1
|
Wang WW, Tanaka T, Ehara M. Theoretical study on the mechanism of alcohol photooxidation on Nb 2O 5 surface. J Comput Chem 2024; 45:2128-2135. [PMID: 38760960 DOI: 10.1002/jcc.27435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Theoretical modeling of the solid-state photocatalysis is one of the important issues as various useful photocatalysts have been developed to date. In this work, we investigated the mechanism of the alcohol photooxidation on niobium oxide (Nb2O5) which was experimentally developed, using the density functional theory (DFT)/time-dependent (TD)DFT calculations based on the cluster model. The alcohol adsorption and the first hydrogen transfer from hydroxy group to surface occur in the ground state, while the second hydrogen transfer from CH proceeds in the excited states during the photoirradiation of UV or visible light. The spin crossing was identified and the low-lying triplet states were solved for the reaction pathway. The photoabsorption in the visible light region was characterized as the charge transfer transition from O 2p of alcohol to Nb 4d of the Nb2O5 surface. The spin density and the natural population analysis indicated the generation of spin density in the moiety of carbonyl compound and its dissipation to the interface of the surface, which partly explains the electron paramagnetic resonance measurement. It was confirmed that the rate determining step is the desorption of carbonyl compound and water molecule in agreement with the experimental rate equation analysis. The present findings with the theoretical modeling will provide useful information for the further studies of the solid-state photocatalysis.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Shaanxi Key Laboratory of High-Orbits Electron Materials and Protection Technology for Aerospace, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, China
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Japan
| |
Collapse
|
2
|
Stoerkler T, Pariat T, Laurent AD, Jacquemin D, Ulrich G, Massue J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022; 27:molecules27082443. [PMID: 35458640 PMCID: PMC9024454 DOI: 10.3390/molecules27082443] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption, lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a phototautomerism between normal and tautomeric species, is characterized by a strong emission in the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the excited-state. Several strategies have been proposed in that regard. In the past few years, a growing number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Thibault Pariat
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Adèle D. Laurent
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
| | - Denis Jacquemin
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
- Correspondence: (D.J.); (J.M.)
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Julien Massue
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
- Correspondence: (D.J.); (J.M.)
| |
Collapse
|
3
|
Computational Approaches to the Electronic Properties of Noble Metal Nanoclusters Protected by Organic Ligands. NANOMATERIALS 2021; 11:nano11092409. [PMID: 34578725 PMCID: PMC8468547 DOI: 10.3390/nano11092409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
Organometallic nanoparticles composed by metal cores with sizes under two nanometers covered with organic capping ligands exhibit intermediate properties between those of atoms and molecules on one side, and those of larger metal nanoparticles on the other. In fact, these particles do not show a peculiar metallic behavior, characterized by plasmon resonances, but instead they have nonvanishing band-gaps, more along molecular optical properties. As a consequence, they are suitable to be described and investigated by computational approaches such as those used in quantum chemistry, for instance those based on the time-dependent density functional theory (TD-DFT). Here, I present a short review of the research performed from 2014 onward at the University of Modena and Reggio Emilia (Italy) on the TD-DFT interpretation of the electronic spectra of different organic-protected gold and/or silver nanoclusters.
Collapse
|
4
|
Luise D, Wilbraham L, Labat F, Ciofini I. Modeling UV-Vis spectra of low dimensional materials using electrostatic embedding: The case of CdSe. J Comput Chem 2021; 42:1212-1224. [PMID: 33978978 DOI: 10.1002/jcc.26534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 11/08/2022]
Abstract
We present a generalization of a self-consistent electrostatic embedding approach (SC-Ewald) devised to investigate the photophysical properties of 3D periodic materials, to systems in one- or two-dimensional (2D) reduced periodicity. In this approach, calculations are carried out on a small finite molecular cluster extracted from a periodic model, while the crystalline environment is accounted for by an array of point charges which are fitted to reproduce the exact electrostatic potential (at ground or the excited state) of the infinite periodic system. Periodic density functional theory (DFT) calculations are combined with time dependent DFT calculations to simulate absorption and emission properties of the extended system under investigation. We apply this method to compute the UV-Vis. spectra of bulk and quantum-confined 0D quantum dots and 2D extended nanoplatelets of CdSe, due to their relevance as sensitizers in solar cells technologies. The influence of the size and shape of the finite cluster model chosen in the excited state calculations was also investigated and revealed that, although the long-range electrostatics of the environment are important for the calculation of the UV-Vis, a subtle balance between short- and long-range effects exists. These encouraging results demonstrate that this self-consistent electrostatic embedding approach, when applied in different dimensions, can successfully model the photophysical properties of diverse material classes, making it an attractive low-cost alternative to far more computationally demanding electronic structure methods for excited state calculations.
Collapse
Affiliation(s)
- Davide Luise
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, Paris, France
| | | | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, Paris, France
| |
Collapse
|
5
|
Chrayteh A, Ewels CP, Jacquemin D. TD-DFT and CC2 insights into the dual-emissive behaviour of 2-(2'-hydroxyphenyl)oxazoles core and their derivatives. Phys Chem Chem Phys 2020; 22:25066-25074. [PMID: 33119009 DOI: 10.1039/d0cp04520a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two efficient excited state intramolecular proton transfer (ESIPT) dyes based on the hydroxyphenyl-oxazole core and containing one or two triphenylamine donor groups are explored with theoretical tools. These compounds are known to show clear experimental dual emission behaviour, leading to nearly pure white-light emission for one derivative. To probe the excited state properties, we use both Time Dependent Density Functional Theory (TD-DFT) and post Hartree-Fock methods [ADC(2) and CC2] coupled to different solvent models to describe polarisation effects. After validating our theoretical protocol on the two known systems, we design 14 new derivatives with different substitution patterns to quantify the impact of electron accepting and donating groups on the fluorescence spectrum and the ESIPT mechanism. We show that the selected protocol delivers accurate spectroscopic values for the two experimentally-characterised structures, and more importantly, that the relative stabilisation of the keto tautomer depends on the substitution side. Adding donor or acceptor groups to the ESIPT donor moiety favours the formation of the keto form, whereas when placed on the ESIPT accepting side, they tend to preclude ESIPT. Moreover, combining two donor or acceptor substituents generally results in similar ESIPT behaviour as single substitution on one of the two sides: simple additive rules do not apply.
Collapse
Affiliation(s)
- Amara Chrayteh
- Laboratoire CEISAM - UMR 6230 - CNRS - Université de Nantes, Nantes, France.
| | | | | |
Collapse
|
6
|
Aldaz CR, Martinez TJ, Zimmerman PM. The Mechanics of the Bicycle Pedal Photoisomerization in Crystalline cis,cis-1,4-Diphenyl-1,3-butadiene. J Phys Chem A 2020; 124:8897-8906. [PMID: 33064471 DOI: 10.1021/acs.jpca.0c05803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct irradiation of crystalline cis,cis-1,4-diphenyl-1,3-butadiene (cc-DPB) forms trans,trans-1,4-diphenyl-1,3,-butadiene via a concerted two-bond isomerization called the bicycle pedal (BP) mechanism. However, little is known about photoisomerization pathways in the solid state and there has been much debate surrounding the interpretation of volume-conserving isomerization mechanisms. The bicycle pedal photoisomerization is investigated using the quantum mechanics/molecular mechanics complete active space self-consistent field/Amber force-field method. Important details about how the steric environment influences isomerization mechanisms are revealed including how the one-bond flip and hula-twist mechanisms are suppressed by the crystal cavity, the nature of the seam space in steric environments, and the features of the bicycle pedal mechanism. Specifically, in the bicycle pedal, the phenyl rings of cc-DPB are locked in place and the intermolecular packing allows a passageway for rotation of the central diene in a volume-conserving manner. In contrast, the bicycle pedal rotation in the gas phase is not a stable pathway, so single-bond rotation mechanisms become operative instead. Furthermore, the crystal BP mechanism is an activated process that occurs completely on the excited state; the photoproduct can decay to the ground state through radiative and non-radiative pathways. The present models, however, do not capture the quantitative activation barriers, and more work is needed to better model reactions in crystals. Last, the reaction barriers of the different crystalline conformations within the unit cell of cc-DPB are compared to investigate the possibility for conformation-dependent isomerization. Although some difference in reaction barriers is observed, the difference is most likely not responsible for the experimentally observed periods of fast and slow conversion.
Collapse
Affiliation(s)
- Cody R Aldaz
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109-1055, United States
| | - Todd J Martinez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
7
|
Unraveling the Effects of Co-Crystallization on the UV/Vis Absorption Spectra of an N-Salicylideneaniline Derivative. A Computational RI-CC2 Investigation. Molecules 2020; 25:molecules25194512. [PMID: 33019738 PMCID: PMC7582674 DOI: 10.3390/molecules25194512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 11/21/2022] Open
Abstract
This work aims at unraveling the effects of co-crystallization on the optical properties of an N-salicylideneaniline-derived molecular switch transforming between an enol and a keto form. This is achieved by way of a two-step multi-scale method where (i) the molecular geometry and unit cell parameters are optimized using a periodic boundary conditions density functional theory method and (ii) the optical properties are computed for a selection of clusters embedded in an array of point-charges that reproduce the crystal field electronic potential. The optical properties (vertical excitation energies and oscillator strengths) are obtained at the RI-CC2/def2-TZVPD level of approximation. This method allows us to decompose the effects of co-crystallization into (i) indirect effects, the geometry changes of the chromophore due to crystal packing with the coformer, and (ii) direct ones, the polarization due to the interacting coformer and to the crystal field. For the former effects, variations of a crucial torsion angle lead to modification of the π-conjugation and therefore to the decrease or increase of the excitation energies. About the latter, they are antagonistic: (i) the coformer is not directly involved in the excitations but its polarization decreases the excitation energies while (ii) the crystal field has the opposite effect. For the co-crystals with succinic and fumaric acids, combining these direct and indirect effects leads to a hypsochromic shift of the first absorption band with respect to the reference crystal, in agreement with experimental data.
Collapse
|
8
|
Scaling exchange and correlation in the on-top density functional of multiconfiguration pair-density functional theory: effect on electronic excitation energies and bond energies. Theor Chem Acc 2020. [DOI: 10.1007/s00214-019-2539-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Rivera M, Dommett M, Sidat A, Rahim W, Crespo-Otero R. fromage: A library for the study of molecular crystal excited states at the aggregate scale. J Comput Chem 2020; 41:1045-1058. [PMID: 31909830 PMCID: PMC7079081 DOI: 10.1002/jcc.26144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022]
Abstract
The study of photoexcitations in molecular aggregates faces the twofold problem of the increased computational cost associated with excited states and the complexity of the interactions among the constituent monomers. A mechanistic investigation of these processes requires the analysis of the intermolecular interactions, the effect of the environment, and 3D arrangements or crystal packing on the excited states. A considerable number of techniques have been tailored to navigate these obstacles; however, they are usually restricted to in‐house codes and thus require a disproportionate effort to adopt by researchers approaching the field. Herein, we present the FRamewOrk for Molecular AGgregate Excitations (fromage), which implements a collection of such techniques in a Python library complemented with ready‐to‐use scripts. The program structure is presented and the principal features available to the user are described: geometrical analysis, exciton characterization, and a variety of ONIOM schemes. Each is illustrated by examples of diverse organic molecules in condensed phase settings. The program is available at https://github.com/Crespo-Otero-group/fromage.
Collapse
Affiliation(s)
- Miguel Rivera
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Michael Dommett
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Amir Sidat
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Warda Rahim
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Rachel Crespo-Otero
- Department of Chemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
10
|
Chrayteh A, Ewels C, Jacquemin D. Dual fluorescence in strap ESIPT systems: a theoretical study. Phys Chem Chem Phys 2020; 22:854-863. [PMID: 31840734 DOI: 10.1039/c9cp06261k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alkylamine-strapped chromophores based on a dithienylpyrrole core, and in which the Excited State Intramolecular Proton Transfer (ESIPT) process yields a zwitterionic structure rather than a keto tautomer have been reported recently (Suzuki et al., Angew. Chem. Int. Ed., 2014, 53, 8231), and are known to exhibit large Stokes shifts. Using Time-Dependent Density Functional Theory (TD-DFT) we investigate the ESIPT mechanism in this family of chromophores considering various substituents and two solvents (cyclohexane and acetone). In order to model the solvent effects, three polarisation models have been applied: the linear response (LR), the corrected linear-response (cLR), and the combination of these two formalisms (LR + cLR). The selected protocol is shown to be effective for a series of compounds with known experimental behaviors, and is then applied to novel derivatives with various donor and acceptor groups and heteroatoms. We determine the absorption and emission wavelengths as well as the energies of the different states that play a role in the ESIPT process. We show that the introduction of electron-withdrawing and electron-donating groups plays an important role in achieving redshifted emission from the ESIPT state.
Collapse
Affiliation(s)
- Amara Chrayteh
- Laboratoire CEISAM - UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | | | | |
Collapse
|
11
|
Muniz-Miranda F, Minei P, Contiero L, Labat F, Ciofini I, Adamo C, Bellina F, Pucci A. Aggregation Effects on Pigment Coatings: Pigment Red 179 as a Case Study. ACS OMEGA 2019; 4:20315-20323. [PMID: 31815234 PMCID: PMC6893955 DOI: 10.1021/acsomega.9b02819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/04/2019] [Indexed: 06/06/2023]
Abstract
Here, we have studied, with a combined experimental and computational approach, the effect of the crystal environment and aggregation on the electronic properties of Pigment Red 179, which affect both its color and optical energy gap. Spectra acquired in the near-infrared and visible range of energies suggest that this molecule is indeed a "cool" dye, which can be employed as a red pigment that provides effective color coverage to different substrates without contributing to their heating during light irradiation. Spectra acquired on different polymer mixtures at different pigment concentrations (i.e., 2.5-10 wt %) suggest that absorption features depend on chromophoric arrangements promoted by the strong intermolecular π-π interactions. Calculations, performed at the time-dependent density functional theory level, allowed to both attribute the nature of the electronic transitions causing the observed spectra involved and understand the effect of the environment. Indeed, the visible spectra of the pigment is dominated by two localized transitions, with negligible charge transfer for both a dye monomer and dimer either in vacuum or acetonitrile solution. Instead, models including the crystal environment of the pigment show the presence of a high-wavelength S1 ← S0 charge transfer transition between two adjacent molecules, in quantitative agreement with the experimental absorption energy of the crystal pigment.
Collapse
Affiliation(s)
- Francesco Muniz-Miranda
- École
Nationale Supérieure de Chimie de Paris and PSL Research University,
CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS),
FRE 2027, 11, rue Pierre et Marie Curie, F-75005 Paris, France
| | - Pierpaolo Minei
- Deparment
of Chemistry and Industrial Chemistry, University
of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Luca Contiero
- Cromology
Italia S.P.A., Via 4
Novembre 4, 55016 Porcari, Lucca, Italy
| | - Frédéric Labat
- École
Nationale Supérieure de Chimie de Paris and PSL Research University,
CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS),
FRE 2027, 11, rue Pierre et Marie Curie, F-75005 Paris, France
| | - Ilaria Ciofini
- École
Nationale Supérieure de Chimie de Paris and PSL Research University,
CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS),
FRE 2027, 11, rue Pierre et Marie Curie, F-75005 Paris, France
| | - Carlo Adamo
- École
Nationale Supérieure de Chimie de Paris and PSL Research University,
CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS),
FRE 2027, 11, rue Pierre et Marie Curie, F-75005 Paris, France
| | - Fabio Bellina
- Deparment
of Chemistry and Industrial Chemistry, University
of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Andrea Pucci
- Deparment
of Chemistry and Industrial Chemistry, University
of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
12
|
Rivera M, Dommett M, Crespo-Otero R. ONIOM(QM:QM′) Electrostatic Embedding Schemes for Photochemistry in Molecular Crystals. J Chem Theory Comput 2019; 15:2504-2516. [DOI: 10.1021/acs.jctc.8b01180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miguel Rivera
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Michael Dommett
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Rachel Crespo-Otero
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
13
|
Vérité PM, Hédé S, Jacquemin D. A theoretical elucidation of the mechanism of tuneable fluorescence in a full-colour emissive ESIPT dye. Phys Chem Chem Phys 2019; 21:17400-17409. [DOI: 10.1039/c9cp03759d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We reinvestigate with ab initio tools the origin of the diverse colours in a complex multi-ESIPT dye, and we propose a new assignment for the blue fluorescence.
Collapse
Affiliation(s)
- Pauline M. Vérité
- Laboratoire CEISAM-UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Simon Hédé
- Laboratoire CEISAM-UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Denis Jacquemin
- Laboratoire CEISAM-UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
14
|
Houjou H, Ikedo H, Yoshikawa I. Single-crystal UV-vis spectroscopic examination of a striking odd-even effect on structure and chromic behaviour of salicylidene alkylamines. Chem Commun (Camb) 2018; 53:10898-10901. [PMID: 28926041 DOI: 10.1039/c7cc06268k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have found that a series of N-(5-bromosalicylidene) alkylamines exhibited distinct chromic behaviour depending on the parity of their alkyl chain length. A group with an even number of carbon atoms in the alkyl chain showed photochromism, while another group with odd number showed thermochromism.
Collapse
Affiliation(s)
- Hirohiko Houjou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | |
Collapse
|
15
|
Blase X, Duchemin I, Jacquemin D. The Bethe–Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. Chem Soc Rev 2018; 47:1022-1043. [DOI: 10.1039/c7cs00049a] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review the Bethe–Salpeter formalism and analyze its performances for the calculation of the excited state properties of molecular systems.
Collapse
Affiliation(s)
- Xavier Blase
- Univ. Grenoble Alpes
- CNRS
- Inst NEEL
- F-38042 Grenoble
- France
| | - Ivan Duchemin
- Univ. Grenoble Alpes
- CEA
- INAC-MEM
- L-Sim
- F-38000 Grenoble
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
16
|
Presti D, Pedone A, Licari D, Barone V. A Modular Implementation for the Simulation of 1D and 2D Solid-State NMR Spectra of Quadrupolar Nuclei in the Virtual Multifrequency Spectrometer-Draw Graphical Interface. J Chem Theory Comput 2017; 13:2215-2229. [PMID: 28402672 DOI: 10.1021/acs.jctc.7b00154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present the implementation of the solid state (SoS)NMR module for the simulation of several 1D and 2D NMR spectra of all the elements in the periodic table in the virtual multifrequency spectrometer (VMS). This module is fully integrated with the graphical user interface of VMS (VMS-Draw) [Licari et al., J. Comput. Chem. 36, 2015, 321-334], a freeware tool which allows a user-friendly handling of structures and analyses of advanced spectroscopical properties of chemical compounds-from model systems to real-world applications. Besides the numerous modules already available in VMS for the study of electronic, optical, vibrational, vibronic, and EPR properties, here the simulation of NMR spectra is presented with a particular emphasis on those techniques usually employed to investigate solid state systems. The SoSNMR module benefits from its ability to work under both periodic and nonperiodic conditions, such that small molecules/molecular clusters can be treated, as well as extended three-dimensional systems enforcing (or not) translational periodicity. These features allow VMS to simulate spectra resulting from NMR calculations by some popular quantum chemistry codes, namely Gaussian09/16, Castep, and Quantum Espresso. The effectiveness of the SoSNMR module of VMS is examined throughout the manuscript, and applied to simulate 1D static, MAS, and VAS NMR spectra as well as 2D correlation (90°, MAS) and MQMAS spectra of active NMR nuclei embedded in different amorphous and crystalline systems of actual interest in chemistry and material science. Finally, the program is able to simulate the spectra of both the total ensemble of spin-active nuclei present in the system and of subensembles differentiated depending on the chemical environment of the first and second coordination sphere in a very general way applicable to any kind of systems.
Collapse
Affiliation(s)
- Davide Presti
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio-Emilia , 103 via G. Campi, I-41125 Modena, Italy
| | - Alfonso Pedone
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio-Emilia , 103 via G. Campi, I-41125 Modena, Italy
| | - Daniele Licari
- Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| |
Collapse
|
17
|
Huang C, Muñoz-García AB, Pavone M. Effective scheme for partitioning covalent bonds in density-functional embedding theory: From molecules to extended covalent systems. J Chem Phys 2016; 145:244103. [DOI: 10.1063/1.4972012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Zhu Q, An B, Yuan H, Li Y, Guo X, Zhang J. Computational studies on amino-type excited-state intramolecular proton transfer and subsequent cis–trans isomerisation reactions of three 2-(2'-aminophenyl)benzothiazole derivatives. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1257829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qiuling Zhu
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| | - Beibei An
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| | - Huijuan Yuan
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| | - Yuanyuan Li
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| | - Xugeng Guo
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| | - Jinglai Zhang
- Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, P. R. China
| |
Collapse
|
19
|
Budzák Š, Jacquemin D. Mechanism of Fluorescence Switching in One ESIPT-Based Al3+ Probe. J Phys Chem B 2016; 120:6730-8. [DOI: 10.1021/acs.jpcb.6b04474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Šimon Budzák
- CEISAM, UMR CNRS
6230, BP 92208, 2 Rue de la Houssinière, 44322 Nantes, Cedex 3, France
| | - Denis Jacquemin
- CEISAM, UMR CNRS
6230, BP 92208, 2 Rue de la Houssinière, 44322 Nantes, Cedex 3, France
- Institut Universitaire de France, 1 rue Descartes, F-75005 Paris Cedex 05, France
| |
Collapse
|
20
|
Wilbraham L, Adamo C, Labat F, Ciofini I. Electrostatic Embedding To Model the Impact of Environment on Photophysical Properties of Molecular Crystals: A Self-Consistent Charge Adjustment Procedure. J Chem Theory Comput 2016; 12:3316-24. [DOI: 10.1021/acs.jctc.6b00263] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liam Wilbraham
- PSL Research University, Institut de Recherche
de Chimie Paris IRCP, CNRS−Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Carlo Adamo
- PSL Research University, Institut de Recherche
de Chimie Paris IRCP, CNRS−Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| | - Frédéric Labat
- PSL Research University, Institut de Recherche
de Chimie Paris IRCP, CNRS−Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Ilaria Ciofini
- PSL Research University, Institut de Recherche
de Chimie Paris IRCP, CNRS−Chimie ParisTech, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|