong Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | |
Collapse
|
17
|
Lee KH, Chen J. Efficacy of independence sampling in replica exchange simulations of ordered and disordered proteins. J Comput Chem 2017; 38:2632-2640. [PMID: 28841239 PMCID: PMC5752115 DOI: 10.1002/jcc.24923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 01/23/2023]
Abstract
Recasting temperature replica exchange (T-RE) as a special case of Gibbs sampling has led to a simple and efficient scheme for enhanced mixing (Chodera and Shirts, J. Chem. Phys., 2011, 135, 194110). To critically examine if T-RE with independence sampling (T-REis) improves conformational sampling, we performed T-RE and T-REis simulations of ordered and disordered proteins using coarse-grained and atomistic models. The results demonstrate that T-REis effectively increase the replica mobility in temperatures space with minimal computational overhead, especially for folded proteins. However, enhanced mixing does not translate well into improved conformational sampling. The convergences of thermodynamic properties interested are similar, with slight improvements for T-REis of ordered systems. The study re-affirms the efficiency of T-RE does not appear to be limited by temperature diffusion, but by the inherent rates of spontaneous large-scale conformational re-arrangements. Due to its simplicity and efficacy of enhanced mixing, T-REis is expected to be more effective when incorporated with various Hamiltonian-RE protocols. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Fox SJ, Kannan S. Probing the dynamics of disorder. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:57-62. [PMID: 28554553 DOI: 10.1016/j.pbiomolbio.2017.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/25/2016] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Intrinsically disordered proteins (IDPs) play an important role in many diseases. IDPs are a large and important class of proteins; estimated to represent a significant fraction of many genomes. In contrast to protein-protein interactions between well-folded proteins, IDPs typically bind to targets using short consecutive stretches of amino acids. Structures of IDPs complexed with a target have shown great diversity in binding modes. However, how this binding diversity is achieved at the molecular level is not well understood. Unfortunately, the prediction and detailed characterization of IDPs experimentally is still a very challenging task; however molecular mechanics based molecular dynamics simulation are well suited for studying the dynamic behavior of IDPs. We look into the current state for force fields for simulating IDPs and an example of how these methods have been applied to the p53 protein. p53 is one of the most extensively studied IDPs, with multiple intrinsically disordered regulatory domains that mediate its interactions with many other proteins engaged in multiple biological pathways. We show how molecular dynamics simulations can be used to elucidate on the mechanisms involved in selection of the different binding partners.
Collapse
Affiliation(s)
- Stephen John Fox
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.
| | | |
Collapse
|
19
|
Lee KH, Chen J. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria. J Comput Chem 2017; 38:1332-1341. [PMID: 28397268 DOI: 10.1002/jcc.24734] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Jianhan Chen
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
20
|
Olson MA. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome. Front Mol Biosci 2017; 4:3. [PMID: 28197405 PMCID: PMC5281587 DOI: 10.3389/fmolb.2017.00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/12/2017] [Indexed: 01/06/2023] Open
Abstract
Intrinsically disordered proteins that populate the so-called “Dark Proteome” offer challenging benchmarks of atomistic simulation methods to accurately model conformational transitions on a multidimensional energy landscape. This work explores the application of parallel tempering with implicit solvent models as a computational framework to capture the conformational ensemble of an intrinsically disordered peptide derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported a protein-peptide interface where the VP35 peptide underwent a folding transition from a disordered form to a helix-β-turn-helix topological fold upon molecular association with the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with temperature-based replica exchange dynamics to calculate the disorder propensity of the peptide and its probability density of states in a continuum solvent. A further comparison is presented of applying an explicit/implicit solvent hybrid replica exchange simulation of the peptide to determine the effect of modeling water interactions at the all-atom resolution.
Collapse
Affiliation(s)
- Mark A Olson
- Department of Cell Biology and Biochemistry, Molecular and Translational Sciences Division, United States Army Medical Research Institute for Infectious Diseases Fredrick, MD, USA
| |
Collapse
|
21
|
Cordeiro TN, Herranz-Trillo F, Urbanek A, Estaña A, Cortés J, Sibille N, Bernadó P. Structural Characterization of Highly Flexible Proteins by Small-Angle Scattering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1009:107-129. [DOI: 10.1007/978-981-10-6038-0_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Cordeiro TN, Herranz-Trillo F, Urbanek A, Estaña A, Cortés J, Sibille N, Bernadó P. Small-angle scattering studies of intrinsically disordered proteins and their complexes. Curr Opin Struct Biol 2016; 42:15-23. [PMID: 27794210 DOI: 10.1016/j.sbi.2016.10.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/01/2022]
Abstract
Intrinsically Disordered Proteins (IDPs) perform a broad range of biological functions. Their relevance has motivated intense research activity seeking to characterize their sequence/structure/function relationships. However, the conformational plasticity of these molecules hampers the application of traditional structural approaches, and new tools and concepts are being developed to address the challenges they pose. Small-Angle Scattering (SAS) is a structural biology technique that probes the size and shape of disordered proteins and their complexes with other biomolecules. The low-resolution nature of SAS can be compensated with specially designed computational tools and its combined interpretation with complementary structural information. In this review, we describe recent advances in the application of SAS to disordered proteins and highly flexible complexes and discuss current challenges.
Collapse
Affiliation(s)
- Tiago N Cordeiro
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Fátima Herranz-Trillo
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annika Urbanek
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Alejandro Estaña
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France; LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université de Montpellier, 29, rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
23
|
Mitrea DM, Kriwacki RW. Phase separation in biology; functional organization of a higher order. Cell Commun Signal 2016; 14:1. [PMID: 26727894 PMCID: PMC4700675 DOI: 10.1186/s12964-015-0125-7] [Citation(s) in RCA: 478] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Inside eukaryotic cells, macromolecules are partitioned into membrane-bounded compartments and, within these, some are further organized into non-membrane-bounded structures termed membrane-less organelles. The latter structures are comprised of heterogeneous mixtures of proteins and nucleic acids and assemble through a phase separation phenomenon similar to polymer condensation. Membrane-less organelles are dynamic structures maintained through multivalent interactions that mediate diverse biological processes, many involved in RNA metabolism. They rapidly exchange components with the cellular milieu and their properties are readily altered in response to environmental cues, often implicating membrane-less organelles in responses to stress signaling. In this review, we discuss: (1) the functional roles of membrane-less organelles, (2) unifying structural and mechanistic principles that underlie their assembly and disassembly, and (3) established and emerging methods used in structural investigations of membrane-less organelles.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
24
|
Ruff KM, Harmon TS, Pappu RV. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. J Chem Phys 2015; 143:243123. [PMID: 26723608 PMCID: PMC4644154 DOI: 10.1063/1.4935066] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/21/2015] [Indexed: 01/28/2023] Open
Abstract
We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Computational and Systems Biology Program and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA
| | - Tyler S Harmon
- Department of Physics and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, CB 1097, St. Louis, Missouri 63130-4899, USA
| |
Collapse
|
25
|
Varadi M, Vranken W, Guharoy M, Tompa P. Computational approaches for inferring the functions of intrinsically disordered proteins. Front Mol Biosci 2015; 2:45. [PMID: 26301226 PMCID: PMC4525029 DOI: 10.3389/fmolb.2015.00045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/21/2015] [Indexed: 01/09/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) are ubiquitously involved in cellular processes and often implicated in human pathological conditions. The critical biological roles of these proteins, despite not adopting a well-defined fold, encouraged structural biologists to revisit their views on the protein structure-function paradigm. Unfortunately, investigating the characteristics and describing the structural behavior of IDPs is far from trivial, and inferring the function(s) of a disordered protein region remains a major challenge. Computational methods have proven particularly relevant for studying IDPs: on the sequence level their dependence on distinct characteristics determined by the local amino acid context makes sequence-based prediction algorithms viable and reliable tools for large scale analyses, while on the structure level the in silico integration of fundamentally different experimental data types is essential to describe the behavior of a flexible protein chain. Here, we offer an overview of the latest developments and computational techniques that aim to uncover how protein function is connected to intrinsic disorder.
Collapse
Affiliation(s)
- Mihaly Varadi
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| | - Wim Vranken
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium ; ULB-VUB - Interuniversity Institute of Bioinformatics in Brussels (IB)2 Brussels, Belgium
| | - Mainak Guharoy
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| | - Peter Tompa
- Flemish Institute of Biotechnology Brussels, Belgium ; Department of Structural Biology, VIB, Vrije Universiteit Brussels Brussels, Belgium
| |
Collapse
|