1
|
Demidov YA, Shalaevsky AA, Oleynichenko AV, Rusakov AA. Uncovering chemical homology of superheavy elements: a close look at astatine. Phys Chem Chem Phys 2024; 26:23823-23834. [PMID: 39230259 DOI: 10.1039/d4cp01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The fascination with superheavy elements (SHE) spans the nuclear physics, astrophysics, and theoretical chemistry communities. Extreme relativistic effects govern these elements' chemistry and challenge the traditional notion of the periodic law. The experimental quest for SHE critically depends on theoretical predictions of these elements' properties, especially chemical homology, which allows for successful prototypical experiments with more readily available lighter homologues of SHE. This work is a comprehensive quantum-chemical investigation into astatine (At) as a non-intuitive homologue of element 113, nihonium (Nh). Combining relativistic coupled-cluster and density functional theory approaches, we model the behaviour of At and AtOH in thermochromatographic experiments on a pristine gold surface. Insights into the electronic structure of AtOH and NhOH and accurate estimates of At-gold and AtOH-gold adsorption energies rationalise recent experimental findings and justify the use of At as a chemical homologue of Nh for the successful design of future experiments on Nh detection and chemical characterisation.
Collapse
Affiliation(s)
- Yuriy A Demidov
- B. P. Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), Orlova Roscha, 1, 188300 Gatchina, Russia
- St. Petersburg Electrotechnical University "LETI", 197376 St. Petersburg, Russia
| | | | - Alexander V Oleynichenko
- B. P. Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), Orlova Roscha, 1, 188300 Gatchina, Russia
| | - Alexander A Rusakov
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, USA.
| |
Collapse
|
2
|
Gamboni G, Belpassi L, Belanzoni P. The Chemical Bond at the Bottom of the Periodic Table: The Case of the Heavy Astatine and the Super-Heavy Tennessine. Chemphyschem 2024; 25:e202400310. [PMID: 38708605 DOI: 10.1002/cphc.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
In this work, we study the chemical bond in molecules containing heavy and super-heavy elements according to the current state-of-the-art bonding models. An Energy Decomposition Analysis in combination with Natural Orbital for Chemical Valence (EDA-NOCV) within the relativistic four-component Dirac-Kohn-Sham (DKS) framework is employed, which allows to successfully include the spin-orbit coupling (SOC) effects on the chemical bond description. Simple halogen-bonded adducts ClX⋯L (X=At, Ts; L=NH3, Br-, H2O, CO) of astatine and tennessine have been selected to assess a trend on descending along a group, while modulating the ClX⋯L bond features through the different electronic nature of the ligand L. Interesting effects caused by SOC have been revealed: i) a huge increase of the ClTs dipole moment (which is almost twice as that of ClAt), ii) a lowering of the ClX⋯L bonding energy arising from different contributions to the ClX…L interaction energy strongly depending on the nature of L, iii) a quenching of one of the π back-donation components to the bond. In the ClTs(CO) adduct, the back-donation from ClTs to CO becomes the most important component. The analysis of the electronic structure of the ClX dimers allows for a clear interpretation of the SOC effects in these systems.
Collapse
Affiliation(s)
- Giulia Gamboni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123, Perugia, Italy
| |
Collapse
|
3
|
Burgers PC, Zeneyedpour L, Luider TM, Holmes JL. Estimation of thermodynamic and physicochemical properties of the alkali astatides: On the bond strength of molecular astatine (At 2 ) and the hydration enthalpy of astatide (At - ). JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5010. [PMID: 38488842 DOI: 10.1002/jms.5010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/17/2024]
Abstract
The recent accurate and precise determination of the electron affinity (EA) of the astatine atom At0 warrants a re-investigation of the estimated thermodynamic properties of At0 and astatine containing molecules as this EA was found to be much lower (by 0.4 eV) than previous estimated values. In this contribution we estimate, from available data sources, the following thermodynamic and physicochemical properties of the alkali astatides (MAt, M = Li, Na, K, Rb, Cs): their solid and gaseous heats of formation, lattice and gas-phase binding enthalpies, sublimation energies and melting temperatures. Gas-phase charge-transfer dissociation energies for the alkali astatides (the energy requirement for M+ At- ➔ M0 + At0 ) have been obtained and are compared with those for the other alkali halides. Use of Born-Haber cycles together with the new AE (At0 ) value allows the re-evaluation of ΔHf (At0 )g (=56 ± 5 kJ/mol); it is concluded that (At2 )g is a weakly bonded species (bond strength <50 kJ/mol), significantly weaker bonded than previously estimated (116 kJ/mol) and much weaker bonded than I2 (148 kJ/mol), but in agreement with the finding from theory that spin-orbit coupling considerably reduces the bond strength in At2 . The hydration enthalpy (ΔHaq ) of At- is estimated to be -230 ± 2 kJ/mol (using ΔHaq [H+ ] = -1150.1 kJ/mol), in good agreement with molecular dynamics calculations. Arguments are presented that the largest alkali halide, CsAt, like the smallest, LiF, will be only sparingly soluble in water, following the generalization from hard/soft acid/base principles that "small likes small" and "large likes large."
Collapse
Affiliation(s)
- Peter C Burgers
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lona Zeneyedpour
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Laboratory of Neuro-Oncology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John L Holmes
- Department of Chemistry and Biological Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Yssartier T, Liu L, Pardoue S, Le Questel JY, Guérard F, Montavon G, Galland N. In vivo stability of 211At-radiopharmaceuticals: on the impact of halogen bond formation. RSC Med Chem 2024; 15:223-233. [PMID: 38283213 PMCID: PMC10809332 DOI: 10.1039/d3md00579h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 01/30/2024] Open
Abstract
211At, when coupled to a targeting agent, is one of the most promising radionuclides for therapeutic applications. The main labelling approach consists in the formation of astatoaryl compounds, which often show a lack of in vivo stability. The hypothesis that halogen bond (XB) interactions with protein functional groups initiate a deastatination mechanism is investigated through radiochemical experiments and DFT modelling. Several descriptors agree on the known mechanism of iodoaryl substrates dehalogenation by iodothyronine deiodinases, supporting the higher in vivo dehalogenation of N-succinimidyl 3-[211At]astatobenzoate (SAB) conjugates in comparison with their iodinated counterparts. The guanidinium group in 3-[211At]astato-4-guanidinomethylbenzoate (SAGMB) prevents the formation of At-mediated XBs with the selenocysteine active site in iodothyronine deiodinases. The initial step of At-aryl bond dissociation is inhibited, elucidating the better in vivo stability of SAGMB conjugates compared with those of SAB. The impact of astatine's ability to form XB interactions on radiopharmaceutical degradation may not be limited to the case of aryl radiolabeling.
Collapse
Affiliation(s)
- Thibault Yssartier
- CNRS, CEISAM UMR 6230, Nantes Université F-44000 Nantes France
- CNRS, SUBATECH UMR 6457, IMT Atlantique F-44307 Nantes France
| | - Lu Liu
- CNRS, IPHC UMR 7178, Université de Strasbourg F-67037 Strasbourg France
| | - Sylvain Pardoue
- CNRS, SUBATECH UMR 6457, IMT Atlantique F-44307 Nantes France
| | | | - François Guérard
- Inserm UMR 1307, CNRS UMR 6075, CRCI2NA, Nantes Université, Université d'Angers F-44000 Nantes France
| | - Gilles Montavon
- CNRS, SUBATECH UMR 6457, IMT Atlantique F-44307 Nantes France
| | - Nicolas Galland
- CNRS, CEISAM UMR 6230, Nantes Université F-44000 Nantes France
| |
Collapse
|
5
|
Rigorous Negative Ion Binding Energies in Low-Energy Electron Elastic Collisions with Heavy Multi-Electron Atoms and Fullerene Molecules: Validation of Electron Affinities. ATOMS 2023. [DOI: 10.3390/atoms11030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Dramatically sharp resonances manifesting stable negative ion formation characterize Regge pole-calculated low-energy electron elastic total cross sections (TCSs) of heavy multi-electron systems. The novelty of the Regge pole analysis is in the extraction of rigorous and unambiguous negative ion binding energies (BEs), corresponding to the measured electron affinities (EAs) of the investigated multi-electron systems. The measured EAs have engendered the crucial question: is the EA of multi-electron atoms and fullerene molecules identified with the BE of the attached electron in the ground, metastable or excited state of the formed negative ion during a collision? Inconsistencies in the meaning of the measured EAs are elucidated and new EA values for Bk, Cf, Fm, and Lr are presented.
Collapse
|
6
|
Novikov AS, Bolotin DS. Xenon Derivatives as Aerogen Bond-Donating Catalysts for Organic Transformations: A Theoretical Study on the Metaphorical "Spherical Cow in a Vacuum" Provides Insights into Noncovalent Organocatalysis. J Org Chem 2023; 88:1936-1944. [PMID: 35679603 DOI: 10.1021/acs.joc.2c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Computations indicate that cationic and noncharged xenon derivatives should exhibit higher catalytic activity than their iodine-based noncovalent organocatalytic congeners. Perfluorophenyl xenonium(II) is expected to demonstrate the best balance between catalytic activity and chemical stability for use in organocatalysis. Comparing its catalytic activity with that of isoelectronic perfluoroiodobenzene indicates that the high catalytic activity of cationic noncovalent organocatalysts is predominantly attributed to the electrostatic interactions with the reaction substrates, which cause the polarization of ligated species during the reaction progress. In contrast, the electron transfer and covalent contributions to the bonding between the catalyst and substrate have negligible effects. The dominant effect of electrostatic interactions results in a strong negative correlation between the calculated Gibbs free energies of activation for the modeled reactions and the highest potentials of the σ-holes on the central atoms of the catalysts. No such correlation is observed for noncharged catalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
7
|
Casetti VT, MacLean J, Ayoub AD, Fredericks RJ, Adamski JA, Rusakov AA. Investigating the Heaviest Halogen: Lessons Learned from Modeling the Electronic Structure of Astatine's Small Molecules. J Phys Chem A 2023; 127:46-56. [PMID: 36538020 DOI: 10.1021/acs.jpca.2c06039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a systematic study of electron-correlation and relativistic effects in diatomic molecular species of the heaviest halogen astatine (At) within relativistic single- and multireference coupled-cluster approaches and relativistic density functional theory. We establish revised reference ab initio data for the ground states of At2, HAt, AtAu, and AtO+ using a highly accurate relativistic effective core potential model and in-house basis sets developed for accurate modeling of molecules with large spin-orbit effects. Spin-dependent relativistic effects on chemical bonding in the ground state are comparable to the binding energy or even exceed it in At2. Electron-correlation effects near the equilibrium internuclear separation are mostly dynamical and can be adequately captured using single-reference CCSD(T). However, bond elongation in At2 and, especially, AtO+ results in rapid manifestation of its multireference character. While useful for evaluating the spin-orbit effects on the ground-state bonding and properties, the two-component density functional theory lacks predictive power, especially in combination with popular empirically adjusted exchange-correlation functionals. This drawback supports the necessity to develop new functionals for reliable quantum-chemical models of heavy-element compounds with strong relativistic effects.
Collapse
Affiliation(s)
- Vincent T Casetti
- Department of Chemistry, Oakland University, Rochester, Michigan48309, United States
| | - James MacLean
- Department of Chemistry, Oakland University, Rochester, Michigan48309, United States
| | - Adam D Ayoub
- Department of Chemistry, Oakland University, Rochester, Michigan48309, United States
| | - Rain J Fredericks
- Material Science and Engineering Department, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Jacob A Adamski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Alexander A Rusakov
- Department of Chemistry, Oakland University, Rochester, Michigan48309, United States
| |
Collapse
|
8
|
Burns JD, Tereshatov EE, Zhang B, Tabacaru GC, McIntosh LA, Schultz SJ, McCann LA, Harvey BM, Hannaman A, Lofton KN, Sorensen MQ, Vonder Haar AL, Hall MB, Yennello SJ. Complexation of Astatine(III) with Ketones: Roles of NO 3– Counterion and Exploration of Possible Binding Modes. Inorg Chem 2022; 61:12087-12096. [DOI: 10.1021/acs.inorgchem.2c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan D. Burns
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Evgeny E. Tereshatov
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
| | - Bowen Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gabriel C. Tabacaru
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
| | - Lauren A. McIntosh
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
| | - Steven J. Schultz
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Laura A. McCann
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Bryan M. Harvey
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
- Department of Physics, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew Hannaman
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kylie N. Lofton
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Maxwell Q. Sorensen
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Amy L. Vonder Haar
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sherry J. Yennello
- Cyclotron Institute, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Cuyacot BJR, Novotný J, Berger RJF, Komorovsky S, Marek R. Relativistic Spin–Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom. Chemistry 2022; 28:e202200277. [DOI: 10.1002/chem.202200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/30/2023]
Affiliation(s)
- Ben Joseph R. Cuyacot
- CEITEC – Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czechia
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 62500 Brno Czechia
| | - Jan Novotný
- CEITEC – Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czechia
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 62500 Brno Czechia
| | - Raphael J. F. Berger
- Department of Chemistry and Physics of Materials Paris Lodron University of Salzburg Jakob-Haringerstr. 2 A 5020 Salzburg Austria
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry Slovak Academy of Sciences Dúbravská cesta 9 84536 Bratislava Slovakia
| | - Radek Marek
- CEITEC – Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czechia
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 62500 Brno Czechia
| |
Collapse
|
10
|
Recent progress of astatine-211 in endoradiotherapy: Great advances from fundamental properties to targeted radiopharmaceuticals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Radiolabeling chemistry with heavy halogens iodine and astatine. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Liu L, Rahali S, Maurice R, Gomez Pech C, Montavon G, Le Questel JY, Graton J, Champion J, Galland N. An expanded halogen bonding scale using astatine. Chem Sci 2021; 12:10855-10861. [PMID: 34447565 PMCID: PMC8372311 DOI: 10.1039/d1sc02133h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/12/2021] [Indexed: 01/07/2023] Open
Abstract
As a non-covalent interaction, halogen bonding is now acknowledged to be useful in all fields where the control of intermolecular recognition plays a pivotal role. Halogen-bond basicity scales allow quantification of the halogen bonding of referential donors with organic functional groups from a thermodynamic point of view. Herein we present the pK BAtI basicity scale to provide the community an overview of halogen-bond acceptor strength towards astatine, the most potent halogen-bond donor element. This experimental scale is erected on the basis of complexation constants measured between astatine monoiodide (AtI) and sixteen selected Lewis bases. It spans over 6 log units and culminates with a value of 5.69 ± 0.32 for N,N,N',N'-tetramethylthiourea. On this scale, the carbon π-bases are the weakest acceptors, the oxygen derivatives cover almost two-thirds of the scale, and sulphur bases exhibit the highest AtI basicity. Regarding the applications of 211At in targeted radionuclide therapy, stronger labelling of carrier agents could be envisaged on the basis of the pK BAtI scale.
Collapse
Affiliation(s)
- Lu Liu
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
| | - Seyfeddine Rahali
- Université de Nantes, CNRS, CEISAM UMR 6230 44000 Nantes France
- Department of Chemistry, College of Science and Arts, Qassim University Ar Rass Saudi Arabia
| | - Rémi Maurice
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
| | - Cecilia Gomez Pech
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
- Université de Nantes, CNRS, CEISAM UMR 6230 44000 Nantes France
| | - Gilles Montavon
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
| | | | - Jérôme Graton
- Université de Nantes, CNRS, CEISAM UMR 6230 44000 Nantes France
| | - Julie Champion
- SUBATECH UMR 6457, CNRS, IMT Atlantique, Université de Nantes 4 Rue Alfred Kastler 44307 Nantes France
| | - Nicolas Galland
- Université de Nantes, CNRS, CEISAM UMR 6230 44000 Nantes France
| |
Collapse
|
13
|
Astatine Facing Janus: Halogen Bonding vs. Charge-Shift Bonding. Molecules 2021; 26:molecules26154568. [PMID: 34361716 PMCID: PMC8347445 DOI: 10.3390/molecules26154568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/04/2022] Open
Abstract
The nature of halogen-bond interactions was scrutinized from the perspective of astatine, potentially the strongest halogen-bond donor atom. In addition to its remarkable electronic properties (e.g., its higher aromaticity compared to benzene), C6At6 can be involved as a halogen-bond donor and acceptor. Two-component relativistic calculations and quantum chemical topology analyses were performed on C6At6 and its complexes as well as on their iodinated analogues for comparative purposes. The relativistic spin–orbit interaction was used as a tool to disclose the bonding patterns and the mechanisms that contribute to halogen-bond interactions. Despite the stronger polarizability of astatine, halogen bonds formed by C6At6 can be comparable or weaker than those of C6I6. This unexpected finding comes from the charge-shift bonding character of the C–At bonds. Because charge-shift bonding is connected to the Pauli repulsion between the bonding σ electrons and the σ lone-pair of astatine, it weakens the astatine electrophilicity at its σ-hole (reducing the charge transfer contribution to halogen bonding). These two antinomic characters, charge-shift bonding and halogen bonding, can result in weaker At-mediated interactions than their iodinated counterparts.
Collapse
|
14
|
Burns JD, Tereshatov EE, Avila G, Glennon KJ, Hannaman A, Lofton KN, McCann LA, McCarthy MA, McIntosh LA, Schultz SJ, Tabacaru GC, Vonder Haar AL, Yennello SJ. Rapid recovery of At-211 by extraction chromatography. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Sarr S, Graton J, Rahali S, Montavon G, Galland N. Delocalized relativistic effects, from the viewpoint of halogen bonding. Phys Chem Chem Phys 2021; 23:4064-4074. [PMID: 33433548 DOI: 10.1039/d0cp05840h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of organic and inorganic compounds bearing both iodine and astatine atoms to form halogen-bond interactions is theoretically investigated. Upon inclusion of the relativistic spin-orbit interaction, the I-mediated halogen bonds are more affected than the At-mediated ones in many cases. This unusual outcome is disconnected from the behavior of iodine's electrons. The significant decrease of astatine electronegativity with the spin-orbit coupling triggers a redistribution of the electron density, which propagates relativistic effects toward the distant iodine atom. This mechanism can be controlled by introducing suitable substituents and, in particular, strengthened by taking advantage of electron-withdrawing inductive and mesomeric effects. Noticeable relativistic effects can actually be transferred to light atoms properties, e.g., the halogen-bond basicity of bridgehead carbon atoms doubled in propellane derivatives.
Collapse
Affiliation(s)
- Serigne Sarr
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000 Nantes, France.
| | - Jérôme Graton
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000 Nantes, France.
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts, Qassim University, 51921 Ar Rass, Saudi Arabia
| | - Gilles Montavon
- IMT Atlantique, CNRS, SUBATECH UMR 6457, 44307 Nantes, France
| | - Nicolas Galland
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000 Nantes, France.
| |
Collapse
|
16
|
Bassal F, Champion J, Pardoue S, Seydou M, Sabatié-Gogova A, Deniaud D, Questel JYL, Montavon G, Galland N. Questioning the Affinity of Electrophilic Astatine for Sulfur-containing Compounds: Unexpected Bindings Revealed. Inorg Chem 2020; 59:13923-13932. [DOI: 10.1021/acs.inorgchem.0c01553] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fadel Bassal
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Julie Champion
- IMT Atlantique, CNRS, SUBATECH UMR 6457, F-44307 Nantes, France
| | - Sylvain Pardoue
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- IMT Atlantique, CNRS, SUBATECH UMR 6457, F-44307 Nantes, France
| | - Mahamadou Seydou
- Université de Paris, CNRS, ITODYS UMR 7086, 15 rue J.A. de Baïf, F-75013 Paris, France
| | | | - David Deniaud
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | - Gilles Montavon
- IMT Atlantique, CNRS, SUBATECH UMR 6457, F-44307 Nantes, France
| | - Nicolas Galland
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
17
|
Leimbach D, Karls J, Guo Y, Ahmed R, Ballof J, Bengtsson L, Boix Pamies F, Borschevsky A, Chrysalidis K, Eliav E, Fedorov D, Fedosseev V, Forstner O, Galland N, Garcia Ruiz RF, Granados C, Heinke R, Johnston K, Koszorus A, Köster U, Kristiansson MK, Liu Y, Marsh B, Molkanov P, Pašteka LF, Ramos JP, Renault E, Reponen M, Ringvall-Moberg A, Rossel RE, Studer D, Vernon A, Warbinek J, Welander J, Wendt K, Wilkins S, Hanstorp D, Rothe S. The electron affinity of astatine. Nat Commun 2020; 11:3824. [PMID: 32733029 PMCID: PMC7393155 DOI: 10.1038/s41467-020-17599-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023] Open
Abstract
One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At- anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7) eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and the electron-electron correlation effects on the highest level that can be currently achieved for many-electron systems. The developed technique of laser-photodetachment spectroscopy of radioisotopes opens the path for future EA measurements of other radioelements such as polonium, and eventually super-heavy elements.
Collapse
Affiliation(s)
- David Leimbach
- CERN, Geneva, Switzerland.
- Department of Physics, University of Gothenburg, Gothenburg, Sweden.
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.
| | - Julia Karls
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Yangyang Guo
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
| | - Rizwan Ahmed
- National Centre for Physics (NCP), Islamabad, Pakistan
| | - Jochen Ballof
- CERN, Geneva, Switzerland
- Institut für Kernchemie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Lars Bengtsson
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | | - Anastasia Borschevsky
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands
| | - Katerina Chrysalidis
- CERN, Geneva, Switzerland
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Dmitry Fedorov
- Petersburg Nuclear Physics Institute - NRC KI, Gatchina, Russia
| | | | - Oliver Forstner
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Jena, Germany
- Helmholtz-Institut Jena, Jena, Germany
| | | | | | | | - Reinhard Heinke
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | | | - Agota Koszorus
- KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven, B-3001, Belgium
| | | | | | - Yuan Liu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Pavel Molkanov
- Petersburg Nuclear Physics Institute - NRC KI, Gatchina, Russia
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry & Laboratory for Advanced Materials, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | - Eric Renault
- CEISAM, Université de Nantes, CNRS, Nantes, France
| | - Mikael Reponen
- Department of Physics, University of Jyväskylä, Jyväskylä, Finland
| | - Annie Ringvall-Moberg
- CERN, Geneva, Switzerland
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | | - Dominik Studer
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - Adam Vernon
- School of Physics and Astronomy, The University of Manchester, Manchester, UK
| | - Jessica Warbinek
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | - Jakob Welander
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Klaus Wendt
- Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany
| | | | - Dag Hanstorp
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
18
|
Burns JD, Tereshatov EE, McCarthy MA, McIntosh LA, Tabacaru GC, Yang X, Hall MB, Yennello SJ. Astatine partitioning between nitric acid and conventional solvents: indication of covalency in ketone complexation of AtO . Chem Commun (Camb) 2020; 56:9004-9007. [PMID: 32638758 DOI: 10.1039/d0cc03804k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Astatine-211 has been produced at Texas A&M University on the K150 cyclotron, with a yield of 890 ± 80 MBq through the 209Bi(α,2n)211At reaction via an 8 h bombardment with a beam current of 4-8 μA and an α-particle beam energy of 28.8 MeV. The target was then dissolved in HNO3 and the extraction of 211At was investigated into a variety of organic solvents in 1-3 M HNO3. Extraction of 211At with distribution ratios as high as 11.3 ± 0.6, 12.3 ± 0.8, 42.2 ± 2.2, 69 ± 4, and 95 ± 6 were observed for diisopropyl ether, 1-decanol, 1-octanol, 3-octanone, and methyl isobutyl ketone, respectively, while the distribution ratios for 207Bi were ≤0.05 in all cases. The extraction of 211At into both methyl isobutyl ketone and 3-octanone showed a strong, linear dependence on the HNO3 initial aqueous concentration and better extraction than other solvents. DFT calculations show stronger binding between the carbonyl oxygen of the ketone and the At metal center.
Collapse
Affiliation(s)
- Jonathan D Burns
- Nuclear Engineering and Science Center, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu L, Guo N, Champion J, Graton J, Montavon G, Galland N, Maurice R. Towards a Stronger Halogen Bond Involving Astatine: Unexpected Adduct with Bu 3 PO Stabilized by Hydrogen Bonding. Chemistry 2020; 26:3713-3717. [PMID: 31881101 DOI: 10.1002/chem.201905389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 11/10/2022]
Abstract
The halogen bond is a powerful tool for the molecular design and pushing the limits of its strength is of major interest. Bearing the most potent halogen-bond donor atom, astatine monoiodide (AtI) was recently successfully probed [Nat. Chem. 2018, 10, 428-434]. In this work, we continue the exploration of adducts between AtI and Lewis bases with the tributylphosphine oxide (Bu3 PO) ligand, revealing the unexpected experimental occurrence of two distinct chemical species with 1:1 and 2:1 stoichiometries. The 1:1 Bu3 PO⋅⋅⋅AtI complex is found to exhibit the strongest astatine-mediated halogen bond so far (with a formation constant of 10(4.24±0.35) ). Quantum chemical calculations unveil the intriguing nature of the 2:1 2Bu3 PO⋅⋅⋅AtI adduct, involving a halogen bond between AtI and one Bu3 PO molecular unit plus CH⋅⋅⋅O hydrogen bonds chelating the second Bu3 PO unit.
Collapse
Affiliation(s)
- Lu Liu
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307, Nantes Cedex 3, France
| | - Ning Guo
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307, Nantes Cedex 3, France
| | - Julie Champion
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307, Nantes Cedex 3, France
| | - Jérôme Graton
- CEISAM, UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Gilles Montavon
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307, Nantes Cedex 3, France
| | - Nicolas Galland
- CEISAM, UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322, Nantes Cedex 3, France
| | - Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307, Nantes Cedex 3, France
| |
Collapse
|
20
|
Rossi E, De Santis M, Sorbelli D, Storchi L, Belpassi L, Belanzoni P. Spin-orbit coupling is the key to unraveling intriguing features of the halogen bond involving astatine. Phys Chem Chem Phys 2020; 22:1897-1910. [PMID: 31912075 DOI: 10.1039/c9cp06293a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effect of spin-orbit coupling (SOC) on the halogen bond involving astatine has been investigated using state-of-the-art two- and four-component relativistic calculations. Adducts between Cl-X (X = Cl, Br, I and At) and ammonia have been selected to establish a trend on going down the periodic table. The SOC influence has been explored not only on the geometric and energetic features that can be used to characterize the halogen bond strength but also on the three main contributions to it that are the charge transfer, the "σ-hole" (i.e. the localized region with a net positive electrostatic potential at the halogen site) and the "polar flattening" (which is related to the effective shape of the halogen site). A surprisingly large increase of the Cl-At dipole moment, due to the inclusion of SOC, has been worked out using four-component CCSD(T) reference calculations, indicating that this bond is significantly more ionic than one may predict. Due to the SOC effect, which induces a peculiar charge accumulation on the At side in the Cl-At dimer, a weakening of the astatine-mediated halogen bond occurs arising from the (i) reduced amount of charge transfer, (ii) decrease of the polar flattening and (iii) lowering of the short-range Coulomb potential. The analysis of the electronic structure of the Cl-At moiety allows for a rationalization of the SOC effects on all the considered features of the halogen bond, including an unprecedented unsymmetrical charge back-donation from Cl-At to ammonia.
Collapse
Affiliation(s)
- Elisa Rossi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Matteo De Santis
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Diego Sorbelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Loriano Storchi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Dipartimento di Farmacia, Università G. D'Annunzio, via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy. and CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
21
|
Sarr S, Graton J, Montavon G, Pilmé J, Galland N. On the Interplay between Charge-Shift Bonding and Halogen Bonding. Chemphyschem 2020; 21:240-250. [PMID: 31793159 DOI: 10.1002/cphc.201901023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/29/2019] [Indexed: 01/11/2023]
Abstract
The nature of halogen-bond interactions has been analysed from the perspective of the astatine element, which is potentially the strongest halogen-bond donor. Relativistic quantum calculations on complexes formed between halide anions and a series of Y3 C-X (Y=F to X, X=I, At) halogen-bond donors disclosed unexpected trends, e. g., At3 C-At revealing a weaker donating ability than I3 C-I despite a stronger polarizability. All the observed peculiarities have their origin in a specific component of C-Y bonds: the charge-shift bonding. Descriptors of the Quantum Chemical Topology show that the halogen-bond strength can be quantitatively anticipated from the magnitude of charge-shift bonding operating in Y3 C-X. The charge-shift mechanism weakens the ability of the halogen atom X to engage in halogen bonds. This outcome provides rationales for outlier halogen-bond complexes, which are at variance with the consensus that the halogen-bond strength scales with the polarizability of the halogen atom.
Collapse
Affiliation(s)
- Serigne Sarr
- CEISAM, UMR CNRS 6230, Université de Nantes, 44000, Nantes, France
| | - Jérôme Graton
- CEISAM, UMR CNRS 6230, Université de Nantes, 44000, Nantes, France
| | - Gilles Montavon
- SUBATECH, UMR CNRS 6457 IMT Atlantique, 44307, Nantes, France
| | - Julien Pilmé
- Laboratoire de Chimie Théorique, UMR CNRS 7616, Sorbonne Université, 75005, Paris, France
| | - Nicolas Galland
- CEISAM, UMR CNRS 6230, Université de Nantes, 44000, Nantes, France
| |
Collapse
|
22
|
Zhou F, Liu Y, Wang Z, Lu T, Yang Q, Liu Y, Zheng B. A new type of halogen bond involving multivalent astatine: an ab initio study. Phys Chem Chem Phys 2019; 21:15310-15318. [PMID: 31241070 DOI: 10.1039/c9cp02406a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Theoretical studies on the dimers formed by CO with the halides of multivalent astatine as a Lewis-acid center are carried out to examine the typical characteristics of supervalent halogen bonds. Calculations at the MP2/aug-cc-pVTZ level reveal that the multiple nucleophilic sites of multivalent halide monomers can promote the formation of various types of halogen bonds, among which the most stable ones are At-halogen bond complexes with multivalent astatine as a Lewis acid center, followed by the π-halogen bond dimers, and the weakest ones are the X-halogen bonds. Compared with multivalent Cl-, Br-, and I-centers, At, as the heaviest halogen, exhibits the highest halogen-bond donating ability. We found that the electrostatic term and the dispersion term play an important role in the overall attractive interaction energy, and the smallest attraction term for all complexes is the polarization term (ΔEpol). Moreover, the tri and pentavalent halides analyzed here possess very "flexible" tautomerism in which the transformation occurs during the formation of the dimers. AIM theory and NBO analysis are also employed here.
Collapse
Affiliation(s)
- Fengxiang Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China. and Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China and Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuan Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China. and Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China. and Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100022, China
| | - Qingyuan Yang
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yi Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
23
|
Graton J, Rahali S, Le Questel JY, Montavon G, Pilmé J, Galland N. Spin-orbit coupling as a probe to decipher halogen bonding. Phys Chem Chem Phys 2018; 20:29616-29624. [PMID: 30318527 DOI: 10.1039/c8cp05690k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nature of halogen-bond interactions is scrutinized from the perspective of astatine, the heaviest halogen element. Potentially the strongest halogen-bond donor, its ability is shown to be deeply affected by relativistic effects and especially by the spin-orbit coupling. Complexes between a series of XY dihalogens (X, Y = At, I, Br, Cl and F) and ammonia are studied with two-component relativistic quantum calculations, revealing that the spin-orbit interaction leads to a weaker halogen-bond donating ability of the diastatine species with respect to diiodine. In addition, the donating ability of the lighter halogen elements, iodine and bromine, in the AtI and AtBr species is more decreased by the spin-orbit coupling than that of astatine. This can only be rationalized from the evolution of a charge-transfer descriptor, the local electrophilicity ω+S,max, determined for the pre-reactive XY species. Finally, the investigation of the spin-orbit coupling effects by means of quantum chemical topology methods allows us to unveil the connection between the astatine propensity to form charge-shift bonds and the astatine ability to engage in halogen bonds.
Collapse
Affiliation(s)
- Jérôme Graton
- Université de Nantes, CEISAM, UMR CNRS 6230, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| | | | | | | | | | | |
Collapse
|
24
|
Shee A, Saue T, Visscher L, Severo Pereira Gomes A. Equation-of-motion coupled-cluster theory based on the 4-component Dirac–Coulomb(–Gaunt) Hamiltonian. Energies for single electron detachment, attachment, and electronically excited states. J Chem Phys 2018; 149:174113. [DOI: 10.1063/1.5053846] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Avijit Shee
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109-1055, USA
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Trond Saue
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS—Université Toulouse III–Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Lucas Visscher
- Division of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
25
|
Molina B, Soto JR, Castro JJ. Halogen-like properties of the Al 13 cluster mimicking astatine. Phys Chem Chem Phys 2018; 20:11549-11553. [PMID: 29651478 DOI: 10.1039/c8cp00494c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Astatine-211 is considered to be one of the most promising alpha-emitters in targeted alpha therapy (TAT). However, its development has been hindered by its not so well understood chemistry. Hence, any attempt to understanding it better is imperative. Here, we show through DFT calculations that the neutral endohedral Al13 cluster follows a reactivity pattern very similar to At, more than any other halogen. The halogen and alkali bonding with Al13 and At presented a strong similarity in their charge transfer processes. Moreover, upon the interchange of At with Al13, we found a stable configuration of the compound corresponding to the astatination of aryliodonium salts, which have been considered as possible precursors for the synthesis of 211At-labeled tracers. Our results provide promising proof of concept that the Al13 cluster mimics the behaviour of At and might help in better understanding its chemistry and in streamlining the chemical processes of radiolabeling biomolecules.
Collapse
Affiliation(s)
- B Molina
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Post. 70-646, 04510, Ciudad de México, Mexico.
| | | | | |
Collapse
|
26
|
Experimental and computational evidence of halogen bonds involving astatine. Nat Chem 2018; 10:428-434. [PMID: 29556053 DOI: 10.1038/s41557-018-0011-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023]
Abstract
The importance of halogen bonds-highly directional interactions between an electron-deficient σ-hole moiety in a halogenated compound and an acceptor such as a Lewis base-is being increasingly recognized in a wide variety of fields from biomedicinal chemistry to materials science. The heaviest halogens are known to form stronger halogen bonds, implying that if this trend continues down the periodic table, astatine should exhibit the highest halogen-bond donating ability. This may be mitigated, however, by the relativistic effects undergone by heavy elements, as illustrated by the metallic character of astatine. Here, the occurrence of halogen-bonding interactions involving astatine is experimentally evidenced. The complexation constants of astatine monoiodide with a series of organic ligands in cyclohexane solution were derived from distribution coefficient measurements and supported by relativistic quantum mechanical calculations. Taken together, the results show that astatine indeed behaves as a halogen-bond donor-a stronger one than iodine-owing to its much more electrophilic σ-hole.
Collapse
|
27
|
Galland N, Montavon G, Le Questel JY, Graton J. Quantum calculations of At-mediated halogen bonds: on the influence of relativistic effects. NEW J CHEM 2018. [DOI: 10.1039/c8nj00484f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
If astatine is generally a stronger halogen-bond donor than iodine, an inversion is sometimes observed owing to the spin–orbit coupling.
Collapse
Affiliation(s)
- N. Galland
- Laboratoire CEISAM
- UMR CNRS 6230
- Université de Nantes
- Nantes Cedex 3
- France
| | - G. Montavon
- Laboratoire SUBATECH
- UMR CNRS 6457
- IN2P3/EMN Nantes/Université de Nantes
- Nantes Cedex 3
- France
| | - J.-Y. Le Questel
- Laboratoire CEISAM
- UMR CNRS 6230
- Université de Nantes
- Nantes Cedex 3
- France
| | - J. Graton
- Laboratoire CEISAM
- UMR CNRS 6230
- Université de Nantes
- Nantes Cedex 3
- France
| |
Collapse
|
28
|
Matczak P. Tuning of non-covalent interactions involving a halogen atom that plays the role of Lewis acid and base simultaneously. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1386805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Piotr Matczak
- Faculty of Chemistry, Department of Theoretical and Structural Chemistry, University of Łódź, Lodz, Poland
| |
Collapse
|
29
|
Amaouch M, Sergentu DC, Steinmetz D, Maurice R, Galland N, Pilmé J. The bonding picture in hypervalent XF 3 (X = Cl, Br, I, At) fluorides revisited with quantum chemical topology. J Comput Chem 2017; 38:2753-2762. [PMID: 28776714 DOI: 10.1002/jcc.24905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 01/30/2023]
Abstract
Hypervalent XF3 (X = Cl, Br, I, At) fluorides exhibit T-shaped C2V equilibrium structures with the heavier of them, AtF3 , also revealing an almost isoenergetic planar D3h structure. Factors explaining this behavior based on simple "chemical intuition" are currently missing. In this work, we combine non-relativistic (ClF3 ), scalar-relativistic and two-component (X = Br - At) density functional theory calculations, and bonding analyses based on the electron localization function and the quantum theory of atoms in molecules. Typical signatures of charge-shift bonding have been identified at the bent T-shaped structures of ClF3 and BrF3 , while the bonds of the other structures exhibit a dominant ionic character. With the aim of explaining the D3h structure of AtF3 , we extend the multipole expansion analysis to the framework of two-component single-reference calculations. This methodological advance enables us to rationalize the relative stability of the T-shaped C2v and the planar D3h structures: the Coulomb repulsions between the two lone-pairs of the central atom and between each lone-pair and each fluorine ligand are found significantly larger at the D3h structures than at the C2v ones for X = Cl - I, but not with X = At. This comes with the increasing stabilization, along the XF3 series, of the planar D3h structure with respect to the global T-shaped C2v minima. Hence, we show that the careful use of principles that are at the heart of the valence shell electron pair repulsion model provides reasonable justifications for stable planar D3h structures in AX3 E2 systems. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mohamed Amaouch
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137 - 4, place Jussieu, F. 75252, Paris Cedex 05, FranceE-mail:
| | - Dumitru-Claudiu Sergentu
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 Rue A. Kastler, BP 20722, Nantes Cedex 3, 44307, France.,Laboratoire CEISAM, UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssini'ere, BP 92208, Nantes Cedex 3, 44322, France
| | - David Steinmetz
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137 - 4, place Jussieu, F. 75252, Paris Cedex 05, FranceE-mail:
| | - Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/IMT Atlantique/Université de Nantes, 4 Rue A. Kastler, BP 20722, Nantes Cedex 3, 44307, France
| | - Nicolas Galland
- Laboratoire CEISAM, UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssini'ere, BP 92208, Nantes Cedex 3, 44322, France
| | - Julien Pilmé
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Théorique CC 137 - 4, place Jussieu, F. 75252, Paris Cedex 05, FranceE-mail:
| |
Collapse
|
30
|
Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates. Sci Rep 2017; 7:2579. [PMID: 28566709 PMCID: PMC5451414 DOI: 10.1038/s41598-017-02614-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/13/2017] [Indexed: 11/09/2022] Open
Abstract
211At is a most promising radionuclide for targeted alpha therapy. However, its limited availability and poorly known basic chemistry hamper its use. Based on the analogy with iodine, labelling is performed via astatobenzoate conjugates, but in vivo deastatination occurs, particularly when the conjugates are internalized in cells. Actually, the chemical or biological mechanism responsible for deastatination is unknown. In this work, we show that the C−At “organometalloid” bond can be cleaved by oxidative dehalogenation induced by oxidants such as permanganates, peroxides or hydroxyl radicals. Quantum mechanical calculations demonstrate that astatobenzoates are more sensitive to oxidation than iodobenzoates, and the oxidative deastatination rate is estimated to be about 6 × 106 faster at 37 °C than the oxidative deiodination one. Therefore, we attribute the “internal” deastatination mechanism to oxidative dehalogenation in biological compartments, in particular lysosomes.
Collapse
|
31
|
Pozzi OR, Zalutsky MR. Radiopharmaceutical chemistry of targeted radiotherapeutics, part 4: Strategies for 211At labeling at high activities and radiation doses of 211At α-particles. Nucl Med Biol 2017; 46:43-49. [PMID: 28013121 PMCID: PMC5285439 DOI: 10.1016/j.nucmedbio.2016.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Alpha particles are radiation of high energy and short range, properties that can lead to radiolysis-mediated complications in labeling chemistry at the high radioactivity levels required for clinical application. In previous papers in this series, we have shown that radiation dose has a profound effect on the astatine species that are present in the labeling reaction and their suitability for the synthesis of N-succinimidyl 3-[211At]astatobenzoate. The purpose of this study was to evaluate the effects of adding N-chlorosuccinimide (NCS) to the methanol solution used for initial isolation of 211At after distillation, a process referred to as 211At stabilization, on 211At chemistry after exposure to high radiation doses. METHODS High performance liquid chromatography was used to evaluate the distribution of 211At species present in methanol in the 500-65,000Gy radiation dose range and the synthesis of SAB from N-succinimidyl 3-(tri-n-butylstannyl)benzoate in the 500-120,000Gy radiation dose range using different 211At timeactivity combinations under conditions with/without 211At stabilization. RESULTS In the absence of NCS stabilization, a reduced form of astatine, At(2), increased with increasing radiation dose, accounting for about half the total activity by about 15,000Gy, while with stabilization, At(2) accounted for <10% of 211At activity even at doses >60,000Gy. SAB yields without stabilization rapidly declined with increasing dose, falling to ~20% at about 5000Gy while with stabilization, yields >80% were obtained with 211At solutions stored for more than 23h and receiving radiation doses >100,000Gy. CONCLUSIONS Adding NCS to the methanol solution used for initial isolation of 211At is a promising strategy for countering the deleterious effects of radiolysis on 211At chemistry. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE This strategy could facilitate the ability to perform 211At labeling at sites remote from its production and at the high activity levels required for clinical applications.
Collapse
Affiliation(s)
- Oscar R Pozzi
- Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
32
|
Guo N, Sergentu DC, Teze D, Champion J, Montavon G, Galland N, Maurice R. The Heaviest Possible Ternary Trihalogen Species, IAtBr−, Evidenced in Aqueous Solution: An Experimental Performance Driven by Computations. Angew Chem Int Ed Engl 2016; 55:15369-15372. [DOI: 10.1002/anie.201608746] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ning Guo
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Dumitru-Claudiu Sergentu
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
- CEISAM, UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière, BP 92208 44302 Nantes Cedex 3 France
| | - David Teze
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Julie Champion
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Gilles Montavon
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Nicolas Galland
- CEISAM, UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière, BP 92208 44302 Nantes Cedex 3 France
| | - Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| |
Collapse
|
33
|
Guo N, Sergentu DC, Teze D, Champion J, Montavon G, Galland N, Maurice R. The Heaviest Possible Ternary Trihalogen Species, IAtBr−, Evidenced in Aqueous Solution: An Experimental Performance Driven by Computations. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ning Guo
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Dumitru-Claudiu Sergentu
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
- CEISAM, UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière, BP 92208 44302 Nantes Cedex 3 France
| | - David Teze
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Julie Champion
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Gilles Montavon
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| | - Nicolas Galland
- CEISAM, UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière, BP 92208 44302 Nantes Cedex 3 France
| | - Rémi Maurice
- SUBATECH, UMR CNRS 6457, IN2P3/Mines; Nantes/Université de Nantes; 4 rue Alfred Kastler, BP 20722 44307 Nantes Cedex 3 France
| |
Collapse
|
34
|
Sergentu DC, Réal F, Montavon G, Galland N, Maurice R. Unraveling the hydration-induced ground-state change of AtO+ by relativistic and multiconfigurational wave-function-based methods. Phys Chem Chem Phys 2016; 18:32703-32712. [DOI: 10.1039/c6cp05028j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydration-induced ground-state change of AtO+ is confirmed by means of multiconfigurational wave-function-based calculations. The involved states are identified for the first time.
Collapse
Affiliation(s)
| | - Florent Réal
- PhLAM
- UMR CNRS 8523
- 59655 Villeneuve d'Ascq Cedex
- France
| | - Gilles Montavon
- SUBATECH
- UMR CNRS 6457
- IN2P3/EMN Nantes/Université de Nantes
- 44307 Nantes Cedex 3
- France
| | - Nicolas Galland
- CEISAM
- UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| | - Rémi Maurice
- SUBATECH
- UMR CNRS 6457
- IN2P3/EMN Nantes/Université de Nantes
- 44307 Nantes Cedex 3
- France
| |
Collapse
|