1
|
Sladek V, Šmak P, Tvaroška I. How E-, L-, and P-Selectins Bind to sLe x and PSGL-1: A Quantification of Critical Residue Interactions. J Chem Inf Model 2023; 63:5604-5618. [PMID: 37486087 DOI: 10.1021/acs.jcim.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Selectins and their ability to interact with specific ligands are a cornerstone in cell communication. Over the last three decades, a considerable wealth of experimental and molecular modeling insights into their structure and modus operandi were gathered. Nonetheless, explaining the role of individual selectin residues on a quantitative level remained elusive, despite its importance in understanding the structure-function relationship in these molecules and designing their inhibitors. This work explores essential interactions of selectin-ligand binding, employing a multiscale approach that combines molecular dynamics, quantum-chemical calculations, and residue interaction network models. Such an approach successfully reproduces most of the experimental findings. It proves to be helpful, with the potential for becoming an established tool for quantitative predictions of residue contribution to the binding of biomolecular complexes. The results empower us to quantify the importance of particular residues and functional groups in the protein-ligand interface and to pinpoint differences in molecular recognition by the three selectins. We show that mutations in the E-, L-, and P-selectins, e.g., different residues in positions 46, 85, 97, and 107, present a crucial difference in how the ligand is engaged. We assess the role of sulfation of tyrosine residues in PSGL-1 and suggest that TyrSO3- in position 51 interacting with Arg85 in P-selectin is a significant factor in the increased affinity of P-selectin to PSGL-1 compared to E- and L-selectins. We propose an original pharmacophore targeting five essential PSGL-binding sites based on the analysis of the selectin···PSGL-1 interactions.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, SAS, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Pavel Šmak
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Igor Tvaroška
- Institute of Chemistry, SAS, Dubravska cesta 9, 84538 Bratislava, Slovakia
| |
Collapse
|
2
|
Vuong VQ, Cevallos C, Hourahine B, Aradi B, Jakowski J, Irle S, Camacho C. Accelerating the density-functional tight-binding method using graphical processing units. J Chem Phys 2023; 158:084802. [PMID: 36859078 DOI: 10.1063/5.0130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acceleration of the density-functional tight-binding (DFTB) method on single and multiple graphical processing units (GPUs) was accomplished using the MAGMA linear algebra library. Two major computational bottlenecks of DFTB ground-state calculations were addressed in our implementation: the Hamiltonian matrix diagonalization and the density matrix construction. The code was implemented and benchmarked on two different computer systems: (1) the SUMMIT IBM Power9 supercomputer at the Oak Ridge National Laboratory Leadership Computing Facility with 1-6 NVIDIA Volta V100 GPUs per computer node and (2) an in-house Intel Xeon computer with 1-2 NVIDIA Tesla P100 GPUs. The performance and parallel scalability were measured for three molecular models of 1-, 2-, and 3-dimensional chemical systems, represented by carbon nanotubes, covalent organic frameworks, and water clusters.
Collapse
Affiliation(s)
- Van-Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Caterina Cevallos
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Ben Hourahine
- SUPA, Department of Physics, The John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen, Germany
| | - Jacek Jakowski
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Cristopher Camacho
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
3
|
Nishimura Y, Nakai H. Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations. J Chem Phys 2023; 158:054106. [PMID: 36754823 DOI: 10.1063/5.0132573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Here, extensions to quantum chemical nanoreactor molecular dynamics simulations for discovering complex reactive events are presented. The species-selective algorithm, where the nanoreactor effectively works for the selected desired reactants, was introduced to the original scheme. Moreover, for efficient simulations of large model systems with the modified approach, the divide-and-conquer linear-scaling density functional tight-binding method was exploited. Two illustrative applications of the polymerization of propylene and cyclopropane mixtures and the aggregation of sodium chloride from aqueous solutions indicate that species-selective quantum chemical nanoreactor molecular dynamics is a promising method to accelerate the sampling of multicomponent chemical processes proceeding under relatively mild conditions.
Collapse
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
4
|
Einsele R, Hoche J, Mitrić R. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems. J Chem Phys 2023; 158:044121. [PMID: 36725509 DOI: 10.1063/5.0136844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Herein, we present a new method to efficiently calculate electronically excited states in large molecular assemblies, consisting of hundreds of molecules. For this purpose, we combine the long-range corrected tight-binding density functional fragment molecular orbital method (FMO-LC-DFTB) with an excitonic Hamiltonian, which is constructed in the basis of locally excited and charge-transfer configuration state functions calculated for embedded monomers and dimers and accounts explicitly for the electronic coupling between all types of excitons. We first evaluate both the accuracy and efficiency of our fragmentation approach for molecular dimers and aggregates by comparing it with the full LC-TD-DFTB method. The comparison of the calculated spectra of an anthracene cluster shows a very good agreement between our method and the LC-TD-DFTB reference. The effective computational scaling of our method has been explored for anthracene clusters and for perylene bisimide aggregates. We demonstrate the applicability of our method by the calculation of the excited state properties of pentacene crystal models consisting of up to 319 molecules. Furthermore, the participation ratio of the monomer fragments to the excited states is analyzed by the calculation of natural transition orbital participation numbers, which are verified by the hole and particle density for a chosen pentacene cluster. The use of our FMO-LC-TDDFTB method will allow for future studies of excitonic dynamics and charge transport to be performed on complex molecular systems consisting of thousands of atoms.
Collapse
Affiliation(s)
- Richard Einsele
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Fedorov DG. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. J Chem Phys 2022; 157:231001. [PMID: 36550057 DOI: 10.1063/5.0131256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fast parameterized methods such as density-functional tight-binding (DFTB) facilitate realistic calculations of large molecular systems, which can be accelerated by the fragment molecular orbital (FMO) method. Fragmentation facilitates interaction analyses between functional parts of molecular systems. In addition to DFTB, other parameterized methods combined with FMO are also described. Applications of FMO methods to biochemical and inorganic systems are reviewed.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
6
|
Nakamura T, Fedorov DG. The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: the role of differential stabilization and charge delocalization. Phys Chem Chem Phys 2022; 24:7739-7747. [PMID: 35293902 DOI: 10.1039/d1cp05851g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adsorption and chemical reactions occurring on industrially important ZSM-5 and faujasite zeolite catalysts are investigated with the quantum-mechanical fragment molecular orbital method combined with periodic boundary conditions. Suitable fragmentation patterns are devised and tested providing important case studies of computing real materials with fragmentation methods. A good accuracy is demonstrated in comparison to full calculations, and a good agreement with the available experimental data is obtained. The full production cycle of p-xylene on faujasite zeolite is mapped. The catalytic role of the zeolite in the dehydration reaction, analyzed with the partition analysis, is attributed to the delocalization of the negative charge over the zeolite. On the other hand, an increase of the barrier in the Diels-Alder reaction by the zeolite is attributed to the preferential stabilization of the reactants over the transition state as demonstrated by the guest-zeolite interaction energy.
Collapse
Affiliation(s)
- Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| |
Collapse
|
7
|
Electron density from the fragment molecular orbital method combined with density-functional tight-binding. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Fujimori T, Kobayashi M, Taketsugu T. Energy-based automatic determination of buffer region in the divide-and-conquer second-order Møller-Plesset perturbation theory. J Comput Chem 2021; 42:620-629. [PMID: 33534916 PMCID: PMC7986104 DOI: 10.1002/jcc.26486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 11/21/2022]
Abstract
In the linear‐scaling divide‐and‐conquer (DC) electronic structure method, each subsystem is calculated together with the neighboring buffer region, the size of which affects the energy error introduced by the fragmentation in the DC method. The DC self‐consistent field calculation utilizes a scheme to automatically determine the appropriate buffer region that is as compact as possible for reducing the computational time while maintaining acceptable accuracy (J. Comput. Chem. 2018, 39, 909). To extend the automatic determination scheme of the buffer region to the DC second‐order Møller–Plesset perturbation (MP2) calculation, a scheme for estimating the subsystem MP2 correlation energy contribution from each atom in the buffer region is proposed. The estimation is based on the atomic orbital Laplace MP2 formalism. Based on this, an automatic buffer determination scheme for the DC‐MP2 calculation is constructed and its performance for several types of systems is assessed.
Collapse
Affiliation(s)
- Toshikazu Fujimori
- Graduate School of Chemical Sciences and EngineeringHokkaido UniversitySapporoJapan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporoJapan
- WPI‐ICReDDHokkaido UniversitySapporoJapan
- ESICB, Kyoto UniversityKyotoJapan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of ScienceHokkaido UniversitySapporoJapan
- WPI‐ICReDDHokkaido UniversitySapporoJapan
- ESICB, Kyoto UniversityKyotoJapan
| |
Collapse
|
9
|
Nishimoto Y, Fedorov DG. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions. J Chem Phys 2021; 154:111102. [PMID: 33752370 DOI: 10.1063/5.0039520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The density-functional tight-binding (DFTB) formulation of the fragment molecular orbital method is combined with periodic boundary conditions. Long-range electrostatics and dispersion are evaluated with the Ewald summation technique. The first analytic derivatives of the energy with respect to atomic coordinates and lattice parameters are formulated. The accuracy of the method is established in comparison to numerical gradients and DFTB without fragmentation. The largest elementary cell in this work has 1631 atoms. The method is applied to elucidate the polarization, charge transfer, and interactions in the solution.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwakecho, Sakyoku, Kyoto 606-8502, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
10
|
Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Methods Mol Biol 2021. [PMID: 32016893 DOI: 10.1007/978-1-0716-0282-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
G-protein-coupled receptors (GPCRs) have enormous physiological and biomedical importance, and therefore it is not surprising that they are the targets of many prescribed drugs. Further progress in GPCR drug discovery is highly dependent on the availability of protein structural information. However, the ability of X-ray crystallography to guide the drug discovery process for GPCR targets is limited by the availability of accurate tools to explore receptor-ligand interactions. Visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum mechanics (QM) approaches are often too computationally expensive to be of practical use in time-sensitive situations, but the fragment molecular orbital (FMO) method offers an excellent solution that combines accuracy, speed, and the ability to reveal key interactions that would otherwise be hard to detect. Integration of GPCR crystallography or homology modelling with FMO reveals atomistic details of the individual contributions of each residue and water molecule toward ligand binding, including an analysis of their chemical nature. Such information is essential for an efficient structure-based drug design (SBDD) process. In this chapter, we describe how to use FMO in the characterization of GPCR-ligand interactions.
Collapse
|
11
|
Abstract
High-order charge transfer is incorporated into the fragment molecular orbital (FMO) method using a charge transfer state with fractional charges. This state is used for a partition analysis of properties based on segments that may be different from fragments in FMO. The partition analysis is also formulated for calculations without fragmentation. All development in this work is limited to density-functional tight-binding. The analysis is applied to a water cluster, crambin (PDB: 1CBN), and two complexes of Trp-cage (1L2Y) with ligands. The contributions of functional groups in ligands are obtained, providing useful information for drug discovery.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
12
|
Fedorov DG. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. J Phys Chem A 2020; 124:4956-4971. [DOI: 10.1021/acs.jpca.0c03085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
13
|
Nishimura Y, Nakai H. Hierarchical parallelization of divide‐and‐conquer density functional tight‐binding molecular dynamics and metadynamics simulations. J Comput Chem 2020; 41:1759-1772. [DOI: 10.1002/jcc.26217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering Waseda University Tokyo Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering Waseda University Tokyo Japan
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering, Waseda University Tokyo Japan
- Elements Strategy Initiative for Catalysts and Batteries Kyoto University Kyoto Japan
| |
Collapse
|
14
|
Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Włoch M, Xu P, Zahariev F, Gordon MS. Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 2020; 152:154102. [PMID: 32321259 DOI: 10.1063/5.0005188] [Citation(s) in RCA: 581] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.
Collapse
Affiliation(s)
- Giuseppe M J Barca
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Colleen Bertoni
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Laura Carrington
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Nuwan De Silva
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts 01119, USA
| | - J Emiliano Deustua
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Jeffrey R Gour
- Microsoft, 15590 NE 31st St., Redmond, Washington 98052, USA
| | - Anastasia O Gunina
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Emilie Guidez
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Taylor Harville
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Stephan Irle
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Joe Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Karol Kowalski
- Physical Sciences Division, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Sarom S Leang
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Hui Li
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jesse J Lutz
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Joani Mato
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Vladimir Mironov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Hiroya Nakata
- Kyocera Corporation, Research Institute for Advanced Materials and Devices, 3-5-3 Hikaridai Seika-cho, Souraku-gun, Kyoto 619-0237, Japan
| | - Buu Q Pham
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - David Poole
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Spencer R Pruitt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Alistair P Rendell
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Luke B Roskop
- Cray Inc., a Hewlett Packard Enterprise Company, 2131 Lindau Ln #1000, Bloomington, Minnesota 55425, USA
| | - Klaus Ruedenberg
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | | | - Michael W Schmidt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Lyudmila Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Masha Sosonkina
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Vaibhav Sundriyal
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Ananta Tiwari
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Jorge L Galvez Vallejo
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Bryce Westheimer
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Marta Włoch
- 530 Charlesina Dr., Rochester, Michigan 48306, USA
| | - Peng Xu
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Federico Zahariev
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
15
|
Inamori M, Yoshikawa T, Ikabata Y, Nishimura Y, Nakai H. Spin‐flip approach within time‐dependent density functional tight‐binding method: Theory and applications. J Comput Chem 2020; 41:1538-1548. [DOI: 10.1002/jcc.26197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Mayu Inamori
- Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda University Tokyo Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda University Tokyo Japan
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto Japan
| |
Collapse
|
16
|
Komoto N, Yoshikawa T, Nishimura Y, Nakai H. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method. J Chem Theory Comput 2020; 16:2369-2378. [DOI: 10.1021/acs.jctc.9b01268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Komoto
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
17
|
Geometry Optimization, Transition State Search, and Reaction Path Mapping Accomplished with the Fragment Molecular Orbital Method. Methods Mol Biol 2020. [PMID: 32016888 DOI: 10.1007/978-1-0716-0282-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent development of the fragment molecular orbital (FMO) method related to energy gradients, geometry optimization, transition state search, and chemical reaction mapping is summarized. The frozen domain formulation of FMO is introduced in detail, and the structure of related GAMESS input files for FMO is described.
Collapse
|
18
|
Pollock K, Liu M, Zaleska M, Meniconi M, Pfuhl M, Collins I, Guettler S. Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Sci Rep 2019; 9:19130. [PMID: 31836723 PMCID: PMC6911004 DOI: 10.1038/s41598-019-55240-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The PARP enzyme and scaffolding protein tankyrase (TNKS, TNKS2) uses its ankyrin repeat clusters (ARCs) to bind a wide range of proteins and thereby controls diverse cellular functions. A number of these are implicated in cancer-relevant processes, including Wnt/β-catenin signalling, Hippo signalling and telomere maintenance. The ARCs recognise a conserved tankyrase-binding peptide motif (TBM). All currently available tankyrase inhibitors target the catalytic domain and inhibit tankyrase's poly(ADP-ribosyl)ation function. However, there is emerging evidence that catalysis-independent "scaffolding" mechanisms contribute to tankyrase function. Here we report a fragment-based screening programme against tankyrase ARC domains, using a combination of biophysical assays, including differential scanning fluorimetry (DSF) and nuclear magnetic resonance (NMR) spectroscopy. We identify fragment molecules that will serve as starting points for the development of tankyrase substrate binding antagonists. Such compounds will enable probing the scaffolding functions of tankyrase, and may, in the future, provide potential alternative therapeutic approaches to inhibiting tankyrase activity in cancer and other conditions.
Collapse
Affiliation(s)
- Katie Pollock
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Cancer Research UK Beatson Institute, Drug Discovery Programme, Glasgow, G61 1BD, United Kingdom
| | - Manjuan Liu
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mariola Zaleska
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mirco Meniconi
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mark Pfuhl
- School of Cardiovascular Medicine and Sciences and Randall Centre, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| | - Sebastian Guettler
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| |
Collapse
|
19
|
Vuong VQ, Nishimoto Y, Fedorov DG, Sumpter BG, Niehaus TA, Irle S. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. J Chem Theory Comput 2019; 15:3008-3020. [PMID: 30998360 DOI: 10.1021/acs.jctc.9b00108] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The presently available linear scaling approaches to density-functional tight-binding (DFTB) based on the fragment molecular orbital (FMO) method are severely impacted by the problem of artificial charge transfer due to the self-interaction error (SIE), which hampers the simulation of zwitterionic systems such as biopolymers or ionic liquids. Here we report an extension of FMO-DFTB where we included a long-range corrected (LC) functional designed to mitigate the DFTB SIE, called the FMO-LC-DFTB method, resulting in a robust method which succeeds in simulating zwitterionic systems. Both energy and analytic gradient are developed for the gas phase and the polarizable continuum model of solvation. The scaling of FMO-LC-DFTB with system size N is shown to be almost linear, O( N1.13-1.28), and its numerical accuracy is established for a variety of representative systems including neutral and charged polypeptides. It is shown that pair interaction energies between fragments for two mini-proteins are in excellent agreement with results from long-range corrected density functional theory. The new method was employed in long time scale (1 ns) molecular dynamics simulations of the tryptophan cage protein (PDB: 1L2Y ) in the gas phase for four different protonation states and in stochastic global minimum structure searches for 1-ethyl-3-methylimidazolium nitrate ionic liquid clusters containing up to 2300 atoms.
Collapse
Affiliation(s)
- Van Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Yoshio Nishimoto
- Fukui Institute for Fundamental Chemistry , Kyoto University , Kyoto 606-8501 , Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8568 , Japan
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Thomas A Niehaus
- Univ Lyon, Université Claude Bernard Lyon 1 , CNRS, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - Stephan Irle
- Bredesen Center for Interdisciplinary Research and Graduate Education , University of Tennessee , Knoxville , Tennessee 37996 , United States.,Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States.,Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
20
|
Nishimura Y, Nakai H. D
cdftbmd
: Divide‐and‐Conquer Density Functional Tight‐Binding Program for Huge‐System Quantum Mechanical Molecular Dynamics Simulations. J Comput Chem 2019; 40:1538-1549. [DOI: 10.1002/jcc.25804] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
- Department of Chemistry and BiochemistrySchool of Advanced Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
- ESICB, Kyoto University Kyotodaigaku‐Katsura, Kyoto 615‐8520 Japan
| |
Collapse
|
21
|
Fedorov DG. Analysis of solute-solvent interactions using the solvation model density combined with the fragment molecular orbital method. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Nishimoto Y, Fedorov DG. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. J Chem Phys 2018; 148:064115. [DOI: 10.1063/1.5012935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Yoshio Nishimoto
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
23
|
Fedorov DG, Kitaura K. Pair Interaction Energy Decomposition Analysis for Density Functional Theory and Density-Functional Tight-Binding with an Evaluation of Energy Fluctuations in Molecular Dynamics. J Phys Chem A 2018; 122:1781-1795. [DOI: 10.1021/acs.jpca.7b12000] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research
Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Kazuo Kitaura
- Advanced
Institute for Computational Science (AICS), RIKEN, 7-1-26 Minatojima-Minami-Machi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho
34-4, Sakyou-ku, Kyoto 606-8103, Japan
| |
Collapse
|
24
|
Nishimura Y, Nakai H. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations. J Comput Chem 2017; 39:105-116. [DOI: 10.1002/jcc.25086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yoshifumi Nishimura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
| | - Hiromi Nakai
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering; Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho; Kawaguchi 332-0012 Japan
- ESICB, Kyoto University, Kyotodaigaku-Katsura; Kyoto 615-8520 Japan
| |
Collapse
|
25
|
Fedorov DG, Kitaura K. Many-body expansion of the Fock matrix in the fragment molecular orbital method. J Chem Phys 2017; 147:104106. [DOI: 10.1063/1.5001018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
26
|
Morao I, Fedorov DG, Robinson R, Southey M, Townsend‐Nicholson A, Bodkin MJ, Heifetz A. Rapid and accurate assessment of GPCR-ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method. J Comput Chem 2017; 38:1987-1990. [PMID: 28675443 PMCID: PMC5600120 DOI: 10.1002/jcc.24850] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/07/2017] [Accepted: 05/16/2017] [Indexed: 01/17/2023]
Abstract
The reliable and precise evaluation of receptor–ligand interactions and pair‐interaction energy is an essential element of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been used to accelerate QM calculations, and by combining FMO with the density‐functional tight‐binding (DFTB) method we are able to decrease computational cost 1000 times, achieving results in seconds, instead of hours. We have applied FMO‐DFTB to three different GPCR–ligand systems. Our results correlate well with site directed mutagenesis data and findings presented in the published literature, demonstrating that FMO‐DFTB is a rapid and accurate means of GPCR–ligand interactions. © 2017 Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Inaki Morao
- Computational ChemistryEvotec (UK) Ltd114 Innovation Drive, Milton ParkAbingdonOxfordshireOX14 4RZUnited Kingdom
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat)National Institute of Advanced Industrial Science and Technology (AIST)1‐1‐1 UmezonoTsukubaIbaraki305‐8568Japan
| | - Roger Robinson
- Computational ChemistryEvotec (UK) Ltd114 Innovation Drive, Milton ParkAbingdonOxfordshireOX14 4RZUnited Kingdom
| | - Michelle Southey
- Computational ChemistryEvotec (UK) Ltd114 Innovation Drive, Milton ParkAbingdonOxfordshireOX14 4RZUnited Kingdom
| | - Andrea Townsend‐Nicholson
- Institute of Structural & Molecular Biology, Research Department of Structural & Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Mike J. Bodkin
- Computational ChemistryEvotec (UK) Ltd114 Innovation Drive, Milton ParkAbingdonOxfordshireOX14 4RZUnited Kingdom
| | - Alexander Heifetz
- Computational ChemistryEvotec (UK) Ltd114 Innovation Drive, Milton ParkAbingdonOxfordshireOX14 4RZUnited Kingdom
- Institute of Structural & Molecular Biology, Research Department of Structural & Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
27
|
Fedorov DG. The fragment molecular orbital method: theoretical development, implementation in
GAMESS
, and applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1322] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD‐FMat)National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|