1
|
Kraka E, Quintano M, La Force HW, Antonio JJ, Freindorf M. The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. J Phys Chem A 2022; 126:8781-8798. [DOI: 10.1021/acs.jpca.2c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Hunter W. La Force
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Juliana J. Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| |
Collapse
|
2
|
Zhao G, Shi W, Yang Y, Ding Y, Li Y. Substituent Effects on Excited-State Intramolecular Proton Transfer Reaction of 2-Aryloxazoline Derivatives. J Phys Chem A 2021; 125:2743-2750. [PMID: 33780249 DOI: 10.1021/acs.jpca.0c10799] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Different substituents and benzene ring numbers had significant effects on the fluorescence phenomenon of 2-aryloxazoline derivatives as observed in an experiment. Here, we select five 2-aryloxazoline derivatives with different substituents and benzene ring numbers (2u, 2ad, 2af, 2ai, and 2ah) to analyze the effects on the fluorescence phenomena. For 2ad, 2ah, and 2ai, first, the geometric structures are optimized based on the density functional theory and time-dependent density functional theory methods. The analysis of the obtained bond parameters reveals the variation of hydrogen bond interactions from S0 to S1 states. Second, the calculated absorption and emission spectra are consistent with the experimental values, which proves that the theoretical method is feasible. Finally, through the analysis of the infrared vibrational spectrum, reduced density gradient isosurfaces, frontier molecular orbitals, and potential energy curves, the strengthening mechanism of the hydrogen bond interaction and the ability of the excited-state intramolecular proton transfer (ESIPT) reaction to occur are further explained. Since the proton transfer reactions of 2u and 2af occur spontaneously under photoexcitation, they have no stable structures in the S1 state. In conclusion, due to the different substituents, 2u is more prone to the proton transfer reaction than 2ad. For 2af, 2ai, and 2ah with different benzene ring numbers, the ESIPT reaction is more difficult to occur as the number of benzene rings increases. The ability of the ESIPT reaction to occur follows the order 2af → 2ah → 2ai. For 2-aryloxazoline derivatives with different substituents or different benzene ring numbers, the hydrogen bond strengthening mechanism has been authenticated, which promotes the occurrence of the ESIPT reactions.
Collapse
Affiliation(s)
- Guijie Zhao
- School of Physics, Liaoning University, Shenyang 110036, P. R. China
| | - Wei Shi
- School of Physics, Liaoning University, Shenyang 110036, P. R. China
| | - Yunfan Yang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Yong Ding
- School of Physics, Liaoning University, Shenyang 110036, P. R. China
| | - Yongqing Li
- School of Physics, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
3
|
Molteni G, Ponti A. The Azide-Allene Dipolar Cycloaddition: Is DFT Able to Predict Site- and Regio-Selectivity? Molecules 2021; 26:928. [PMID: 33578668 PMCID: PMC7916341 DOI: 10.3390/molecules26040928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
The site- and regio-selectivity of thermal, uncatalysed 1,3-dipolar cycloadditions between arylazides and mono- or tetra-substituted allenes with different electronic features have been investigated by both conceptual (reactivity indices) and computational (M08-HX, ωB97X-D, and B3LYP) DFT approaches. Both approaches show that these cycloadditions follow a nonpolar one-step mechanism. The experimental site- and regio-selectivity of arylazides towards methoxycarbonyl- and sulfonyl-allenes as well as tetramethyl- and tetrafluoro-allenes was calculated by DFT transition state calculations, achieving semiquantitative agreement to both previous and novel experimental findings. From the mechanistic standpoint, 1H-NMR evidence of a methylene-1,2,3-triazoline intermediate reinforces the reliability of the computational scheme.
Collapse
Affiliation(s)
- Giorgio Molteni
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy;
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
4
|
PyVibMS: a PyMOL plugin for visualizing vibrations in molecules and solids. J Mol Model 2020; 26:290. [PMID: 32986131 DOI: 10.1007/s00894-020-04508-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023]
Abstract
Visualizing vibrational motions calculated with different ab initio packages requires dedicated post-processing tools. Here, we present a PyMOL plugin called PyVibMS for visualizing the vibrational motions for both molecular and solid systems calculated by mainstream quantum chemical computer programs including Gaussian, Q-Chem, VASP, and CRYSTAL. Benefiting from the continuing development of the PyMOL platform, PyVibMS provides powerful functionalities and user-friendly interface. PyVibMS was written in Python and its open-source nature makes it flexible and sustainable. As an example, the motions of the Konkoli-Cremer local vibrational modes are shown in this work for the first time. PyVibMS is freely available at https://github.com/smutao/PyVibMS . Graphical abstract In this work, a PyMOL plugin named PyVibMS is developed to visualize molecular and lattice vibrations.
Collapse
|
5
|
Kraka E, Zou W, Tao Y. Decoding chemical information from vibrational spectroscopy data: Local vibrational mode theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1480] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elfi Kraka
- Department of Chemistry Southern Methodist University Dallas Texas USA
| | - Wenli Zou
- Institute of Modern Physics Northwest University and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an Shaanxi PR China
| | - Yunwen Tao
- Department of Chemistry Southern Methodist University Dallas Texas USA
| |
Collapse
|
6
|
Tao Y, Zou W, Sethio D, Verma N, Qiu Y, Tian C, Cremer D, Kraka E. In Situ Measure of Intrinsic Bond Strength in Crystalline Structures: Local Vibrational Mode Theory for Periodic Systems. J Chem Theory Comput 2019; 15:1761-1776. [DOI: 10.1021/acs.jctc.8b01279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Daniel Sethio
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Niraj Verma
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Yue Qiu
- Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Chuan Tian
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Dieter Cremer
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
7
|
Correlation between molecular acidity (pKa) and vibrational spectroscopy. J Mol Model 2019; 25:48. [DOI: 10.1007/s00894-019-3928-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
|
8
|
García-Álvarez J, Hevia E, Capriati V. The Future of Polar Organometallic Chemistry Written in Bio-Based Solvents and Water. Chemistry 2018; 24:14854-14863. [PMID: 29917274 DOI: 10.1002/chem.201802873] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/22/2022]
Abstract
There is a strong imperative to reduce the release of volatile organic compounds (VOCs) into the environment, and many efforts are currently being made to replace conventional hazardous VOCs in favour of safe, green and bio-renewable reaction media that are not based on crude petroleum. Recent ground-breaking studies from a few laboratories worldwide have shown that both Grignard and (functionalised) organolithium reagents, traditionally handled under strict exclusion of air and humidity and in anhydrous VOCs, can smoothly promote both nucleophilic additions to unsaturated substrates and nucleophilic substitutions in water and other bio-based solvents (glycerol, deep eutectic solvents), competitively with protonolysis, at room temperature and under air. The chemistry of polar organometallics in the above protic media is a complex phenomenon influenced by several factors, and understanding its foundational character is stimulating in the perspective of the development of a sustainable organometallic chemistry.
Collapse
Affiliation(s)
- Joaquín García-Álvarez
- Laboratorio de Compuestos Organometálicos y Catálisis, Departamento de Química Orgánica e Inorganica (IUQOEM), Instituto, Universitario de Química Organometálica "Enrique Moles", Facultad de Química, Universidad de Oviedo, 33071, Oviedo, Spain
| | - Eva Hevia
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona, 4, 70125, Bari, Italy
| |
Collapse
|
9
|
Yang D, Yang G, Jia M, Song X, Zhang Q. Comparing the substituent effects about ESIPT process for HBO derivatives. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Tao Y, Tian C, Verma N, Zou W, Wang C, Cremer D, Kraka E. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis. J Chem Theory Comput 2018; 14:2558-2569. [DOI: 10.1021/acs.jctc.7b01171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Chuan Tian
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Niraj Verma
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi’an, Shaanxi 710127, P. R. China
| | - Chao Wang
- Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Dieter Cremer
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|