1
|
Hwang W, Austin SL, Blondel A, Boittier ED, Boresch S, Buck M, Buckner J, Caflisch A, Chang HT, Cheng X, Choi YK, Chu JW, Crowley MF, Cui Q, Damjanovic A, Deng Y, Devereux M, Ding X, Feig MF, Gao J, Glowacki DR, Gonzales JE, Hamaneh MB, Harder ED, Hayes RL, Huang J, Huang Y, Hudson PS, Im W, Islam SM, Jiang W, Jones MR, Käser S, Kearns FL, Kern NR, Klauda JB, Lazaridis T, Lee J, Lemkul JA, Liu X, Luo Y, MacKerell AD, Major DT, Meuwly M, Nam K, Nilsson L, Ovchinnikov V, Paci E, Park S, Pastor RW, Pittman AR, Post CB, Prasad S, Pu J, Qi Y, Rathinavelan T, Roe DR, Roux B, Rowley CN, Shen J, Simmonett AC, Sodt AJ, Töpfer K, Upadhyay M, van der Vaart A, Vazquez-Salazar LI, Venable RM, Warrensford LC, Woodcock HL, Wu Y, Brooks CL, Brooks BR, Karplus M. CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed. J Phys Chem B 2024; 128:9976-10042. [PMID: 39303207 PMCID: PMC11492285 DOI: 10.1021/acs.jpcb.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Since its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published. They include the following: new faster simulation engines, accessible user interfaces for convenient workflows, and a vast array of simulation and analysis methods that encompass quantum mechanical, atomistic, and coarse-grained levels, as well as extensive coverage of force fields. In addition to providing the current snapshot of the CHARMM development, this review may serve as a starting point for exploring relevant theories and computational methods for tackling contemporary and emerging problems in biomolecular systems. CHARMM is freely available for academic and nonprofit research at https://academiccharmm.org/program.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
- Department
of Physics and Astronomy, Texas A&M
University, College Station, Texas 77843, United States
- Center for
AI and Natural Sciences, Korea Institute
for Advanced Study, Seoul 02455, Republic
of Korea
| | - Steven L. Austin
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Arnaud Blondel
- Institut
Pasteur, Université Paris Cité, CNRS UMR3825, Structural
Bioinformatics Unit, 28 rue du Dr. Roux F-75015 Paris, France
| | - Eric D. Boittier
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Stefan Boresch
- Faculty of
Chemistry, Department of Computational Biological Chemistry, University of Vienna, Wahringerstrasse 17, 1090 Vienna, Austria
| | - Matthias Buck
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | - Joshua Buckner
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zürich, CH-8057 Zürich, Switzerland
| | - Hao-Ting Chang
- Institute
of Bioinformatics and Systems Biology, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, ROC
| | - Xi Cheng
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yeol Kyo Choi
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jhih-Wei Chu
- Institute
of Bioinformatics and Systems Biology, Department of Biological Science
and Technology, Institute of Molecular Medicine and Bioengineering,
and Center for Intelligent Drug Systems and Smart Bio-devices (IDSB), National Yang Ming Chiao Tung
University, Hsinchu 30010, Taiwan,
ROC
| | - Michael F. Crowley
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Qiang Cui
- Department
of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department
of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Ana Damjanovic
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Physics and Astronomy, Johns Hopkins
University, Baltimore, Maryland 21218, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuqing Deng
- Shanghai
R&D Center, DP Technology, Ltd., Shanghai 201210, China
| | - Mike Devereux
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Xinqiang Ding
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Michael F. Feig
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Jiali Gao
- School
of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen, Guangdong 518055, China
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David R. Glowacki
- CiTIUS
Centro Singular de Investigación en Tecnoloxías Intelixentes
da USC, 15705 Santiago de Compostela, Spain
| | - James E. Gonzales
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Mehdi Bagerhi Hamaneh
- Department
of Physiology and Biophysics, Case Western
Reserve University, School of Medicine, Cleveland, Ohio 44106, United States
| | | | - Ryan L. Hayes
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, Irvine, California 92697, United States
| | - Jing Huang
- Key Laboratory
of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Yandong Huang
- College
of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Phillip S. Hudson
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Medicine
Design, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Wonpil Im
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Shahidul M. Islam
- Department
of Chemistry, Delaware State University, Dover, Delaware 19901, United States
| | - Wei Jiang
- Computational
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael R. Jones
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Silvan Käser
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Fiona L. Kearns
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nathan R. Kern
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Jeffery B. Klauda
- Department
of Chemical and Biomolecular Engineering, Institute for Physical Science
and Technology, Biophysics Program, University
of Maryland, College Park, Maryland 20742, United States
| | - Themis Lazaridis
- Department
of Chemistry, City College of New York, New York, New York 10031, United States
| | - Jinhyuk Lee
- Disease
Target Structure Research Center, Korea
Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department
of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Justin A. Lemkul
- Department
of Biochemistry, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
| | - Xiaorong Liu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yun Luo
- Department
of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, United States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Markus Meuwly
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Lennart Nilsson
- Karolinska
Institutet, Department of Biosciences and
Nutrition, SE-14183 Huddinge, Sweden
| | - Victor Ovchinnikov
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
| | - Emanuele Paci
- Dipartimento
di Fisica e Astronomia, Universitá
di Bologna, Bologna 40127, Italy
| | - Soohyung Park
- Department
of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Richard W. Pastor
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Amanda R. Pittman
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Carol Beth Post
- Borch Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Samarjeet Prasad
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jingzhi Pu
- Department
of Chemistry and Chemical Biology, Indiana
University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yifei Qi
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | | | - Daniel R. Roe
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Benoit Roux
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | | | - Jana Shen
- Department
of Pharmaceutical Sciences, University of
Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Andrew C. Simmonett
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander J. Sodt
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kai Töpfer
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Meenu Upadhyay
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | | | - Richard M. Venable
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Luke C. Warrensford
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yujin Wu
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bernard R. Brooks
- Laboratory
of Computational Biology, National Heart
Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin Karplus
- Harvard
University, Department of Chemistry
and Chemical Biology, Cambridge, Massachusetts 02138, United States
- Laboratoire
de Chimie Biophysique, ISIS, Université
de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
2
|
Karwounopoulos J, Wu Z, Tkaczyk S, Wang S, Baskerville A, Ranasinghe K, Langer T, Wood GPF, Wieder M, Boresch S. Insights and Challenges in Correcting Force Field Based Solvation Free Energies Using a Neural Network Potential. J Phys Chem B 2024; 128:6693-6703. [PMID: 38976601 PMCID: PMC11264272 DOI: 10.1021/acs.jpcb.4c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
We present a comprehensive study investigating the potential gain in accuracy for calculating absolute solvation free energies (ASFE) using a neural network potential to describe the intramolecular energy of the solute. We calculated the ASFE for most compounds from the FreeSolv database using the Open Force Field (OpenFF) and compared them to earlier results obtained with the CHARMM General Force Field (CGenFF). By applying a nonequilibrium (NEQ) switching approach between the molecular mechanics (MM) description (either OpenFF or CGenFF) and the neural net potential (NNP)/MM level of theory (using ANI-2x as the NNP potential), we attempted to improve the accuracy of the calculated ASFEs. The predictive performance of the results did not change when this approach was applied to all 589 small molecules in the FreeSolv database that ANI-2x can describe. When selecting a subset of 156 molecules, focusing on compounds where the force fields performed poorly, we saw a slight improvement in the root-mean-square error (RMSE) and mean absolute error (MAE). The majority of our calculations utilized unidirectional NEQ protocols based on Jarzynski's equation. Additionally, we conducted bidirectional NEQ switching for a subset of 156 solutes. Notably, only a small fraction (10 out of 156) exhibited statistically significant discrepancies between unidirectional and bidirectional NEQ switching free energy estimates.
Collapse
Affiliation(s)
- Johannes Karwounopoulos
- Faculty
of Chemistry, Institute of Computational Biological Chemistry, University Vienna, Währingerstr. 17, 1090 Vienna, Austria
- Vienna
Doctoral School of Chemistry (DoSChem), University of Vienna, Währingerstr. 42, 1090 Vienna, Austria
| | - Zhiyi Wu
- Exscientia
plc, Schroedinger Building, Oxford OX4 4GE, United Kingdom
| | - Sara Tkaczyk
- Department
of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna
Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo),University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Shuzhe Wang
- Exscientia
plc, Schroedinger Building, Oxford OX4 4GE, United Kingdom
| | - Adam Baskerville
- Exscientia
plc, Schroedinger Building, Oxford OX4 4GE, United Kingdom
| | | | - Thierry Langer
- Department
of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | | | - Marcus Wieder
- Exscientia
plc, Schroedinger Building, Oxford OX4 4GE, United Kingdom
- Open
Molecular Software Foundation, Davis, California 95616, United States
| | - Stefan Boresch
- Faculty
of Chemistry, Institute of Computational Biological Chemistry, University Vienna, Währingerstr. 17, 1090 Vienna, Austria
| |
Collapse
|
3
|
Giese TJ, Zeng J, Lerew L, McCarthy E, Tao Y, Ekesan Ş, York DM. Software Infrastructure for Next-Generation QM/MM-ΔMLP Force Fields. J Phys Chem B 2024; 128:6257-6271. [PMID: 38905451 PMCID: PMC11414325 DOI: 10.1021/acs.jpcb.4c01466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
We present software infrastructure for the design and testing of new quantum mechanical/molecular mechanical and machine-learning potential (QM/MM-ΔMLP) force fields for a wide range of applications. The software integrates Amber's molecular dynamics simulation capabilities with fast, approximate quantum models in the xtb package and machine-learning potential corrections in DeePMD-kit. The xtb package implements the recently developed density-functional tight-binding QM models with multipolar electrostatics and density-dependent dispersion (GFN2-xTB), and the interface with Amber enables their use in periodic boundary QM/MM simulations with linear-scaling QM/MM particle-mesh Ewald electrostatics. The accuracy of the semiempirical models is enhanced by including machine-learning correction potentials (ΔMLPs) enabled through an interface with the DeePMD-kit software. The goal of this paper is to present and validate the implementation of this software infrastructure in molecular dynamics and free energy simulations. The utility of the new infrastructure is demonstrated in proof-of-concept example applications. The software elements presented here are open source and freely available. Their interface provides a powerful enabling technology for the design of new QM/MM-ΔMLP models for studying a wide range of problems, including biomolecular reactivity and protein-ligand binding.
Collapse
Affiliation(s)
- Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jinzhe Zeng
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lauren Lerew
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yujun Tao
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
4
|
Tkaczyk S, Karwounopoulos J, Schöller A, Woodcock HL, Langer T, Boresch S, Wieder M. Reweighting from Molecular Mechanics Force Fields to the ANI-2x Neural Network Potential. J Chem Theory Comput 2024; 20:2719-2728. [PMID: 38527958 DOI: 10.1021/acs.jctc.3c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
To achieve chemical accuracy in free energy calculations, it is necessary to accurately describe the system's potential energy surface and efficiently sample configurations from its Boltzmann distribution. While neural network potentials (NNPs) have shown significantly higher accuracy than classical molecular mechanics (MM) force fields, they have a limited range of applicability and are considerably slower than MM potentials, often by orders of magnitude. To address this challenge, Rufa et al. [Rufa et al. bioRxiv 2020, 10.1101/2020.07.29.227959.] suggested a two-stage approach that uses a fast and established MM alchemical energy protocol, followed by reweighting the results using NNPs, known as endstate correction or indirect free energy calculation. This study systematically investigates the accuracy and robustness of reweighting from an MM reference to a neural network target potential (ANI-2x) for an established data set in vacuum, using single-step free-energy perturbation (FEP) and nonequilibrium (NEQ) switching simulation. We assess the influence of longer switching lengths and the impact of slow degrees of freedom on outliers in the work distribution and compare the results to those of multistate equilibrium free energy simulations. Our results demonstrate that free energy calculations between NNPs and MM potentials should be preferably performed using NEQ switching simulations to obtain accurate free energy estimates. NEQ switching simulations between the MM potentials and NNPs are efficient, robust, and trivial to implement.
Collapse
Affiliation(s)
- Sara Tkaczyk
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, 1090 Vienna, Austria
| | - Johannes Karwounopoulos
- Faculty of Chemistry, Institute of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
- Vienna Doctoral School of Chemistry (DoSChem), University of Vienna, Währingerstrasse 42, 1090 Vienna, Austria
| | - Andreas Schöller
- Faculty of Chemistry, Institute of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
- Vienna Doctoral School of Chemistry (DoSChem), University of Vienna, Währingerstrasse 42, 1090 Vienna, Austria
| | - H Lee Woodcock
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, Florida 33620-5250, United States
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Stefan Boresch
- Faculty of Chemistry, Institute of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
| | - Marcus Wieder
- Faculty of Chemistry, Institute of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
| |
Collapse
|
5
|
Lai R, Li G, Cui Q. Flexibility of Binding Site is Essential to the Ca 2+ Selectivity in EF-Hand Calcium-Binding Proteins. J Am Chem Soc 2024; 146:7628-7639. [PMID: 38456823 PMCID: PMC11102802 DOI: 10.1021/jacs.3c13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
High binding affinity and selectivity of metal ions are essential to the function of metalloproteins. Thus, understanding the factors that determine these binding characteristics is of major interest for both fundamental mechanistic investigations and guiding of the design of novel metalloproteins. In this work, we perform QM cluster model calculations and quantum mechanics/molecular mechanics (QM/MM) free energy simulations to understand the binding selectivity of Ca2+ and Mg2+ in the wild-type carp parvalbumin and its mutant. While a nonpolarizable MM model (CHARMM36) does not lead to the correct experimental trend, treatment of the metal binding site with the DFTB3 model in a QM/MM framework leads to relative binding free energies (ΔΔGbind) comparable with experimental data. For the wild-type (WT) protein, the calculated ΔΔGbind is ∼6.6 kcal/mol in comparison with the experimental value of 5.6 kcal/mol. The good agreement highlights the value of a QM description of the metal binding site and supports the role of electronic polarization and charge transfer to metal binding selectivity. For the D51A/E101D/F102W mutant, different binding site models lead to considerable variations in computed binding affinities. With a coordination number of seven for Ca2+, which is shown by QM/MM metadynamics simulations to be the dominant coordination number for the mutant, the calculated relative binding affinity is ∼4.8 kcal/mol, in fair agreement with the experimental value of 1.6 kcal/mol. The WT protein is observed to feature a flexible binding site that accommodates a range of coordination numbers for Ca2+, which is essential to the high binding selectivity for Ca2+ over Mg2+. In the mutant, the E101D mutation reduces the flexibility of the binding site and limits the dominant coordination number of Ca2+ to be seven, thereby leading to reduced binding selectivity against Mg2+. Our results highlight that the binding selectivity of metal ions depends on both the structural and dynamical properties of the protein binding site.
Collapse
Affiliation(s)
- Rui Lai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Guohui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
York DM. Modern Alchemical Free Energy Methods for Drug Discovery Explained. ACS PHYSICAL CHEMISTRY AU 2023; 3:478-491. [PMID: 38034038 PMCID: PMC10683484 DOI: 10.1021/acsphyschemau.3c00033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/02/2023]
Abstract
This Perspective provides a contextual explanation of the current state-of-the-art alchemical free energy methods and their role in drug discovery as well as highlights select emerging technologies. The narrative attempts to answer basic questions about what goes on "under the hood" in free energy simulations and provide general guidelines for how to run simulations and analyze the results. It is the hope that this work will provide a valuable introduction to students and scientists in the field.
Collapse
Affiliation(s)
- Darrin M. York
- Laboratory for Biomolecular
Simulation Research, Institute for Quantitative Biomedicine, and Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
7
|
Yuan Y, Cui Q. Accurate and Efficient Multilevel Free Energy Simulations with Neural Network-Assisted Enhanced Sampling. J Chem Theory Comput 2023; 19:5394-5406. [PMID: 37527495 PMCID: PMC10810721 DOI: 10.1021/acs.jctc.3c00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Free energy differences (ΔF) are essential to quantitative characterization and understanding of chemical and biological processes. Their direct estimation with an accurate quantum mechanical potential is of great interest and yet impractical due to high computational cost and incompatibility with typical alchemical free energy protocols. One promising solution is the multilevel free energy simulation in which the estimate of ΔF at an inexpensive low level of theory is combined with the correction toward a higher level of theory. The poor configurational overlap generally expected between the two levels of theory, however, presents a major challenge. We overcome this challenge by using a deep neural network model and enhanced sampling simulations. An adversarial autoencoder is used to identify a low-dimensional (latent) space that compactly represents the degrees of freedom that encode the distinct distributions at the two levels of theory. Enhanced sampling in this latent space is then used to drive the sampling of configurations that predominantly contribute to the free energy correction. Results for both gas phase and condensed phase systems demonstrate that this data-driven approach offers high accuracy and efficiency with great potential for scalability to complex systems.
Collapse
Affiliation(s)
- Yuchen Yuan
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
8
|
Schöller A, Woodcock HL, Boresch S. Exploring Routes to Enhance the Calculation of Free Energy Differences via Non-Equilibrium Work SQM/MM Switching Simulations Using Hybrid Charge Intermediates between MM and SQM Levels of Theory or Non-Linear Switching Schemes. Molecules 2023; 28:4006. [PMID: 37241747 PMCID: PMC10222338 DOI: 10.3390/molecules28104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Non-equilibrium work switching simulations and Jarzynski's equation are a reliable method for computing free energy differences, ΔAlow→high, between two levels of theory, such as a pure molecular mechanical (MM) and a quantum mechanical/molecular mechanical (QM/MM) description of a system of interest. Despite the inherent parallelism, the computational cost of this approach can quickly become very high. This is particularly true for systems where the core region, the part of the system to be described at different levels of theory, is embedded in an environment such as explicit solvent water. We find that even for relatively simple solute-water systems, switching lengths of at least 5 ps are necessary to compute ΔAlow→high reliably. In this study, we investigate two approaches towards an affordable protocol, with an emphasis on keeping the switching length well below 5 ps. Inserting a hybrid charge intermediate state with modified partial charges, which resembles the charge distribution of the desired high level, makes it possible to obtain reliable calculations with 2 ps switches. Attempts using step-wise linear switching paths, on the other hand, did not lead to improvement, i.e., a faster convergence for all systems. To understand these findings, we analyzed the solutes' properties as a function of the partial charges used and the number of water molecules in direct contact with the solute, and studied the time needed for water molecules to reorient themselves upon a change in the solute's charge distribution.
Collapse
Affiliation(s)
- Andreas Schöller
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL 33620-5250, USA;
| | - Stefan Boresch
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Pan X, Van R, Epifanovsky E, Liu J, Pu J, Nam K, Shao Y. Accelerating Ab Initio Quantum Mechanical and Molecular Mechanical (QM/MM) Molecular Dynamics Simulations with Multiple Time Step Integration and a Recalibrated Semiempirical QM/MM Hamiltonian. J Phys Chem B 2022; 126:10.1021/acs.jpcb.2c02262. [PMID: 35653199 PMCID: PMC9715852 DOI: 10.1021/acs.jpcb.2c02262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics (MD) simulations employing ab initio quantum mechanical and molecular mechanical (ai-QM/MM) potentials are considered to be the state of the art, but the high computational cost associated with the ai-QM calculations remains a theoretical challenge for their routine application. Here, we present a modified protocol of the multiple time step (MTS) method for accelerating ai-QM/MM MD simulations of condensed-phase reactions. Within a previous MTS protocol [Nam J. Chem. Theory Comput. 2014, 10, 4175], reference forces are evaluated using a low-level (semiempirical QM/MM) Hamiltonian and employed at inner time steps to propagate the nuclear motions. Correction forces, which arise from the force differences between high-level (ai-QM/MM) and low-level Hamiltonians, are applied at outer time steps, where the MTS algorithm allows the time-reversible integration of the correction forces. To increase the outer step size, which is bound by the highest-frequency component in the correction forces, the semiempirical QM Hamiltonian is recalibrated in this work to minimize the magnitude of the correction forces. The remaining high-frequency modes, which are mainly bond stretches involving hydrogen atoms, are then removed from the correction forces. When combined with a Langevin or SIN(R) thermostat, the modified MTS-QM/MM scheme remains robust with an up to 8 (with Langevin) or 10 fs (with SIN(R)) outer time step (with 1 fs inner time steps) for the chorismate mutase system. This leads to an over 5-fold speedup over standard ai-QM/MM simulations, without sacrificing the accuracy in the predicted free energy profile of the reaction.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Evgeny Epifanovsky
- Q-Chem, Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N Blackford St., LD326, Indianapolis, Indiana 46202, United States
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
10
|
Schöller A, Kearns F, Woodcock HL, Boresch S. Optimizing the Calculation of Free Energy Differences in Nonequilibrium Work SQM/MM Switching Simulations. J Phys Chem B 2022; 126:2798-2811. [PMID: 35404610 PMCID: PMC9036525 DOI: 10.1021/acs.jpcb.2c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Indexed: 11/27/2022]
Abstract
A key step during indirect alchemical free energy simulations using quantum mechanical/molecular mechanical (QM/MM) hybrid potential energy functions is the calculation of the free energy difference ΔAlow→high between the low level (e.g., pure MM) and the high level of theory (QM/MM). A reliable approach uses nonequilibrium work (NEW) switching simulations in combination with Jarzynski's equation; however, it is computationally expensive. In this study, we investigate whether it is more efficient to use more shorter switches or fewer but longer switches. We compare results obtained with various protocols to reference free energy differences calculated with Crooks' equation. The central finding is that fewer longer switches give better converged results. As few as 200 sufficiently long switches lead to ΔAlow→high values in good agreement with the reference results. This optimized protocol reduces the computational cost by a factor of 40 compared to earlier work. We also describe two tools/ways of analyzing the raw data to detect sources of poor convergence. Specifically, we find it helpful to analyze the raw data (work values from the NEW switching simulations) in a quasi-time series-like manner. Principal component analysis helps to detect cases where one or more conformational degrees of freedom are different at the low and high level of theory.
Collapse
Affiliation(s)
- Andreas Schöller
- Faculty
of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria
| | - Fiona Kearns
- Department
of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - H. Lee Woodcock
- Department
of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Stefan Boresch
- Faculty
of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Xue Y, Wang JN, Hu W, Zheng J, Li Y, Pan X, Mo Y, Shao Y, Wang L, Mei Y. Affordable Ab Initio Path Integral for Thermodynamic Properties via Molecular Dynamics Simulations Using Semiempirical Reference Potential. J Phys Chem A 2021; 125:10677-10685. [PMID: 34894680 PMCID: PMC9108008 DOI: 10.1021/acs.jpca.1c07727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Path integral molecular dynamics (PIMD) is becoming a routinely applied method for incorporating the nuclear quantum effect in computer simulations. However, direct PIMD simulations at an ab initio level of theory are formidably expensive. Using the protonated 1,8-bis(dimethylamino)naphthalene molecule as an example, we show in this work that the computational expense for the intramolecular proton transfer between the two nitrogen atoms can be remarkably reduced by implementing the idea of reference-potential methods. The simulation time can be easily extended to a scale of nanoseconds while maintaining the accuracy on an ab initio level of theory for thermodynamic properties. In addition, postprocessing can be carried out in parallel on massive computer nodes. A 545-fold reduction in the total CPU time can be achieved in this way as compared to a direct PIMD simulation at the same ab initio level of theory.
Collapse
Affiliation(s)
- Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Wenxin Hu
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Jun Zheng
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Yongle Li
- Department of Physics, International Center of Quantum and Molecular Structure, and Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China,NYU–ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China,NYU–ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
12
|
Yagi K, Ito S, Sugita Y. Exploring the Minimum-Energy Pathways and Free-Energy Profiles of Enzymatic Reactions with QM/MM Calculations. J Phys Chem B 2021; 125:4701-4713. [PMID: 33914537 PMCID: PMC10986901 DOI: 10.1021/acs.jpcb.1c01862] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding molecular mechanisms of enzymatic reactions is of vital importance in biochemistry and biophysics. Here, we introduce new functions of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations in the GENESIS program to compute the minimum-energy pathways (MEPs) and free-energy profiles of enzymatic reactions. For this purpose, an interface in GENESIS is developed to utilize a highly parallel electronic structure program, QSimulate-QM (https://qsimulate.com), calling it as a shared library from GENESIS. Second, algorithms to search the MEP are implemented, combining the string method (E et al. J. Chem. Phys. 2007, 126, 164103) with the energy minimization of the buffer MM region. The method implemented in GENESIS is applied to an enzyme, triosephosphate isomerase, which converts dihyroxyacetone phosphate to glyceraldehyde 3-phosphate in four proton-transfer processes. QM/MM-molecular dynamics simulations show performances of greater than 1 ns/day with the density functional tight binding (DFTB), and 10-30 ps/day with the hybrid density functional theory, B3LYP-D3. These performances allow us to compute not only MEP but also the potential of mean force (PMF) of the enzymatic reactions using the QM/MM calculations. The barrier height obtained as 13 kcal mol-1 with B3LYP-D3 in the QM/MM calculation is in agreement with the experimental results. The impact of conformational sampling in PMF calculations and the level of electronic structure calculations (DFTB vs B3LYP-D3) suggests reliable computational protocols for enzymatic reactions without high computational costs.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shingo Ito
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 7-1-26 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 1-6-5 minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
13
|
Wang JN, Liu W, Li P, Mo Y, Hu W, Zheng J, Pan X, Shao Y, Mei Y. Accelerated Computation of Free Energy Profile at Ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semiempirical Reference Potential. 4. Adaptive QM/MM. J Chem Theory Comput 2021; 17:1318-1325. [PMID: 33593057 PMCID: PMC8335528 DOI: 10.1021/acs.jctc.0c01149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although quantum mechanical/molecular mechanics (QM/MM) methods are now routinely applied to the studies of chemical reactions in condensed phases and enzymatic reactions, they may experience technical difficulties when the reactive region is varying over time. For instance, when the solvent molecules are directly participating in the reaction, the exchange of water molecules between the QM and MM regions may occur on a time scale comparable to the reaction time. To cope with this situation, several adaptive QM/MM schemes have been proposed. However, these methods either add significantly to the computational cost or introduce artificial restraints to the system. In this work, we developed a novel adaptive QM/MM scheme and applied it to the study of a nucleophilic addition reaction. In this scheme, the configuration sampling was performed with a small QM region (without solvent molecules), and the thermodynamic properties under another potential energy function with a larger QM region (with a certain number of solvent molecules and/or different levels of QM theory) are computed via extrapolation using the reference-potential method. Our simulation results show that this adaptive QM/MM scheme is numerically stable, at least for the case studied in this work. Furthermore, this method also offers an inexpensive way to examine the convergence of the QM/MM calculation with respect to the size of the QM region.
Collapse
Affiliation(s)
- Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Wei Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenxin Hu
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Jun Zheng
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
14
|
Abstract
QM/MM simulations have become an indispensable tool in many chemical and biochemical investigations. Considering the tremendous degree of success, including recognition by a 2013 Nobel Prize in Chemistry, are there still "burning challenges" in QM/MM methods, especially for biomolecular systems? In this short Perspective, we discuss several issues that we believe greatly impact the robustness and quantitative applicability of QM/MM simulations to many, if not all, biomolecules. We highlight these issues with observations and relevant advances from recent studies in our group and others in the field. Despite such limited scope, we hope the discussions are of general interest and will stimulate additional developments that help push the field forward in meaningful directions.
Collapse
Affiliation(s)
- Qiang Cui
- Departments of Chemistry, Physics, and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Tanmoy Pal
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Luke Xie
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
15
|
Lee TS, Allen BK, Giese TJ, Guo Z, Li P, Lin C, McGee TD, Pearlman DA, Radak BK, Tao Y, Tsai HC, Xu H, Sherman W, York DM. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. J Chem Inf Model 2020; 60:5595-5623. [PMID: 32936637 PMCID: PMC7686026 DOI: 10.1021/acs.jcim.0c00613] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Predicting protein-ligand binding affinities and the associated thermodynamics of biomolecular recognition is a primary objective of structure-based drug design. Alchemical free energy simulations offer a highly accurate and computationally efficient route to achieving this goal. While the AMBER molecular dynamics package has successfully been used for alchemical free energy simulations in academic research groups for decades, widespread impact in industrial drug discovery settings has been minimal because of the previous limitations within the AMBER alchemical code, coupled with challenges in system setup and postprocessing workflows. Through a close academia-industry collaboration we have addressed many of the previous limitations with an aim to improve accuracy, efficiency, and robustness of alchemical binding free energy simulations in industrial drug discovery applications. Here, we highlight some of the recent advances in AMBER20 with a focus on alchemical binding free energy (BFE) calculations, which are less computationally intensive than alternative binding free energy methods where full binding/unbinding paths are explored. In addition to scientific and technical advances in AMBER20, we also describe the essential practical aspects associated with running relative alchemical BFE calculations, along with recommendations for best practices, highlighting the importance not only of the alchemical simulation code but also the auxiliary functionalities and expertise required to obtain accurate and reliable results. This work is intended to provide a contemporary overview of the scientific, technical, and practical issues associated with running relative BFE simulations in AMBER20, with a focus on real-world drug discovery applications.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Rutgers, the State University of New Jersey, Laboratory for Biomolecular Simulation Research, and Department of Chemistry and Chemical Biology, United States
| | - Bryce K. Allen
- Silicon Therapeutics, Boston, Massachusetts 02210, United States
| | - Timothy J. Giese
- Rutgers, the State University of New Jersey, Laboratory for Biomolecular Simulation Research, and Department of Chemistry and Chemical Biology, United States
| | - Zhenyu Guo
- Silicon Therapeutics, Boston, Massachusetts 02210, United States
| | - Pengfei Li
- Silicon Therapeutics, Boston, Massachusetts 02210, United States
| | - Charles Lin
- Silicon Therapeutics, Boston, Massachusetts 02210, United States
| | - T. Dwight McGee
- Silicon Therapeutics, Boston, Massachusetts 02210, United States
| | - David A. Pearlman
- QSimulate Incorporated, Cambridge, Massachusetts 02139, United States
| | - Brian K. Radak
- Silicon Therapeutics, Boston, Massachusetts 02210, United States
| | - Yujun Tao
- Rutgers, the State University of New Jersey, Laboratory for Biomolecular Simulation Research, and Department of Chemistry and Chemical Biology, United States
| | - Hsu-Chun Tsai
- Rutgers, the State University of New Jersey, Laboratory for Biomolecular Simulation Research, and Department of Chemistry and Chemical Biology, United States
| | - Huafeng Xu
- Silicon Therapeutics, Boston, Massachusetts 02210, United States
| | - Woody Sherman
- Silicon Therapeutics, Boston, Massachusetts 02210, United States
| | - Darrin M. York
- Rutgers, the State University of New Jersey, Laboratory for Biomolecular Simulation Research, and Department of Chemistry and Chemical Biology, United States
| |
Collapse
|
16
|
Hu W, Li P, Wang JN, Xue Y, Mo Y, Zheng J, Pan X, Shao Y, Mei Y. Accelerated Computation of Free Energy Profile at Ab Initio Quantum Mechanical/Molecular Mechanics Accuracy via a Semiempirical Reference Potential. 3. Gaussian Smoothing on Density-of-States. J Chem Theory Comput 2020; 16:6814-6822. [PMID: 32975951 PMCID: PMC7658029 DOI: 10.1021/acs.jctc.0c00794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calculations of the free energy profile, also known as potential of mean force (PMF), along a chosen collective variable (CV) are now routinely applied in the studies of chemical processes, such as enzymatic reactions and chemical reactions in condensed phases. However, if the ab initio quantum mechanical/molecular mechanics (QM/MM) level of accuracy is required for the PMF, it can be formidably demanding even with the most advanced enhanced sampling methods, such as umbrella sampling. To ameliorate this difficulty, we developed a novel method for the computation of the free energy profile based on the reference-potential method recently, in which a low-level reference Hamiltonian is employed for phase space sampling and the free energy profile can be corrected to the level of interest (the target Hamiltonian) by energy reweighting in a nonparametric way. However, when the reference Hamiltonian is very different from the target Hamiltonian, the calculated ensemble averages, including the PMF, often suffer from numerical instability, which mainly comes from the overestimation of the density-of-states (DoS) in the low-energy region. Stochastic samplings of these low-energy configurations are rare events, and some low-energy conformations may get oversampled in simulations of a finite length. In this work, an assumption of Gaussian distribution is applied to the DoS in each CV bin, and the weight of each configuration is rescaled according to the accumulated DoS. The results show that this smoothing process can remarkably reduce the ruggedness of the PMF and increase the reliability of the reference-potential method.
Collapse
Affiliation(s)
- Wenxin Hu
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Pengfei Li
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Jia-Ning Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yuanfei Xue
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yan Mo
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jun Zheng
- The Computer Center, School of Data Science & Engineering, East China Normal University, Shanghai 200062, China
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
17
|
Ito S, Cui Q. Multi-level free energy simulation with a staged transformation approach. J Chem Phys 2020; 153:044115. [PMID: 32752685 DOI: 10.1063/5.0012494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Combining multiple levels of theory in free energy simulations to balance computational accuracy and efficiency is a promising approach for studying processes in the condensed phase. While the basic idea has been proposed and explored for quite some time, it remains challenging to achieve convergence for such multi-level free energy simulations as it requires a favorable distribution overlap between different levels of theory. Previous efforts focused on improving the distribution overlap by either altering the low-level of theory for the specific system of interest or ignoring certain degrees of freedom. Here, we propose an alternative strategy that first identifies the degrees of freedom that lead to gaps in the distributions of different levels of theory and then treats them separately with either constraints or restraints or by introducing an intermediate model that better connects the low and high levels of theory. As a result, the conversion from the low level to the high level model is done in a staged fashion that ensures a favorable distribution overlap along the way. Free energy components associated with different steps are mostly evaluated explicitly, and thus, the final result can be meaningfully compared to the rigorous free energy difference between the two levels of theory with limited and well-defined approximations. The additional free energy component calculations involve simulations at the low level of theory and therefore do not incur high computational costs. The approach is illustrated with two simple but non-trivial solution examples, and factors that dictate the reliability of the result are discussed.
Collapse
Affiliation(s)
- Shingo Ito
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Qiang Cui
- Departments of Chemistry, Physics and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
18
|
Brunken C, Reiher M. Self-Parametrizing System-Focused Atomistic Models. J Chem Theory Comput 2020; 16:1646-1665. [DOI: 10.1021/acs.jctc.9b00855] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christoph Brunken
- Laboratory for Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory for Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Giese TJ, York DM. Development of a Robust Indirect Approach for MM → QM Free Energy Calculations That Combines Force-Matched Reference Potential and Bennett's Acceptance Ratio Methods. J Chem Theory Comput 2019; 15:5543-5562. [PMID: 31507179 DOI: 10.1021/acs.jctc.9b00401] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We use the PBE0/6-31G* density functional method to perform ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations under periodic boundary conditions with rigorous electrostatics using the ambient potential composite Ewald method in order to test the convergence of MM → QM/MM free energy corrections for the prediction of 17 small-molecule solvation free energies and eight ligand binding free energies to T4 lysozyme. The "indirect" thermodynamic cycle for calculating free energies is used to explore whether a series of reference potentials improve the statistical quality of the predictions. Specifically, we construct a series of reference potentials that optimize a molecular mechanical (MM) force field's parameters to reproduce the ab initio QM/MM forces from a QM/MM simulation. The optimizations form a systematic progression of successively expanded parameters that include bond, angle, dihedral, and charge parameters. For each reference potential, we calculate benchmark quality reference values for the MM → QM/MM correction by performing the mixed MM and QM/MM Hamiltonians at 11 intermediate states, each for 200 ps. We then compare forward and reverse application of Zwanzig's relation, thermodynamic integration (TI), and Bennett's acceptance ratio (BAR) methods as a function of reference potential, simulation time, and the number of simulated intermediate states. We find that Zwanzig's equation is inadequate unless a large number of intermediate states are explicitly simulated. The TI and BAR mean signed errors are very small even when only the end-state simulations are considered, and the standard deviations of the TI and BAR errors are decreased by choosing a reference potential that optimizes the bond and angle parameters. We find a robust approach for the data sets of fairly rigid molecules considered here is to use bond + angle reference potential together with the end-state-only BAR analysis. This requires QM/MM simulations to be performed in order to generate reference data to parametrize the bond + angle reference potential, and then this same simulation serves a dual purpose as the full QM/MM end state. The convergence of the results with respect to time suggests that computational resources may be used more efficiently by running multiple simulations for no more than 50 ps, rather than running one long simulation.
Collapse
Affiliation(s)
- Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854-8087 , United States
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854-8087 , United States
| |
Collapse
|
20
|
Hudson PS, Woodcock HL, Boresch S. Use of Interaction Energies in QM/MM Free Energy Simulations. J Chem Theory Comput 2019; 15:4632-4645. [PMID: 31142113 DOI: 10.1021/acs.jctc.9b00084] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of the most accurate (i.e., QM or QM/MM) levels of theory for free energy simulations (FES) is typically not possible. Primarily, this is because the computational cost associated with the extensive configurational sampling needed for converging FES is prohibitive. To ensure the feasibility of QM-based FES, the "indirect" approach is generally taken, necessitating a free energy calculation between the MM and QM/MM potential energy surfaces. Ideally, this step is performed with standard free energy perturbation (Zwanzig's equation) as it only requires simulations be carried out at the low level of theory; however, work from several groups over the past few years has conclusively shown that Zwanzig's equation is ill-suited to this task. As such, many approximations have arisen to mitigate difficulties with Zwanzig's equation. One particularly popular notion is that the convergence of Zwanzig's equation can be improved by using interaction energy differences instead of total energy differences. Although problematic numerical fluctuations (a major problem when using Zwanzig's equation) are indeed reduced, our results and analysis demonstrate that this "interaction energy approximation" (IEA) is theoretically incorrect, and the implicit approximation invoked is spurious at best. Herein, we demonstrate this via solvation free energy calculations using IEA from two different low levels of theory to the same target high level. Results from this proof-of-concept consistently yield the wrong results, deviating by ∼1.5 kcal/mol from the rigorously obtained value.
Collapse
Affiliation(s)
- Phillip S Hudson
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue, CHE205 , Tampa , Florida 33620-5250 , United States.,Laboratory of Computational Biology , National Institutes of Health, National Heart, Lung and Blood Institute , 12 South Drive, Rm 3053 , Bethesda , Maryland 20892-5690 , United States
| | - H Lee Woodcock
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue, CHE205 , Tampa , Florida 33620-5250 , United States
| | - Stefan Boresch
- Faculty of Chemistry, Department of Computational Biological Chemistry , University of Vienna , Währingerstraße 17 , Vienna A-1090 , Austria
| |
Collapse
|
21
|
Kearns FL, Warrensford L, Boresch S, Woodcock HL. The Good, the Bad, and the Ugly: "HiPen", a New Dataset for Validating (S)QM/MM Free Energy Simulations. Molecules 2019; 24:E681. [PMID: 30769826 PMCID: PMC6413162 DOI: 10.3390/molecules24040681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 11/25/2022] Open
Abstract
Indirect (S)QM/MM free energy simulations (FES) are vital to efficiently incorporating sufficient sampling and accurate (QM) energetic evaluations when estimating free energies of practical/experimental interest. Connecting between levels of theory, i.e., calculating Δ A l o w → h i g h , remains to be the most challenging step within an indirect FES protocol. To improve calculations of Δ A l o w → h i g h , we must: (1) compare the performance of all FES methods currently available; and (2) compile and maintain datasets of Δ A l o w → h i g h calculated for a wide-variety of molecules so that future practitioners may replicate or improve upon the current state-of-the-art. Towards these two aims, we introduce a new dataset, "HiPen", which tabulates Δ A g a s M M → 3 o b (the free energy associated with switching from an M M to an S C C - D F T B molecular description using the 3ob parameter set in gas phase), calculated for 22 drug-like small molecules. We compare the calculation of this value using free energy perturbation, Bennett's acceptance ratio, Jarzynski's equation, and Crooks' equation. We also predict the reliability of each calculated Δ A g a s M M → 3 o b by evaluating several convergence criteria including sample size hysteresis, overlap statistics, and bias metric ( Π ). Within the total dataset, three distinct categories of molecules emerge: the "good" molecules, for which we can obtain converged Δ A g a s M M → 3 o b using Jarzynski's equation; "bad" molecules which require Crooks' equation to obtain a converged Δ A g a s M M → 3 o b ; and "ugly" molecules for which we cannot obtain reliably converged Δ A g a s M M → 3 o b with either Jarzynski's or Crooks' equations. We discuss, in depth, results from several example molecules in each of these categories and describe how dihedral discrepancies between levels of theory cause convergence failures even for these gas phase free energy simulations.
Collapse
Affiliation(s)
- Fiona L Kearns
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - Luke Warrensford
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| | - Stefan Boresch
- Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Waehringerstrasse 17, A-1090 Vienna, Austria.
| | - H Lee Woodcock
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
22
|
Hudson PS, Boresch S, Rogers DM, Woodcock HL. Accelerating QM/MM Free Energy Computations via Intramolecular Force Matching. J Chem Theory Comput 2018; 14:6327-6335. [PMID: 30300543 PMCID: PMC6314469 DOI: 10.1021/acs.jctc.8b00517] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The calculation of free energy differences between levels of theory has numerous potential pitfalls. Chief among them is the lack of overlap, i.e., ensembles generated at one level of theory (e.g., "low") not being good approximations of ensembles at the other (e.g., "high"). Numerous strategies have been devised to mitigate this issue. However, the most straightforward approach is to ensure that the "low" level ensemble more closely resembles that of the "high". Ideally, this is done without increasing computational cost. Herein, we demonstrate that by reparametrizing classical intramolecular potentials to reproduce high level forces (i.e., force matching) configurational overlap between a "low" (i.e., classical) and "high" (i.e., quantum) level can be significantly improved. This procedure is validated on two test cases and results in vastly improved convergence of free energy simulations.
Collapse
Affiliation(s)
- Phillip S Hudson
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue, CHE205 , Tampa , Florida 33620-5250 , United States
- Laboratory of Computational Biology , National Institutes of Health, National Heart, Lung and Blood Institute , 12 South Drive Rm 3053 , Bethesda , Maryland 20892-5690 , United States
| | - Stefan Boresch
- Faculty of Chemistry, Department of Computational Biological Chemistry , University of Vienna , Währingerstraße 17 , A-1090 Vienna , Austria
| | - David M Rogers
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue, CHE205 , Tampa , Florida 33620-5250 , United States
| | - H Lee Woodcock
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue, CHE205 , Tampa , Florida 33620-5250 , United States
| |
Collapse
|
23
|
Wang M, Mei Y, Ryde U. Predicting Relative Binding Affinity Using Nonequilibrium QM/MM Simulations. J Chem Theory Comput 2018; 14:6613-6622. [DOI: 10.1021/acs.jctc.8b00685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Meiting Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ye Mei
- State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
- NYU−ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
24
|
Liu M, Youmans KN, Gao J. Dual QM and MM Approach for Computing Equilibrium Isotope Fractionation Factor of Organic Species in Solution. Molecules 2018; 23:E2644. [PMID: 30326599 PMCID: PMC6222756 DOI: 10.3390/molecules23102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
A dual QM and MM approach for computing equilibrium isotope effects has been described. In the first partition, the potential energy surface is represented by a combined quantum mechanical and molecular mechanical (QM/MM) method, in which a solute molecule is treated quantum mechanically, and the remaining solvent molecules are approximated classically by molecular mechanics. In the second QM/MM partition, differential nuclear quantum effects responsible for the isotope effect are determined by a statistical mechanical double-averaging formalism, in which the nuclear centroid distribution is sampled classically by Newtonian molecular dynamics and the quantum mechanical spread of quantized particles about the centroid positions is treated using the path integral (PI) method. These partitions allow the potential energy surface to be properly represented such that the solute part is free of nuclear quantum effects for nuclear quantum mechanical simulations, and the double-averaging approach has the advantage of sampling efficiency for solvent configuration and for path integral convergence. Importantly, computational precision is achieved through free energy perturbation (FEP) theory to alchemically mutate one isotope into another. The PI-FEP approach is applied to model systems for the 18O enrichment found in cellulose of trees to determine the isotope enrichment factor of carbonyl compounds in water. The present method may be useful as a general tool for studying isotope fractionation in biological and geochemical systems.
Collapse
Affiliation(s)
- Meiyi Liu
- Laboratory of Theoretical and Computational Chemistry, Theoretical Chemistry Institute, Jilin University, Changchun 130023, China.
| | - Katelyn N Youmans
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jiali Gao
- Laboratory of Theoretical and Computational Chemistry, Theoretical Chemistry Institute, Jilin University, Changchun 130023, China.
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Hudson PS, Han K, Woodcock HL, Brooks BR. Force matching as a stepping stone to QM/MM CB[8] host/guest binding free energies: a SAMPL6 cautionary tale. J Comput Aided Mol Des 2018; 32:983-999. [PMID: 30276502 PMCID: PMC6867086 DOI: 10.1007/s10822-018-0165-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
Abstract
Use of quantum mechanical/molecular mechanical (QM/MM) methods in binding free energy calculations, particularly in the SAMPL challenge, often fail to achieve improvement over standard additive (MM) force fields. Frequently, the implementation is through use of reference potentials, or the so-called "indirect approach", and inherently relies on sufficient overlap existing between MM and QM/MM configurational spaces. This overlap is generally poor, particularly for the use of free energy perturbation to perform the MM to QM/MM free energy correction at the end states of interest (e.g., bound and unbound states). However, by utilizing MM parameters that best reproduce forces obtained at the desired QM level of theory, it is possible to lessen the configurational disparity between MM and QM/MM. To this end, we sought to use force matching to generate MM parameters for the SAMPL6 CB[8] host-guest binding challenge, classically compute binding free energies, and apply energetic end state corrections to obtain QM/MM binding free energy differences. For the standard set of 11 molecules and the bonus set (including three additional challenge molecules), error statistics, such as the root mean square deviation (RMSE) were moderately poor (5.5 and 5.4 kcal/mol). Correlation statistics, however, were in the top two for both standard and bonus set submissions ([Formula: see text] of 0.42 and 0.26, [Formula: see text] of 0.64 and 0.47 respectively). High RMSE and moderate correlation strongly indicated the presence of systematic error. Identifiable issues were ameliorated for two of the guest molecules, resulting in a reduction of error and pointing to strong prospects for the future use of this methodology.
Collapse
Affiliation(s)
- Phillip S Hudson
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20852, USA.
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, USA.
| | - Kyungreem Han
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20852, USA
| | - H Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, USA
| | - Bernard R Brooks
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, USA
| |
Collapse
|
26
|
Chatfield DC, Morozov AN. Proximal Pocket Controls Alkene Oxidation Selectivity of Cytochrome P450 and Chloroperoxidase toward Small, Nonpolar Substrates. J Phys Chem B 2018; 122:7828-7838. [PMID: 30052045 DOI: 10.1021/acs.jpcb.8b04279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper examines the influence of the proximal pockets of cytochrome P450CAM and chloroperoxidase (CPO) on the relative favorability of catalytic epoxidation and allylic hydroxylation of olefins, a type of alkene oxidation selectivity. The study employs quantum mechanical models of the active site to isolate the proximal pocket's influence on the barrier for the selectivity-determining step for each reaction, using cyclohexene and cis-β-methylstyrene as substrates. The proximal pocket is found to preference epoxidation by 2-5 kcal/mol, the largest value being for CPO, converting the active heme-thiolate moiety from being intrinsically hydroxylation-selective to being intrinsically epoxidation-selective. This theoretical study, the first to correctly predict these enzymes' preference for epoxidation of allylic substrates, strongly suggests that the proximal pocket is the key determinant of alkene oxidation selectivity. The selectivity for epoxidation can be rationalized in terms of the proximal pocket's modulation of the thiolate's electron "push" and consequent influence on the heme redox potential and the basicity of the trans ligand.
Collapse
Affiliation(s)
- David C Chatfield
- Department of Chemistry and Biochemistry , Florida International University , 11200 8th Street , Miami , Florida 33199 , United States
| | - Alexander N Morozov
- Department of Chemistry and Biochemistry , Florida International University , 11200 8th Street , Miami , Florida 33199 , United States
| |
Collapse
|
27
|
Bistafa C, Kitamura Y, Martins-Costa MTC, Nagaoka M, Ruiz-López MF. Cost-Effective Method for Free-Energy Minimization in Complex Systems with Elaborated Ab Initio Potentials. J Chem Theory Comput 2018; 14:3262-3271. [DOI: 10.1021/acs.jctc.8b00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos Bistafa
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
| | - Yukichi Kitamura
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
| | - Marilia T. C. Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex,France
| | - Masataka Nagaoka
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
- ESICB, Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 6158520, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 3320012, Japan
| | - Manuel F. Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Faculté des Sciences et Technologies, Université de Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex,France
- Future Value Creation Research Center, Graduate School of Informatics, Nagoya University, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
| |
Collapse
|
28
|
Hirst J, Im W, Shea JE. Simulating Biomolecules: Festschrift to commemorate the 60th birthday of Charles L. Brooks III. J Comput Chem 2017; 38:1111-1113. [DOI: 10.1002/jcc.24790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan Hirst
- School of Chemistry, University of Nottingham; Nottingham NG7 2RD United Kingdom
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program; Lehigh University; Pennsylvania
| | - Joan-Emma Shea
- Departments of Chemistry and Biochemistry, and Physics; University of California; Santa Barbara California
| |
Collapse
|
29
|
Affiliation(s)
- Stefan Boresch
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Vienna, Austria
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| |
Collapse
|