1
|
Singh K, Singh VK, Mishra R, Sharma A, Pandey A, Srivastava SK, Chaurasia H. Design, Synthesis, DFT, docking Studies, and antimicrobial evaluation of novel benzimidazole containing sulphonamide derivatives. Bioorg Chem 2024; 149:107473. [PMID: 38820940 DOI: 10.1016/j.bioorg.2024.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
In silico approaches have been employed to design a new series of benzimidazole-containing sulphonamide derivatives and qualified compounds have been synthesized to analyze their potential as antimicrobial agents. Antibacterial screening of all synthesized compounds was done using the broth microdilution method against several human pathogenic bacteria, viz. Gram-positive bacteria [B. cerus (NCIN-2156), B. subtilis (ATCC-6051), S. aureus (NCIM-2079)] and Gram-negative bacteria [P. aeruginosa (NCIM-2036), E. coli (NCIM-2065), and a drug-resistant strain of E. coli (U-621)], and the compounds presented admirable MIC values, ranging between 100-1.56 µg/mL. The combinatorial analysis showed the magnificent inhibitory efficiency of the tested compounds, acquired equipotent to ten-fold more potency compared to original MIC values. An immense synergistic effect was exhibited by the compounds during combination studies with reference drugs chloramphenicol and sulfamethoxazole was presented as fractional inhibitory concentration (∑FIC). Enzyme inhibition studies of all synthesized compounds were done by using peptidyl transferase and dihydropteroate synthase enzymes isolated from E. coli and S. aureus and each of the compound presented the admirable IC50 values, where the lead compound 3 bound to peptidyl transferase (of S. aureus with IC50 363.51 ± 2.54 µM and E. coli IC50 1.04 ± 0.08 µM) & dihydropteroate synthase (of S. aureus IC50 3.51 ± 0.82 µM and E. coli IC50 2.77 ± 0.65 µM), might account for the antimicrobial effect, exhibited excellent inhibition potential. Antifungal screening was also performed employing food poisoning methods against several pathogenic fungal species, viz A. flavus, F. oxysporum, A. niger, and A. brassicae. The obtained result indicated that few compounds can prove to be a potent drug regimen against dreaded MDR strains of microbes. Structural activity relationship (SAR) analysis and docking studies reveal that the presence of electron-withdrawing, polar, and more lipophilic substituents positively favor the antibacterial activity, whereas, electron-withdrawing, more polar, and hydrophilic substituents favor the antifungal activities. A robust coherence has been found in in-silico and in-vitro biological screening results of the compounds.
Collapse
Affiliation(s)
- Kajal Singh
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Vishal K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Mishra
- Bio-organic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Ashwani Sharma
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Archana Pandey
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Santosh K Srivastava
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India
| | - Himani Chaurasia
- Photophysical and Therapeutic Laboratory, Department of Chemistry, C.M.P. Degree College (A constituent P.G. College of University of Allahabad), Prayagraj 211002, India.
| |
Collapse
|
2
|
Singh VK, Kumari P, Som A, Rai S, Mishra R, Singh RK. Design, synthesis and antimicrobial activity of novel quinoline derivatives: an in silico and in vitro study. J Biomol Struct Dyn 2024; 42:6904-6924. [PMID: 37477261 DOI: 10.1080/07391102.2023.2236716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
A series of new quinoline derivatives has been designed, synthesized and evaluated as antibacterial and antifungal agents functioning as peptide deformylase enzyme (PDF) inhibitors and fungal cell wall disruptors on the basis of computational and experimental methods. The molecular docking and ADMET assessment aided in the synthesis of quinoline derivatives starting from 6-amino-4-methyl-1H-quinoline-2-one substituted with different types of sulfonyl/benzoyl/propargyl moieties. These newly synthesized compounds were evaluated for their in vitro antibacterial and antifungal activity. Antibacterial screening of all compounds showed excellent MIC value (MIC, 50 - 3.12 µg/mL) against bacterial strains, viz. Bacillus cerus, Staphylococcus, Pseudomonas and Escherichia coli. Compounds 2 and 6 showed better activity. Fractional inhibitory concentration (FIC) values of compounds were lowered by 1/2 to 1/128 of the original MIC values when a combinatorial screening with reference drugs was performed. Further, antifungal screening against fungal strains, viz. A. flavus, A. niger, F. oxysporum and C. albicans also showed that all compounds were potentially active and compound 6 being the most potent. Further, the cytotoxicity experiments revealed that compound 6 was the least toxic molecule. The molecular dynamics (MD) simulation investigations elucidated the conformational stability of compound 6-PDF complex with flexible binding pocket residues. The highest number of stable hydrogen bonds with the PDF residues during the entire simulation time illustrated strong binding affinity of compound 6 with PDF.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Priyanka Kumari
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India
| | - Shivangi Rai
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
3
|
Georgiou N, Mavromoustakos T, Tzeli D. Docking, MD Simulations, and DFT Calculations: Assessing W254's Function and Sartan Binding in Furin. Curr Issues Mol Biol 2024; 46:8226-8238. [PMID: 39194703 DOI: 10.3390/cimb46080486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Furins are serine endoproteases that are involved in many biological processes, where they play important roles in normal metabolism, in the activation of various pathogens, while they are a target for therapeutic intervention. Dichlorophenyl-pyridine "BOS" compounds are well known drugs that are used as inhibitors of human furin by an induced-fit mechanism, in which tryptophan W254 in the furin catalytic cleft acts as a molecular transition energy gate. The binding of "BOS" drug into the active center of furin has been computationally studied using the density functional theory (DFT) and ONIOM multiscaling methodologies. The binding enthalpies of the W254 with the furin-BOS is -32.8 kcal/mol ("open") and -18.8 kcal/mol ("closed"), while the calculated torsion barrier was found at 30 kcal/mol. It is significantly smaller than the value of previous MD calculations due to the relaxation of the environment, i.e., nearby groups of the W254, leading to the reduction of the energy demands. The significant lower barrier explains the experimental finding that the dihedral barrier of W254 is overcome. Furthermore, sartans were studied to evaluate their potential as furin inhibitors. Sartans are AT1 antagonists, and they effectively inhibit the hypertensive effects induced by the peptide hormone Angiotensin II. Here, they have been docked into the cavity to evaluate their effect on the BOS ligand via docking and molecular dynamics simulations. A consistent binding of sartans within the cavity during the simulation was found, suggesting that they could act as furin inhibitors. Finally, sartans interact with the same amino acids as W254, leading to a competitive binding that may influence the pharmacological efficacy and potential drug interactions of sartans.
Collapse
Affiliation(s)
- Nikitas Georgiou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 11571 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
4
|
Oliveira LS, Rosa LB, Affonso DD, Santos IA, Da Silva JC, Rodrigues GC, Harris M, Jardim ACG, Nakahata DH, Sabino JR, de Carvalho JE, Miguel DC, Ruiz ALTG, Abbehausen C. Novel Bidentate Amine Ligand and the Interplay between Pd(II) and Pt(II) Coordination and Biological Activity. Chembiochem 2024; 25:e202300696. [PMID: 38146865 DOI: 10.1002/cbic.202300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 12/27/2023]
Abstract
Pt(II) and Pd(II) coordinating N-donor ligands have been extensively studied as anticancer agents after the success of cisplatin. In this work, a novel bidentate N-donor ligand, the N-[[4-(phenylmethoxy)phenyl]methyl]-2-pyridinemethanamine, was designed to explore the antiparasitic, antiviral and antitumor activity of its Pt(II) and Pd(II) complexes. Chemical and spectroscopic characterization confirm the formation of [MLCl2 ] complexes, where M=Pt(II) and Pd(II). Single crystal X-ray diffraction confirmed a square-planar geometry for the Pd(II) complex. Spectroscopic characterization of the Pt(II) complex suggests a similar structure. 1 H NMR, 195 Pt NMR and HR-ESI-MS(+) analysis of DMSO solution of complexes indicated that both compounds exchange the chloride trans to the pyridine for a solvent molecule with different reaction rates. The ligand and the two complexes were tested for in vitro antitumoral, antileishmanial, and antiviral activity. The Pt(II) complex resulted in a GI50 of 10.5 μM against the NCI/ADR-RES (multidrug-resistant ovarian carcinoma) cell line. The ligand and the Pd(II) complex showed good anti-SARS-CoV-2 activity with around 65 % reduction in viral replication at a concentration of 50 μM.
Collapse
Affiliation(s)
- Laiane S Oliveira
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Letícia B Rosa
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Daniele D Affonso
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Igor A Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, João Naves de Ávila Avenue, 2121 -, Santa Mônica, Uberlândia, Minas Gerais, Brazil
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Jennyfer C Da Silva
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Gustavo C Rodrigues
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Ana Carolina G Jardim
- Institute of Biomedical Sciences, Federal University of Uberlândia, João Naves de Ávila Avenue, 2121 -, Santa Mônica, Uberlândia, Minas Gerais, Brazil
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Cristóvão Colombo street, 2265 -, Jardim Nazareth. São José do Rio Preto, São Paulo, Brazil
| | - Douglas H Nakahata
- Institute of Chemistry, Federal University of Goiás, Esperança Avenue, Campus Samambaia., Goiânia, Goiás, Brazil
| | - José R Sabino
- Institute of Physics, Federal University of Goiás, Esperança Avenue, Campus Samambaia., Goiânia, Goiás, Brazil
| | - João E de Carvalho
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Institute of Biology, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Ana Lucia T G Ruiz
- Faculty of Pharmaceutical Sciences, University of Campinas, Cidade Universitária Zeferino Vaz -, Barão Geraldo, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, Cidade Universitária Zeferino Vaz - Barão Geraldo, Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Ondar EE, Polynski MV, Ananikov VP. Predicting 195 Pt NMR Chemical Shifts in Water-Soluble Inorganic/Organometallic Complexes with a Fast and Simple Protocol Combining Semiempirical Modeling and Machine Learning. Chemphyschem 2023:e202200940. [PMID: 36806426 DOI: 10.1002/cphc.202200940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Water-soluble Pt complexes are the key components in medicinal chemistry and catalysis. The well-known cisplatin family of anticancer drugs and industrial hydrosylilation catalysts are two leading examples. On the molecular level, the activity mechanisms of such complexes mostly involve changes in the Pt coordination sphere. Using 195 Pt NMR spectroscopy for operando monitoring would be a valuable tool for uncovering the activity mechanisms; however, reliable approaches for the rapid correlation of Pt complex structure with 195 Pt chemical shifts are very challenging and not available for everyday research practice. While NMR shielding is a response property, molecular 3D structure determines NMR spectra, as widely known, which allows us to build up 3D structure to 195 Pt chemical shift correlations. Accordingly, we present a new workflow for the determination of lowest-energy configurational/conformational isomers based on the GFN2-xTB semiempirical method and prediction of corresponding chemical shifts with a Machine Learning (ML) model tuned for Pt complexes. The workflow was designed for the prediction of 195 Pt chemical shifts of water-soluble Pt(II) and Pt(IV) anionic, neutral, and cationic complexes with halide, NO2 - , (di)amino, and (di)carboxylate ligands with chemical shift values ranging from -6293 to 7090 ppm. The model offered an accuracy (normalized root-mean-square deviation/RMSD) of 1.08 %/145.02 ppm on the held-out test set.
Collapse
Affiliation(s)
- Evgeniia E Ondar
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Mikhail V Polynski
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia.,Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences, 26 Azatutyan Ave, 0014, Yerevan, Armenia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
6
|
de Andrade TFCB, Dos Santos HF, Fonseca Guerra C, Paschoal DFS. Computational Prediction of Tc-99 NMR Chemical Shifts in Technetium Complexes with Radiopharmaceutical Applications. J Phys Chem A 2022; 126:5434-5448. [PMID: 35930743 DOI: 10.1021/acs.jpca.2c01617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Tc-99m nucleus is the most used nuclide in radiopharmaceuticals designed for imaging diagnosis. The metal can exist in nine distinct oxidation states and forms distinct coordination complexes with a variety of chelating agents and geometries. These complexes are usually characterized through Tc-99 NMR that is very sensitive to the Tc coordination sphere. Therefore, predicting Tc-99 NMR might be useful to assist experimentalists in structural characterization. In the present study, we propose three computational protocols for predicting Tc-99 NMR chemical shifts based on density functional theory calculations using relativistic and nonrelativistic Hamiltonians: the relativistic Model 1, the nonrelativistic Model 2, and the empirical nonrelativistic Model 3. In Models 2 and 3, the NMR-DKH basis set was used for all atoms, including the Tc, for which it was developed here. All models were applied for a set of 41 Tc-complexes with metal oxidation states 0, I, and V, for which the Tc-99 chemical shift was available experimentally. The mean absolute deviation and the mean relative deviation were 67 ppm and 4.8% (Model 1), 92 ppm and 6.2% (Model 2), and 65 ppm and 4.9% (Model 3), respectively. Last, the effect of the explicit solvent was evaluated for the [TcO2(en)2]+─Tc(V) complex. The calculated results for the Tc-99 NMR chemical shift at SO-ZORA-SSB-D/TZ2P-ZORA/COSMO//TPSS/def2-SVP/IEF-PCM(UFF) show that the inclusion of 14 water molecules (first solvation shell) together with the implicit solvation model leads to an absolute deviation of only 7 ppm (0.3%) from the experimental value, indicating that the solvent effects play a key role in predicting Tc-99 NMR.
Collapse
Affiliation(s)
- Taís F C B de Andrade
- NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé, 27.971-525 Rio de Janeiro, Brasil
| | - Hélio F Dos Santos
- NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900 Juiz de Fora, Minas Gerais, Brasil
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Diego F S Paschoal
- NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé, 27.971-525 Rio de Janeiro, Brasil
| |
Collapse
|
7
|
Paschoal DFS, Dos Santos HF. Intramolecular force field for carboxylate Pt(II)-complexes. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Wegermann CA, Monzani E, Casella L, Ribeiro MA, Bruzeguini CE, Vilcachagua JD, Costa LAS, Ferreira AMDC. Unveiling geometrical isomers and tautomers of isatin-hydrazones by NMR spectroscopy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Singh VK, Chaurasia H, Mishra R, Srivastava R, Naaz F, Kumar P, Singh RK. Docking, ADMET prediction, DFT analysis, synthesis, cytotoxicity, antibacterial screening and QSAR analysis of diarylpyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Predicting Pt-195 NMR Chemical Shift and 1J(195Pt-31P) Coupling Constant for Pt(0) Complexes Using the NMR-DKH Basis Sets. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pt(0) complexes have been widely used as catalysts for important reactions, such as the hydrosilylation of olefins. In this context, nuclear magnetic resonance (NMR) spectroscopy plays an important role in characterising of new structures and elucidating reaction mechanisms. In particular, the Pt-195 NMR is fundamental, as it is very sensitive to the ligand type and the oxidation state of the metal. In the present study, quantum mechanics computational schemes are proposed for the theoretical prediction of the Pt-195 NMR chemical shift and 1J(195Pt–31P) in Pt(0) complexes. The protocols were constructed using the B3LYP/LANL2DZ/def2-SVP/IEF-PCM(UFF) level for geometry optimization and the GIAO-PBE/NMR-DKH/IEF-PCM(UFF) level for NMR calculation. The NMR fundamental quantities were then scaled by empirical procedures using linear correlations. For a set of 30 Pt(0) complexes, the results showed a mean absolute deviation (MAD) and mean relative deviation (MRD) of only 107 ppm and 2.3%, respectively, for the Pt-195 NMR chemical shift. When the coupling constant is taken into account, the MAD and MRD for a set of 33 coupling constants in 26 Pt(0) complexes were of 127 Hz and 3.3%, respectively. In addition, the models were validated for a group of 17 Pt(0) complexes not included in the original group that had MAD/MRD of 92 ppm/1.7% for the Pt-195 NMR chemical shift and 146 Hz/3.6% for the 1J(195Pt–31P).
Collapse
|
11
|
Paschoal DFS, Dos Santos HF. Predicting the structure and NMR coupling constant 1J( 129Xe- 19F) of XeF 6 using quantum mechanics methods. Phys Chem Chem Phys 2021; 23:7240-7246. [PMID: 33876084 DOI: 10.1039/d0cp06555b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The XeF6 molecule exists as a monomer in the gas phase and as the (XeF6)4 tetramer in solution. Herein we used distinct quantum mechanics methods to study the conformational equilibrium for the XeF6 monomer, which is represented mainly by Oh and C3v symmetric geometries, and for the (XeF6)4 structure found in condensate phases. The NMR 1J(129Xe-19F) coupling constant is predicted using our own NMR-DKH basis set, designed for NMR properties. The C3v conformer of XeF6 was stable only with HF, CCSD, and hybrid DFT functionals with at least 28% exact HF exchange. Increasing the % of HF exchange improves the description of the geometry and the Oh→C3v equilibrium. The BMK, BHandHLYP and LC-ωPBE functionals produce results in excellent agreement with experiments and high-level calculations for the XeF6 molecule. When it comes to the 1J(129Xe-19F) coupling constant, the (XeF6)4 structure must be considered. For that compound, BHandHLYP leads to the best structure, and BMK leads to the best coupling constant; therefore, the generalized protocol BMK/NMR-DKH//BHandHLYP/def2-SVP is recommended to study the XeF6 molecule in the gas phase and solution.
Collapse
Affiliation(s)
- Diego F S Paschoal
- NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Universidade Federal do Rio de Janeiro, Campus UFRJ-Macaé, 27.971-525, Macaé, RJ, Brazil.
| | | |
Collapse
|
12
|
Pereira CDS, Enes KB, de Almeida AM, de Mendonça CC, da Silva VL, Gallupo Diniz C, Couri MRC, Silva H. Syntheses and biological activity of platinum(II) and palladium(II) complexes with phenyl-oxadiazole-ethylenediamine ligands. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1871608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Karine Braga Enes
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Vânia Lúcia da Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Cláudio Gallupo Diniz
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mara Rubia Costa Couri
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Heveline Silva
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
De Souza LA, Almeida ER, Cunha e Silva JH, Paschoal DFS, Belchior JC, Dos Santos HF, De Almeida WB. 1H and 195Pt NMR prediction for inclusion compounds formed by cisplatin and oxidized carbon nanostructures. RSC Adv 2021; 11:599-611. [PMID: 35423010 PMCID: PMC8691003 DOI: 10.1039/d0ra06044e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/29/2020] [Indexed: 01/07/2023] Open
Abstract
Prediction of NMR chemical shifts can assist experimentalists in the characterization of drug delivery systems based on carbon nanocomposites. Chemical shifts are strongly correlated to the nucleus position and its chemical neighborhood. Therefore, to predict structures and NMR properties of complex chemical models, choosing a more consistent theoretical level capable of providing more realistic results and moderate computational demand is a major challenge. In this work, we predicted the NMR spectra of inclusion compounds formed by cisplatin (cDDP) and an oxidized carbon nanotube (CNTox) and nanocone (CNCox) considered by specialists as potential drug delivery systems. The 195Pt NMR chemical shifts calculated at the DFT level with the new relativistic NMR-DKH basis set were −2314 ppm and −2192 ppm for cDDP@CNTox and cDDP@CNCox complexes, respectively, which are both high-field shifted relative to the free cDDP (−2110 ppm). 1H NMR chemical shifts are also sensitive to the inclusion process. The H (NH3) signals are found on average at +4.3 (cDDP), −5.1 (cDDP@CNTox) and +6.6 ppm (cDDP@CNCox). Interestingly, despite the similar inclusion modes in CNTox and CNCox cavities, the 1H NMR shifts were in opposite directions. A possible reason might be the higher stability of cDDP@CNTox (ΔEF = −19.9 kcal mol−1) than that of cDDP@CNCox (ΔEF = −5.7 kcal mol−1), which suggests a short guest–host contact in the former and consequently, a more efficient shielding of hydrogen atoms due to the electron-rich carbon structure. These results may be helpful as comparison data in the NMR spectra assignment in solution and the inclusion compounds' structural elucidation. 195Pt NMR chemical shifts of the cisplatin molecule in the inclusion complex formed by oxidized carbon nanotubes.![]()
Collapse
Affiliation(s)
- Leonardo A. De Souza
- Departamento de Química
- ICEx, Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Eduardo R. Almeida
- Núcleo de Estudos em Química Computacional (NEQC)
- Departamento de Química
- ICE, Universidade Federal de Juiz de Fora
- Juiz de Fora
- Brazil
| | - Joyce H. Cunha e Silva
- Núcleo de Química Teórica e Computacional de Macaé (NQTCM), Polo Ajuda
- Universidade Federal do Rio de Janeiro
- Macaé
- Brazil
| | - Diego F. S. Paschoal
- Núcleo de Química Teórica e Computacional de Macaé (NQTCM), Polo Ajuda
- Universidade Federal do Rio de Janeiro
- Macaé
- Brazil
| | - Jadson C. Belchior
- Departamento de Química
- ICEx, Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Hélio F. Dos Santos
- Núcleo de Estudos em Química Computacional (NEQC)
- Departamento de Química
- ICE, Universidade Federal de Juiz de Fora
- Juiz de Fora
- Brazil
| | - Wagner B. De Almeida
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM)
- Departamento de Química Inorgânica
- Instituto de Química
- Universidade Federal Fluminense
- Niterói
| |
Collapse
|
14
|
Querino ALDA, Enes KB, Chaves OA, Dittz D, Couri MRC, Diniz R, Silva H. Modified pyrazole platinum(II) complex can circumvent albumin and glutathione: Synthesis, structure and cytotoxic activity. Bioorg Chem 2020; 100:103936. [PMID: 32438131 DOI: 10.1016/j.bioorg.2020.103936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
The synthesis and structural characterization of novel platinum complexes ([PtII(Pz)2Cl2] - C1, C2 and C3) featuring diphenyl-pyrazole derived ligands: para-fluorophenyl and para-substituted phenyl (CH3, F and Cl for L1, L2 and L3, respectively) were reported and it was also evaluated their potential antitumor activity. The elemental, molar conductivity and thermogravimetric analysis combined with FTIR, UV-vis, NMR and mass spectrometry are in agreement with the chemical structure indicated by single-crystal X-ray diffraction. The antiproliferative activities were assessed against tumor (B16F10 and 4T1) and non-tumor (BHK21) cell lines, and the cytotoxicity of the compounds was strongly increased after metal complexation displaying promising activity. It was also assessed the ability of extracellular bovine serum albumin (BSA) and glutathione (GSH) to decrease the cytotoxicity of the complexes against B16F10. It was highlighted that only the C3 activity was not disturbed in those conditions, being confirmed by flow cytometry using Anexin-V/PI to evaluate interferences in the apoptosis process, even it was not predicted by molecular docking simulations. The interaction of the synthesized compounds with calf-thymus DNA (ctDNA) and bovine serum albumin (BSA) was also investigated through spectrophotometric assays and molecular docking simulations, indicating that C1 and C2 presented better interaction with the biomacromolecules than the corresponding ligands. In addition, agarose gel electrophoresis with plasmid DNA revealed that C1-C3 are capable of interaction with DNA and modify its electrophoretic mobility.
Collapse
Affiliation(s)
| | - Karine Braga Enes
- Department of Chemistry, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Otávio Augusto Chaves
- Senai Innovation Institute for Green Chemistry, 20271-030 Rio de Janeiro, RJ, Brazil
| | - Dalton Dittz
- Department of Biochemistry and Pharmacology, Universidade Federal do Piauí, 64049-550 Terezina, PI, Brazil
| | - Mara Rubia Costa Couri
- Department of Chemistry, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Renata Diniz
- Department of Chemistry, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Heveline Silva
- Department of Chemistry, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
15
|
Carvalho J, Paschoal D, Fonseca Guerra C, Dos Santos H. Nonrelativistic protocol for calculating the 1J(195Pt-15N) coupling constant in Pt(II)-complexes using all-electron Gaussian basis-set. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Abstract
XeF6 has multiple C3v equivalent minima due to the Jahn–Teller effect. Through computational means we prove that the rearrangement between isomers occurs through fluorine quantum mechanical tunnelling.
Collapse
Affiliation(s)
- Itzhak Sedgi
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer-Sheva 841051
- Israel
- Department of Analytical Chemistry
| | - Sebastian Kozuch
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer-Sheva 841051
- Israel
| |
Collapse
|
17
|
Tsipis AC. Trans-philicity (trans-influence/trans-effect) ladders for square planar platinum(II) complexes constructed by 35 Cl NMR probe. J Comput Chem 2019; 40:2550-2562. [PMID: 31301188 DOI: 10.1002/jcc.26031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 01/29/2023]
Abstract
The unified term of trans-philicity is proposed to cover the trans-effect/trans-influence concepts. NMR trans-philicity ladders are built for a broad series of square planar trans-Pt(NH3 )2 (Cl)L and trans-Pt(CO)2 (Cl)L complexes employing 35 Cl NMR probe and quantified by calculation of NMR trans-philicity indicators. The trans-philicity is linearly correlated with the ligand electronic PL constant, a measure of the net donor power of the ligand. The nature of cis-ligands does not affect trans-philicity ladders but strongly affects trans-philicity strength. Solvent has significant effect on the σcalcd 35 Cl shielding constants, with the polar Dimethylformamide (DMF) solvent inducing downfield shifts relative to σcalcd 35 Cl with nonpolar benzene solvent. Good correlations between σcalcd 35 Cl shielding constants and the estimated R(Pt-Cl) bond distances demonstrate the relation of trans-philicity with trans-influence and trans-effect phenomena and put the grounds for the establishment of the new concept of trans-philicity in the realm of square planar Pt(II) and other transition metal complexes. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Athanassios C Tsipis
- Laboratory of Inorganic and General Chemistry, University of Ioannina, 45110, Ioannina, Greece
| |
Collapse
|
18
|
First Attempts of the Use of 195Pt NMR of Phenylbenzothiazole Complexes as Spectroscopic Technique for the Cancer Diagnosis. Molecules 2019; 24:molecules24213970. [PMID: 31684009 PMCID: PMC6864663 DOI: 10.3390/molecules24213970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/21/2023] Open
Abstract
Platinum complexes have been studied for cancer treatment for several decades. Furthermore, another important platinum characteristic is related to its chemical shifts, in which some studies have shown that the 195Pt chemical shifts are very sensitive to the environment, coordination sphere, and oxidation state. Based on this relevant feature, Pt complexes can be proposed as potential probes for NMR spectroscopy, as the chemical shifts values will be different in different tissues (healthy and damaged) Therefore, in this paper, the main goal was to investigate the behavior of Pt chemical shifts in the different environments. Calculations were carried out in vacuum, implicit solvent, and inside the active site of P13K enzyme, which is related with breast cancer, using the density functional theory (DFT) method. Moreover, the investigation of platinum complexes with a selective moiety can contribute to early cancer diagnosis. Accordingly, the Pt complexes selected for this study presented a selective moiety, the 2-(4′aminophenyl)benzothiazole derivative. More specifically, two Pt complexes were used herein: One containing chlorine ligands and one containing water in place of chlorine. Some studies have shown that platinum complexes coordinated to chlorine atoms may suffer hydrolyses inside the cell due to the low chloride ion concentration. Thus, the same calculations were performed for both complexes. The results showed that both complexes presented different chemical shift values in the different proposed environments. Therefore, this paper shows that platinum complexes can be a potential probe in biological systems, and they should be studied not only for cancer treatment, but also for diagnosis.
Collapse
|
19
|
de Andrade Querino AL, da Silva JT, Silva JT, Alvarenga GM, da Silveira CH, de Magalhães MTQ, Chaves OA, Iglesias BA, Diniz R, Silva H. Mono and dinuclear platinum and palladium complexes containing adamantane–azole ligands: DNA and BSA interaction and cytotoxicity. J Biol Inorg Chem 2019; 24:1087-1103. [DOI: 10.1007/s00775-019-01719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/13/2019] [Indexed: 01/01/2023]
|
20
|
Gagini T, Colina-Vegas L, Villarreal W, Borba-Santos LP, de Souza Pereira C, Batista AA, Kneip Fleury M, de Souza W, Rozental S, Costa LAS, Navarro M. Metal–azole fungistatic drug complexes as anti-Sporothrix spp. agents. NEW J CHEM 2018. [DOI: 10.1039/c8nj01544a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–antifungal drug complexes were investigated against fungus causing of sporotrichosis. They were more active against fungal cells than to mammalian cells.
Collapse
|