1
|
Ippolito M, De Pascali F, Hopfinger N, Komolov KE, Laurinavichyute D, Reddy PAN, Sakkal LA, Rajkowski KZ, Nayak AP, Lee J, Lee J, Cao G, Donover PS, Reichman M, An SS, Salvino JM, Penn RB, Armen RS, Scott CP, Benovic JL. Identification of a β-arrestin-biased negative allosteric modulator for the β 2-adrenergic receptor. Proc Natl Acad Sci U S A 2023; 120:e2302668120. [PMID: 37490535 PMCID: PMC10401000 DOI: 10.1073/pnas.2302668120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Catecholamine-stimulated β2-adrenergic receptor (β2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous β-agonists in the treatment of airway disease. β2AR signaling is tightly regulated by GRKs and β-arrestins, which together promote β2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias β2AR signaling toward the Gs pathway while avoiding β-arrestin-mediated effects may provide a strategy to improve the functional consequences of β2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the β2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit β-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of β-arrestin recruitment to the β2AR while having no effect on β2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the β2AR and protects against the functional desensitization of β-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the β2AR with minimal effects on the β1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the β2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the β2AR.
Collapse
Affiliation(s)
- Michael Ippolito
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Nathan Hopfinger
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Konstantin E. Komolov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Daniela Laurinavichyute
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | | | - Leon A. Sakkal
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA19107
| | - Kyle Z. Rajkowski
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA19107
| | - Ajay P. Nayak
- Center for Translational Medicine, Department of Medicine, and Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Justin Lee
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ08901
| | - Jordan Lee
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ08901
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ08901
| | | | | | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ08901
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ08854
| | | | - Raymond B. Penn
- Center for Translational Medicine, Department of Medicine, and Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA19107
| | - Charles P. Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
2
|
Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening: Identification of an allosteric small-molecule binding site on the Nsp13 helicase. PLoS One 2021; 16:e0246181. [PMID: 33596235 PMCID: PMC7888625 DOI: 10.1371/journal.pone.0246181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 01/18/2023] Open
Abstract
The 2019 emergence of, SARS-CoV-2 has tragically taken an immense toll on human life and far reaching impacts on society. There is a need to identify effective antivirals with diverse mechanisms of action in order to accelerate preclinical development. This study focused on five of the most established drug target proteins for direct acting small molecule antivirals: Nsp5 Main Protease, Nsp12 RNA-dependent RNA polymerase, Nsp13 Helicase, Nsp16 2'-O methyltransferase and the S2 subunit of the Spike protein. A workflow of solvent mapping and free energy calculations was used to identify and characterize favorable small-molecule binding sites for an aromatic pharmacophore (benzene). After identifying the most favorable sites, calculated ligand efficiencies were compared utilizing computational fragment screening. The most favorable sites overall were located on Nsp12 and Nsp16, whereas the most favorable sites for Nsp13 and S2 Spike had comparatively lower ligand efficiencies relative to Nsp12 and Nsp16. Utilizing fragment screening on numerous possible sites on Nsp13 helicase, we identified a favorable allosteric site on the N-terminal zinc binding domain (ZBD) that may be amenable to virtual or biophysical fragment screening efforts. Recent structural studies of the Nsp12:Nsp13 replication-transcription complex experimentally corroborates ligand binding at this site, which is revealed to be a functional Nsp8:Nsp13 protein-protein interaction site in the complex. Detailed structural analysis of Nsp13 ZBD conformations show the role of induced-fit flexibility in this ligand binding site and identify which conformational states are associated with efficient ligand binding. We hope that this map of over 200 possible small-molecule binding sites for these drug targets may be of use for ongoing discovery, design, and drug repurposing efforts. This information may be used to prioritize screening efforts or aid in the process of deciphering how a screening hit may bind to a specific target protein.
Collapse
|
3
|
Chan TO, Armen RS, Yadav S, Shah S, Zhang J, Tiegs BC, Keny N, Blumhof B, Deshpande DA, Rodeck U, Penn RB. A tripartite cooperative mechanism confers resistance of the protein kinase A catalytic subunit to dephosphorylation. J Biol Chem 2020; 295:3316-3329. [PMID: 31964716 DOI: 10.1074/jbc.ra119.010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/28/2019] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of specific residues in the activation loops of AGC kinase group (protein kinase A, G, and C families) is required for activity of most of these kinases, including the catalytic subunit of PKA (PKAc). Although many phosphorylated AGC kinases are sensitive to phosphatase-mediated dephosphorylation, the PKAc activation loop uniquely resists dephosphorylation, rendering it "constitutively" phosphorylated in cells. Previous biophysical experiments and structural modeling have suggested that the N-terminal myristoylation signal and the C-terminal FXXF motif in PKAc regulate its thermal stability and catalysis. Here, using site-directed mutagenesis, molecular modeling, and in cell-free and cell-based systems, we demonstrate that substitutions of either the PKAc myristoylation signal or the FXXF motif only modestly reduce phosphorylation and fail to affect PKAc function in cells. However, we observed that these two sites cooperate with an N-terminal FXXW motif to cooperatively establish phosphatase resistance of PKAc while not affecting kinase-dependent phosphorylation of the activation loop. We noted that this tripartite cooperative mechanism of phosphatase resistance is functionally relevant, as demonstrated by changes in morphology, adhesion, and migration of human airway smooth muscle cells transfected with PKAc variants containing amino acid substitutions in these three sites. These findings establish that three allosteric sites located at the PKAc N and C termini coordinately regulate the phosphatase sensitivity of this enzyme. This cooperative mechanism of phosphatase resistance of AGC kinase opens new perspectives toward therapeutic manipulation of kinase signaling in disease.
Collapse
Affiliation(s)
- Tung O Chan
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| | - Roger S Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Santosh Yadav
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Sushrut Shah
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jin Zhang
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Brian C Tiegs
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Nikhil Keny
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Brian Blumhof
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Deepak A Deshpande
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ulrich Rodeck
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Raymond B Penn
- Center for Translational Medicine and Korman Respiratory Institute, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
4
|
Bender AM, Garrison AT, Lindsley CW. The Muscarinic Acetylcholine Receptor M 5: Therapeutic Implications and Allosteric Modulation. ACS Chem Neurosci 2019; 10:1025-1034. [PMID: 30280567 DOI: 10.1021/acschemneuro.8b00481] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) was the most recent mAChR to be cloned and has since emerged as a potential therapeutic target for a number of indications. Early studies with knockout animals have provided clues to the receptor's role in physiological processes related to Alzheimer's disease, schizophrenia, and addiction, and until recently, useful subtype-selective tools to further probe the pharmacology of M5 have remained elusive. Small-molecule allosteric modulators have since gained traction as a means by which to selectively examine muscarinic pharmacology. This review highlights the discovery and optimization of M5 positive allosteric modulators (PAMs) and negative allosteric modulators (NAMs).
Collapse
Affiliation(s)
- Aaron M. Bender
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Aaron T. Garrison
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry. Eur J Med Chem 2017; 140:465-493. [PMID: 28987607 DOI: 10.1016/j.ejmech.2017.09.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/02/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
2-Aminothiophenes are important five-membered heterocyclic building blocks in organic synthesis, and the chemistry of these small molecules is still developing based on the discovery of cyclization by Gewald. Another attractive feature of 2-aminothiophene scaffolds is their ability to act as synthons for the synthesis of biological active thiophene-containing heterocycles, conjugates and hybrids. Currently, the biological actions of 2-aminothiophenes or their 2-N-substituted analogues are still being investigated because of their various mechanisms of action (e.g., pharmacophore and pharmacokinetic properties). Likewise, the 2-aminothiophene family is used as diverse promising selective inhibitors, receptors, and modulators in medicinal chemistry, and these compounds even exhibit effective pharmacological properties in the various clinical phases of appropriate diseases. In this review, major biological and pharmacological reports on 2-aminothiophenes and related compounds have been highlighted; most perspective drug-candidate hits were selected for discussion and described, along with additional synthetic pathways. In addition, we focused on the literature dedicated to 2-aminothiophenes and 2-N-substituted derivatives, which have been published from 2010 to 2017.
Collapse
|
6
|
Hirst J, Im W, Shea JE. Simulating Biomolecules: Festschrift to commemorate the 60th birthday of Charles L. Brooks III. J Comput Chem 2017; 38:1111-1113. [DOI: 10.1002/jcc.24790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jonathan Hirst
- School of Chemistry, University of Nottingham; Nottingham NG7 2RD United Kingdom
| | - Wonpil Im
- Department of Biological Sciences and Bioengineering Program; Lehigh University; Pennsylvania
| | - Joan-Emma Shea
- Departments of Chemistry and Biochemistry, and Physics; University of California; Santa Barbara California
| |
Collapse
|