1
|
Roldan L, Rodríguez-Santiago L, Didier-Marechal J, Sodupe M. Exploring the Esterase Catalytic Activity of Minimalist Heptapeptide Amyloid Fibers. Chemistry 2024; 30:e202401797. [PMID: 38973291 DOI: 10.1002/chem.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
This paper investigates the esterase activity of minimalist amyloid fibers composed of short seven-residue peptides, IHIHIHI (IH7) and IHIHIQI (IH7Q), with a particular focus on the role of the sixth residue position within the peptide sequence. Through computational simulations and analyses, we explore the molecular mechanisms underlying catalysis in these amyloid-based enzymes. Contrary to initial hypotheses, our study reveals that the twist angle of the fiber, and thus the catalytic site's environment, is not notably affected by the sixth residue. Instead, the sixth residue interacts with the p-nitrophenylacetate (pNPA) substrate, particularly through its -NO2 group, potentially enhancing catalysis. Quantum mechanics/molecular mechanics (QM/MM) simulations of the reaction mechanism suggest that the polarizing effect of glutamine enhances catalytic activity by forming a stabilizing network of hydrogen bonds with pNPA, leading to lower energy barriers and a more exergonic reaction. Our findings provide valuable insights into the intricate interplay between peptide sequence, structural arrangement, and catalytic function in amyloid-based enzymes, offering potentially valuable information for the design and optimization of biomimetic catalysts.
Collapse
Affiliation(s)
- L Roldan
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - L Rodríguez-Santiago
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - J Didier-Marechal
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - M Sodupe
- Departament de Química, Edifici C, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| |
Collapse
|
2
|
Paquete-Ferreira J, Freire F, Fernandes HS, Muthukumaran J, Ramos J, Bryton J, Panjkovich A, Svergun D, Santos MFA, Correia MAS, Fernandes AR, Romão MJ, Sousa SF, Santos-Silva T. Structural insights of an LCP protein-LytR-from Streptococcus dysgalactiae subs. dysgalactiae through biophysical and in silico methods. Front Chem 2024; 12:1379914. [PMID: 39170866 PMCID: PMC11337229 DOI: 10.3389/fchem.2024.1379914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development. LCP proteins are crucial in bacterial adhesion and biofilm formation, making them attractive for disrupting these processes. This study investigated the structural and functional characteristics of the LCP domain of LytR from Streptococcus dysgalactiae subsp. dysgalactiae. The protein structure was solved by X-ray Crystallography at 2.80 Å resolution. Small-angle X-ray scattering (SAXS) data were collected to examine potential conformational differences between the free and ligand-bound forms of the LytR LCP domain. Additionally, docking and molecular dynamics (MD) simulations were used to predict the interactions and conversion of ATP to ADP and AMP. Experimental validation of these predictions was performed using malachite green activity assays. The determined structure of the LCP domain revealed a fold highly similar to those of homologous proteins while SAXS data indicated potential conformational differences between the ligand-free and ligand-bound forms, suggesting a more compact conformation during catalysis, upon ligand binding. Docking and MD simulations predicted that the LytR LCP domain could interact with ADP and ATP and catalyze their conversion to AMP. These predictions were experimentally validated by malachite green activity assays, confirming the protein's functional versatility. The study provides significant insights into the structural features and functional capabilities of the LCP domain of LytR from S. dysgalactiae subsp. dysgalactiae. These findings pave the way for designing targeted therapies against antibiotic-resistant bacteria and offer strategies to disrupt bacterial biofilm formation.
Collapse
Affiliation(s)
- João Paquete-Ferreira
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Filipe Freire
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Henrique S. Fernandes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jayaraman Muthukumaran
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - João Ramos
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Joana Bryton
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alejandro Panjkovich
- European Molecular Biology Laboratory, Hamburg Unit, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - Marino F. A. Santos
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Márcia A. S. Correia
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Maria João Romão
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
3
|
Wang Z, Du X, Ye G, Wang H, Liu Y, Liu C, Li F, Ågren H, Zhou Y, Li J, He C, Guo DA, Ye M. Functional characterization, structural basis, and protein engineering of a rare flavonoid 2'- O-glycosyltransferase from Scutellaria baicalensis. Acta Pharm Sin B 2024; 14:3746-3759. [PMID: 39220864 PMCID: PMC11365401 DOI: 10.1016/j.apsb.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 09/04/2024] Open
Abstract
Glycosylation is an important post-modification reaction in plant secondary metabolism, and contributes to structural diversity of bioactive natural products. In plants, glycosylation is usually catalyzed by UDP-glycosyltransferases. Flavonoid 2'-O-glycosides are rare glycosides. However, no UGTs have been reported, thus far, to specifically catalyze 2'-O-glycosylation of flavonoids. In this work, UGT71AP2 was identified from the medicinal plant Scutellaria baicalensis as the first flavonoid 2'-O-glycosyltransferase. It could preferentially transfer a glycosyl moiety to 2'-hydroxy of at least nine flavonoids to yield six new compounds. Some of the 2'-O-glycosides showed noticeable inhibitory activities against cyclooxygenase 2. The crystal structure of UGT71AP2 (2.15 Å) was solved, and mechanisms of its regio-selectivity was interpreted by pK a calculations, molecular docking, MD simulation, MM/GBSA binding free energy, QM/MM, and hydrogen‒deuterium exchange mass spectrometry analysis. Through structure-guided rational design, we obtained the L138T/V179D/M180T mutant with remarkably enhanced regio-selectivity (the ratio of 7-O-glycosylation byproducts decreased from 48% to 4%) and catalytic efficiency of 2'-O-glycosylation (k cat/K m, 0.23 L/(s·μmol), 12-fold higher than the native). Moreover, UGT71AP2 also possesses moderate UDP-dependent de-glycosylation activity, and is a dual function glycosyltransferase. This work provides an efficient biocatalyst and sets a good example for protein engineering to optimize enzyme catalytic features through rational design.
Collapse
Affiliation(s)
- Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Du
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guo Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haotian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yizhan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chenrui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fudong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Yang Zhou
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei 230601, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Coimbra JTS, Fernandes PA, Ramos MJ. Deciphering the Catalytic Mechanism of Virginiamycin B Lyase with Multiscale Methods and Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:6354-6365. [PMID: 37791530 DOI: 10.1021/acs.jcim.3c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Due to the emergence of antibiotic resistance, the need to explore novel antibiotics and/or novel strategies to counter antibiotic resistance is of utmost importance. In this work, we explored the molecular and mechanistic details of the degradation of a streptogramin B antibiotic by virginiamycin B (Vgb) lyase of Staphylococcus aureus using classical molecular dynamics simulations and multiscale quantum mechanics/molecular mechanics methods. Our results were in line with available experimental kinetic information. Although we were able to identify a stepwise mechanism, in the wild-type enzyme, the intermediate is short-lived, showing a small barrier to decay to the product state. The impact of point mutations on the reaction was also assessed, showing not only the importance of active site residues to the reaction catalyzed by Vgb lyase but also of near positive and negative residues surrounding the active site. Using molecular dynamics simulations, we also predicted the most likely protonation state of the 3-hydroxypicolinic moiety of the antibiotic and the impact of mutants on antibiotic binding. All this information will expand our understanding of linearization reactions of cyclic antibiotics, which are crucial for the development of novel strategies that aim to tackle antibiotic resistance.
Collapse
Affiliation(s)
- João T S Coimbra
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Wang HT, Wang ZL, Chen K, Yao MJ, Zhang M, Wang RS, Zhang JH, Ågren H, Li FD, Li J, Qiao X, Ye M. Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants. Nat Commun 2023; 14:6658. [PMID: 37863881 PMCID: PMC10589286 DOI: 10.1038/s41467-023-42393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Apiose is a natural pentose containing an unusual branched-chain structure. Apiosides are bioactive natural products widely present in the plant kingdom. However, little is known on the key apiosylation reaction in the biosynthetic pathways of apiosides. In this work, we discover an apiosyltransferase GuApiGT from Glycyrrhiza uralensis. GuApiGT could efficiently catalyze 2″-O-apiosylation of flavonoid glycosides, and exhibits strict selectivity towards UDP-apiose. We further solve the crystal structure of GuApiGT, determine a key sugar-binding motif (RLGSDH) through structural analysis and theoretical calculations, and obtain mutants with altered sugar selectivity through protein engineering. Moreover, we discover 121 candidate apiosyltransferase genes from Leguminosae plants, and identify the functions of 4 enzymes. Finally, we introduce GuApiGT and its upstream genes into Nicotiana benthamiana, and complete de novo biosynthesis of a series of flavonoid apiosides. This work reports an efficient phenolic apiosyltransferase, and reveals mechanisms for its sugar donor selectivity.
Collapse
Affiliation(s)
- Hao-Tian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Ming-Ju Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Rong-Shen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Jia-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
6
|
Castro-Amorim J, Oliveira A, Mukherjee AK, Ramos MJ, Fernandes PA. Unraveling the Reaction Mechanism of Russell's Viper Venom Factor X Activator: A Paradigm for the Reactivity of Zinc Metalloproteinases? J Chem Inf Model 2023; 63:4056-4069. [PMID: 37092784 PMCID: PMC10336966 DOI: 10.1021/acs.jcim.2c01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 04/25/2023]
Abstract
Snake venom metalloproteinases (SVMPs) are important drug targets against snakebite envenoming, the neglected tropical disease with the highest mortality worldwide. Here, we focus on Russell's viper (Daboia russelii), one of the "big four" snakes of the Indian subcontinent that, together, are responsible for ca. 50,000 fatalities annually. The "Russell's viper venom factor X activator" (RVV-X), a highly toxic metalloproteinase, activates the blood coagulation factor X (FX), leading to the prey's abnormal blood clotting and death. Given its tremendous public health impact, the WHO recognized an urgent need to develop efficient, heat-stable, and affordable-for-all small-molecule inhibitors, for which a deep understanding of the mechanisms of action of snake's principal toxins is fundamental. In this study, we determine the catalytic mechanism of RVV-X by using a density functional theory/molecular mechanics (DFT:MM) methodology to calculate its free energy profile. The results showed that the catalytic process takes place via two steps. The first step involves a nucleophilic attack by an in situ generated hydroxide ion on the substrate carbonyl, yielding an activation barrier of 17.7 kcal·mol-1, while the second step corresponds to protonation of the peptide nitrogen and peptide bond cleavage with an energy barrier of 23.1 kcal·mol-1. Our study shows a unique role played by Zn2+ in catalysis by lowering the pKa of the Zn2+-bound water molecule, enough to permit the swift formation of the hydroxide nucleophile through barrierless deprotonation by the formally much less basic Glu140. Without the Zn2+ cofactor, this step would be rate-limiting.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ana Oliveira
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ashis K. Mukherjee
- Institute
of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria J. Ramos
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Pedro A. Fernandes
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| |
Collapse
|
7
|
Gasparini P, Philot EA, Pantaleão SQ, Torres-Bonfim NESM, Kliousoff A, Quiroz RCN, Perahia D, Simões RP, Magro AJ, Scott AL. Unveiling mutation effects on the structural dynamics of the main protease from SARS-CoV-2 with hybrid simulation methods. J Mol Graph Model 2023; 121:108443. [PMID: 36870228 PMCID: PMC9945984 DOI: 10.1016/j.jmgm.2023.108443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The main protease of SARS-CoV-2 (called Mpro or 3CLpro) is essential for processing polyproteins encoded by viral RNA. Several Mpro mutations were found in SARS-CoV-2 variants, which are related to higher transmissibility, pathogenicity, and resistance to neutralization antibodies. Macromolecules adopt several favored conformations in solution depending on their structure and shape, determining their dynamics and function. In this study, we used a hybrid simulation method to generate intermediate structures along the six lowest frequency normal modes and sample the conformational space and characterize the structural dynamics and global motions of WT SARS-CoV-2 Mpro and 48 mutations, including mutations found in P.1, B.1.1.7, B.1.351, B.1.525 and B.1.429+B.1.427 variants. We tried to contribute to the elucidation of the effects of mutation in the structural dynamics of SARS-CoV-2 Mpro. A machine learning analysis was performed following the investigation regarding the influence of the K90R, P99L, P108S, and N151D mutations on the dimeric interface assembling of the SARS-CoV-2 Mpro. The parameters allowed the selection of potential structurally stable dimers, which demonstrated that some single surface aa substitutions not located at the dimeric interface (K90R, P99L, P108S, and N151D) are able to induce significant quaternary changes. Furthermore, our results demonstrated, by a Quantum Mechanics method, the influence of SARS-CoV-2 Mpro mutations on the catalytic mechanism, confirming that only one of the chains of the WT and mutant SARS-CoV-2 Mpros are prone to cleave substrates. Finally, it was also possible to identify the aa residue F140 as an important factor related to the increasing enzymatic reactivity of a significant number of SARS-CoV-2 Mpro conformations generated by the normal modes-based simulations.
Collapse
Affiliation(s)
- P Gasparini
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - E A Philot
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - S Q Pantaleão
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - N E S M Torres-Bonfim
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - A Kliousoff
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - R C N Quiroz
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil
| | - D Perahia
- École Normale Supérieure Paris-Saclay, LBPA, Scaly, France
| | - R P Simões
- Department of Bioprocesses and Biotechnology, School of Agriculture (FCA), Unesp, Botucatu, São Paulo, Brazil
| | - A J Magro
- Department of Bioprocesses and Biotechnology, School of Agriculture (FCA), Unesp, Botucatu, São Paulo, Brazil; Institute of Biotechnology (IBTEC), Unesp, Botucatu, São Paulo, Brazil
| | - A L Scott
- Computational Biology and Biophysics Laboratory, Federal University of ABC - UFABC, Santo André, São Paulo, Brazil.
| |
Collapse
|
8
|
Fernandes HS, Cerqueira NMFSA, Sousa SF, Melo A. A Molecular Mechanics Energy Partitioning Software for Biomolecular Systems. Molecules 2022; 27:molecules27175524. [PMID: 36080291 PMCID: PMC9458121 DOI: 10.3390/molecules27175524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
The partitioning of the molecular mechanics (MM) energy in calculations involving biomolecular systems is important to identify the source of major stabilizing interactions, e.g., in ligand–protein interactions, or to identify residues with considerable contributions in hybrid multiscale calculations, i.e., quantum mechanics/molecular mechanics (QM/MM). Here, we describe Energy Split, a software program to calculate MM energy partitioning considering the AMBER Hamiltonian and parameters. Energy Split includes a graphical interface plugin for VMD to facilitate the selection of atoms and molecules belonging to each part of the system. Energy Split is freely available at or can be easily installed through the VMD Store.
Collapse
Affiliation(s)
- Henrique S. Fernandes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Nuno M. F. S. A. Cerqueira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - André Melo
- Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 1021 1055, 4169-007 Porto, Portugal
- Correspondence:
| |
Collapse
|
9
|
Cerqueira NMFSA, Neves M, Rocha J, Soares-da Silva P, Palma PN. Inactivation Mechanism of the Fatty Acid Amide Hydrolase Inhibitor BIA 10-2474. Chembiochem 2022; 23:e202200166. [PMID: 35843872 DOI: 10.1002/cbic.202200166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
BIA 10-2474 is a time-dependent inhibitor of fatty acid amide hydrolase(FAAH) that was under clinical development for the treatment of neurological conditions when the program was terminated after one subject died and four were hospitalized with neurological symptoms during a first-in-human clinical study. The present manuscript describes the mechanism of FAAH inhibition by BIA 10-2474 as a target-specific covalent inhibition, supported by quantum mechanics and molecular modelling studies. The inhibitor incorporates a weakly reactive electrophile which, upon specific binding to the enzyme's active site, is positioned to react readily with the catalytic residues. The reactivity is enhanced on-site by the increased molarity at the reaction site and by specific inductive interactions with FAAH. In the second stage, the inhibitor reacts with the enzyme's catalytic nucleophile to form a covalent enzyme-inhibitor adduct. The hydrolysis of this adduct is shown to be unlikely under physiological conditions, therefore leading to irreversible inactivation of FAAH. The results also reveal the important role played by FAAH Thr236 in the reaction with BIA 10-2474, which is specific to FAAH and is not present in other serine hydrolases.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- Department of Research & Development BIAL, Portela & Cª. S.A., S. Mamede do Coronado, Portugal
| | - Marco Neves
- Department of Research & Development BIAL, Portela & Cª. S.A., S. Mamede do Coronado, Portugal
| | - Juliana Rocha
- BioSIM, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrício Soares-da Silva
- Department of Research & Development BIAL, Portela & Cª. S.A., S. Mamede do Coronado, Portugal
- Department of Biomedicine, Unit of Pharmacology & Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - P Nuno Palma
- Department of Research & Development BIAL, Portela & Cª. S.A., S. Mamede do Coronado, Portugal
| |
Collapse
|
10
|
Teixeira LC, Coimbra JT, Ramos MJ, Fernandes PA. Transmembrane Protease Serine 2 Proteolytic Cleavage of the SARS-CoV-2 Spike Protein: A Mechanistic Quantum Mechanics/Molecular Mechanics Study to Inspire the Design of New Drugs To Fight the COVID-19 Pandemic. J Chem Inf Model 2022; 62:2510-2521. [PMID: 35549216 PMCID: PMC9113003 DOI: 10.1021/acs.jcim.1c01561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the development of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, there is an urgent need for efficient drugs to treat infected patients. An attractive drug target is the human transmembrane protease serine 2 (TMPRSS2) because of its vital role in the viral infection mechanism of SARS-CoV-2 by activation of the virus spike protein (S protein). Having in mind that the information derived from quantum mechanics/molecular mechanics (QM/MM) studies could be an important tool in the design of transition-state (TS) analogue inhibitors, we resorted to adiabatic QM/MM calculations to determine the mechanism of the first step (acylation) of proteolytic cleavage of the S protein with atomistic details. Acylation occurred in two stages: (i) proton transfer from Ser441 to His296 concerted with the nucleophilic attack of Ser441 to the substrate's P1-Arg and (ii) proton transfer from His296 to the P1'-Ser residue concerted with the cleavage of the ArgP1-SerP1' peptide bond, with a Gibbs activation energy of 17.1 and 15.8 kcal mol-1, relative to the reactant. An oxyanion hole composed of two hydrogen bonds stabilized the rate-limiting TS by 8 kcal mol-1. An analysis of the TMPRSS2 interactions with the high-energy, short-lived tetrahedral intermediate highlighted the limitations of current clinical inhibitors and pointed out specific ways to develop higher-affinity TS analogue inhibitors. The results support the development of more efficient drugs against SARS-CoV-2 using a human target, free from resistance development.
Collapse
|
11
|
Rocha JF, Sousa SF, Cerqueira NMFSA. Computational Studies Devoted to the Catalytic Mechanism of Threonine Aldolase, a Critical Enzyme in the Pharmaceutical Industry to Synthesize β-Hydroxy-α-amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juliana F. Rocha
- Associate Laboratory i4HB − Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, BioSIM─Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB − Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, BioSIM─Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Nuno M. F. Sousa A. Cerqueira
- Associate Laboratory i4HB − Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- UCIBIO─Applied Molecular Biosciences Unit, BioSIM─Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
12
|
Ali HS, de Visser SP. Electrostatic Perturbations in the Substrate-Binding Pocket of Taurine/α-Ketoglutarate Dioxygenase Determine its Selectivity. Chemistry 2022; 28:e202104167. [PMID: 34967481 PMCID: PMC9304159 DOI: 10.1002/chem.202104167] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Taurine/α-ketoglutarate dioxygenase is an important enzyme that takes part in the cysteine catabolism process in the human body and selectively hydroxylates taurine at the C1 -position. Recent computational studies showed that in the gas-phase the C2 -H bond of taurine is substantially weaker than the C1 -H bond, yet no evidence exists of 2-hydroxytaurine products. To this end, a detailed computational study on the selectivity patterns in TauD was performed. The calculations show that the second-coordination sphere and the protonation states of residues play a major role in guiding the enzyme to the right selectivity. Specifically, a single proton on an active site histidine residue can change the regioselectivity of the reaction through its electrostatic perturbations in the active site and effectively changes the C1 -H and C2 -H bond strengths of taurine. This is further emphasized by many polar and hydrogen bonding interactions of the protein cage in TauD with the substrate and the oxidant that weaken the pro-R C1 -H bond and triggers a chemoselective reaction process. The large cluster models reproduce the experimental free energy of activation excellently.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sam P. de Visser
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Department of Chemical Engineering and Analytical ScienceThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
13
|
Ngo ST, Nguyen TH, Tung NT, Mai BK. Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M pro. RSC Adv 2022; 12:3729-3737. [PMID: 35425393 PMCID: PMC8979274 DOI: 10.1039/d1ra08752e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been causing the COVID-19 pandemic, resulting in several million deaths being reported. Numerous investigations have been carried out to discover a compound that can inhibit the biological activity of the SARS-CoV-2 main protease, which is an enzyme related to the viral replication. Among these, PF-07321332 (Nirmatrelvir) is currently under clinical trials for COVID-19 therapy. Therefore, in this work, atomistic and electronic simulations were performed to unravel the binding and covalent inhibition mechanism of the compound to Mpro. Initially, 5 μs of steered-molecular dynamics simulations were carried out to evaluate the ligand-binding process to SARS-CoV-2 Mpro. The successfully generated bound state between the two molecules showed the important role of the PF-07321332 pyrrolidinyl group and the residues Glu166 and Gln189 in the ligand-binding process. Moreover, from the MD-refined structure, quantum mechanics/molecular mechanics (QM/MM) calculations were carried out to unravel the reaction mechanism for the formation of the thioimidate product from SARS-CoV-2 Mpro and the PF-07321332 inhibitor. We found that the catalytic triad Cys145-His41-Asp187 of SARS-CoV-2 Mpro plays an important role in the activation of the PF-07321332 covalent inhibitor, which renders the deprotonation of Cys145 and, thus, facilitates further reaction. Our results are definitely beneficial for a better understanding of the inhibition mechanism and designing new effective inhibitors for SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Trung Hai Nguyen
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology Hanoi 11307 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 11307 Vietnam
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
14
|
Li X, Li X, Zhang QY, Lv P, Jia Y, Wei D. Cofactor-free ActVA-Orf6 monooxygenase catalysis via proton-coupled electron transfer: A QM/MM study. Org Biomol Chem 2022; 20:5525-5534. [DOI: 10.1039/d2ob00848c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncovering the comprehensive catalytic mechanism for the activation of triplet O2 through metal-free and cofactor-free oxidases and oxygenases remains one of the most challenging questions in the area of enzymatic...
Collapse
|
15
|
Magalhães RP, Fernandes HS, Sousa SF. The critical role of Asp206 stabilizing residues on the catalytic mechanism of the Ideonella sakaiensis PETase. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02271g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We described the catalytic mechanism of IsPETase, a polyethylene-terephthalate degrading enzyme. The reaction was found to progress in four steps, divided in two events: formation of the first transition intermediate and hydrolysis of the adduct.
Collapse
Affiliation(s)
- Rita P. Magalhães
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Henrique S. Fernandes
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
16
|
Pina AF, Sousa SF, Cerqueira NMFSA. The Catalytic Mechanism of Pdx2 Glutaminase Driven by a Cys-His-Glu Triad: A Computational Study. Chembiochem 2021; 23:e202100555. [PMID: 34762772 DOI: 10.1002/cbic.202100555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/10/2021] [Indexed: 11/08/2022]
Abstract
The catalytic mechanism of Pdx2 was studied with atomic detail employing the computational ONIOM hybrid QM/MM methodology. Pdx2 employs a Cys-His-Glu catalytic triad to deaminate glutamine to glutamate and ammonia - the source of the nitrogen of pyridoxal 5'-phosphate (PLP). This enzyme is, therefore, a rate-limiting step in the PLP biosynthetic pathway of Malaria and Tuberculosis pathogens that rely on this mechanism to obtain PLP. For this reason, Pdx2 is considered a novel and promising drug target to treat these diseases. The results obtained show that the catalytic mechanism of Pdx2 occurs in six steps that can be divided into four stages: (i) activation of Cys87 , (ii) deamination of glutamine with the formation of the glutamyl-thioester intermediate, (iii) hydrolysis of the formed intermediate, and (iv) enzymatic turnover. The kinetic data available in the literature (19.1-19.5 kcal mol-1 ) agree very well with the calculated free energy barrier of the hydrolytic step (18.2 kcal.mol-11 ), which is the rate-limiting step of the catalytic process when substrate is readily available in the active site. This catalytic mechanism differs from other known amidases in three main points: i) it requires the activation of the nucleophile Cys87 to a thiolate; ii) the hydrolysis occurs in a single step and therefore does not require the formation of a second tetrahedral reaction intermediate, as it is proposed, and iii) Glu198 does not have a direct role in the catalytic process. Together, these results can be used for the synthesis of new transition state analogue inhibitors capable of inhibiting Pdx2 and impair diseases like Malaria and Tuberculosis.
Collapse
Affiliation(s)
- André F Pina
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Sérgio F Sousa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Nuno M F S A Cerqueira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| |
Collapse
|
17
|
Tuning the optoelectronic properties of scaffolds by using variable central core unit and their photovoltaic applications. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Fernandes HS, Sousa SF, Cerqueira NMFSA. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Mol Divers 2021; 26:1373-1381. [PMID: 34169450 PMCID: PMC8224256 DOI: 10.1007/s11030-021-10259-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
SARS-CoV-2 Mpro, also known as the main protease or 3C-like protease, is a key enzyme involved in the replication process of the virus that is causing the COVID-19 pandemic. It is also the most promising antiviral drug target targeting SARS-CoV-2 virus. In this work, the catalytic mechanism of Mpro was studied using the full model of the enzyme and a computational QM/MM methodology with a 69/72-atoms QM region treated at DLPNO-CCSD(T)/CBS//B3LYP/6-31G(d,p):AMBER level and including the catalytic important oxyanion-hole residues. The transition state of each step was fully characterized and described together with the related reactants and products. The rate-limiting step of the catalytic process is the hydrolysis of the thioester-enzyme adduct, and the calculated barrier closely agrees with the available kinetic data. The calculated Gibbs free energy profile, together with the full atomistic detail of the structures involved in catalysis, can now serve as valuable models for the rational drug design of transition state analogs as new inhibitors targeting the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Henrique S Fernandes
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
19
|
A QM/MM Evaluation of the Missing Step in the Reduction Mechanism of HMG-CoA by Human HMG-CoA Reductase. Processes (Basel) 2021. [DOI: 10.3390/pr9071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Statins are important drugs in the regulation of cholesterol levels in the human body that have as a primary target the enzyme β-hydroxy-β-methylglutaryl-CoA reductase (HMGR). This enzyme plays a crucial role in the mevalonate pathway, catalyzing the four-electron reduction of HMG-CoA to mevalonate. A second reduction step of this reaction mechanism has been the subject of much speculation in the literature, with different conflicting theories persisting to the present day. In this study, the different mechanistic hypotheses were evaluated with atomic-level detail through a combination of molecular dynamics simulations (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. The obtained Gibbs free activation and Gibbs free reaction energy (15 kcal mol−1 and −40 kcal mol−1) show that this hydride step takes place with the involvement of a cationic His405 and Lys639, and a neutral Glu98, while Asp715 remains in an anionic state. The results provide an atomic-level portrait of this step, clearly demonstrating the nature and protonation state of the amino acid residues involved, the energetics associated, and the structure and charge of the key participating atoms in the several intermediate states, finally elucidating this missing step.
Collapse
|
20
|
Silva Teixeira CS, Sousa SF, Cerqueira NMFSA. An Unsual Cys-Glu-Lys Catalytic Triad is Responsible for the Catalytic Mechanism of the Nitrilase Superfamily: A QM/MM Study on Nit2. Chemphyschem 2021; 22:796-804. [PMID: 33463886 DOI: 10.1002/cphc.202000751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Nitrilase 2 (Nit2) is a representative member of the nitrilase superfamily that catalyzes the hydrolysis of α-ketosuccinamate into oxaloacetate. It has been associated with the metabolism of rapidly dividing cells like cancer cells. The catalytic mechanism of Nit2 employs a catalytic triad formed by Cys191, Glu81 and Lys150. The Cys191 and Glu81 play an active role during the catalytic process while the Lys150 is shown to play only a secondary role. The results demonstrate that the catalytic mechanism of Nit2 involves four steps. The nucleophilic attack of Cys191 to the α-ketosuccinamate, the formation of two tetrahedral enzyme adducts and the hydrolysis of a thioacyl-enzyme intermediate, from which results the formation of oxaloacetate and enzymatic turnover. The rate limiting step of the catalytic process is the formation of the first tetrahedral intermediate with a calculated activation free energy of 18.4 kcal/mol, which agrees very well with the experimental kcat (17.67 kcal/mol).
Collapse
Affiliation(s)
- Carla S Silva Teixeira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, 4200-319, Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, 4200-319, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, 4200-319, Portugal
| |
Collapse
|
21
|
Ribeiro PMG, Fernandes HS, Maia LB, Sousa SF, Moura JJG, Cerqueira NMFSA. The complete catalytic mechanism of xanthine oxidase: a computational study. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01029d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this article, quantum mechanical/molecular mechanical (QM/MM) methods were used to study the full catalytic mechanism of xanthine oxidase (XO).
Collapse
Affiliation(s)
- Pedro M. G. Ribeiro
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Henrique S. Fernandes
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - Luísa B. Maia
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| | - José J. G. Moura
- LAQV
- REQUIMTE
- NOVA School of Science and Technology
- Campus de Caparica
- 2829-516 Caparica
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE
- BioSIM
- Departamento de Biomedicina
- Faculdade de Medicina da Universidade do Porto
- Alameda Professor Hernâni Monteiro
| |
Collapse
|
22
|
Paiva P, Ramos MJ, Fernandes PA. Assessing the validity of DLPNO-CCSD(T) in the calculation of activation and reaction energies of ubiquitous enzymatic reactions. J Comput Chem 2020; 41:2459-2468. [PMID: 32882060 DOI: 10.1002/jcc.26401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Abstract
The domain-based local pair natural orbital coupled-cluster with single, double, and perturbative triples excitation (DLPNO-CCSD(T)) method was employed to portray the activation and reaction energies of four ubiquitous enzymatic reactions, and its performance was confronted to CCSD(T)/complete basis set (CBS) to assess its accuracy and robustness in this specific field. The DLPNO-CCSD(T) results were also confronted to those of a set of density functionals (DFs) to understand the benefit of implementing this technique in enzymatic quantum mechanics/molecular mechanics (QM/MM) calculations as a second QM component, which is often treated with DF theory (DFT). On average, the DLPNO-CCSD(T)/aug-cc-pVTZ results were 0.51 kcal·mol-1 apart from the canonic CCSD(T)/CBS, without noticeable biases toward any of the reactions under study. All DFs fell short to the DLPNO-CCSD(T), both in terms of accuracy and robustness, which suggests that this method is advantageous to characterize enzymatic reactions and that its use in QM/MM calculations, either alone or in conjugation with DFT, in a two-region QM layer (DLPNO-CCSD(T):DFT), should enhance the quality and faithfulness of the results.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Maria J Ramos
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro A Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Goossens K, Neves RP, Fernandes PA, De Winter H. A Computational and Modeling Study of the Reaction Mechanism of Staphylococcus aureus Monoglycosyltransferase Reveals New Insights on the GT51 Family of Enzymes. J Chem Inf Model 2020; 60:5513-5528. [PMID: 32786224 DOI: 10.1021/acs.jcim.0c00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bacterial glycosyltransferases of the GT51 family are key enzymes in bacterial cell wall synthesis. Inhibiting cell wall synthesis is a very effective approach for development of antibiotics, as this can lead to either bacteriostatic or bactericidal effects. Even though the existence of this family has been known for over 50 years, only one potent inhibitor exists, which is an analog of the lipid IV product and derived from a natural product. Drug development focused on bacterial transglycosylase has been hampered due to little being know about its structure and reaction mechanism. In this study, Staphylococcus aureus monoglycosyltransferase was investigated at an atomistic level using computational methods. Classical molecular dynamics simulations were used to reveal information about the large-scale dynamics of the enzyme-substrate complex and the importance of magnesium in structure and function of the protein, while mixed mode quantum mechanics/molecular mechanics calculations unveiled a novel hypothesis for the reaction mechanism. From these results, we present a new model for the binding mode of lipid II and the reaction mechanism of the GT51 glycosyltransferases. A metal-bound hydroxide catalyzed reaction mechanism yields an estimated free energy barrier of 16.1 ± 1.0 kcal/mol, which is in line with experimental values. The importance of divalent cations is also further discussed. These findings could significantly aid targeted drug design, particularly the efficient development of transition state analogues as potential inhibitors for the GT51 glycosyltransferases.
Collapse
Affiliation(s)
- Kenneth Goossens
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Rui Pp Neves
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Hans De Winter
- Department of Pharmaceutical Sciences, Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
24
|
Magalhães RP, Fernandes HS, Sousa SF. Modelling Enzymatic Mechanisms with QM/MM Approaches: Current Status and Future Challenges. Isr J Chem 2020. [DOI: 10.1002/ijch.202000014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rita P. Magalhães
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| | - Henriques S. Fernandes
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE, BioSIMDepartamento de Biomedicina, Faculdade de Medicina da Universidade do Porto Alameda Professor Hernâni Monteiro 4200-319 Porto Portugal
| |
Collapse
|
25
|
Fernandes HS, Sousa SF, Cerqueira NMFSA. VMD Store-A VMD Plugin to Browse, Discover, and Install VMD Extensions. J Chem Inf Model 2019; 59:4519-4523. [PMID: 31682440 DOI: 10.1021/acs.jcim.9b00739] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein we present the VMD Store, an open-source VMD plugin that simplifies the way that users browse, discover, install, update, and uninstall extensions for the Visual Molecular Dynamics (VMD) software. The VMD Store obtains data about all the indexed VMD extensions hosted on GitHub and presents a one-click mechanism to install and configure VMD extensions. This plugin arises in an attempt to aggregate all VMD extensions into a single platform. The VMD Store is available, free of charge, for Windows, macOS, and Linux at https://biosim.pt/software/ and requires VMD 1.9.3 (or later).
Collapse
Affiliation(s)
- Henrique S Fernandes
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina , Faculdade de Medicina da Universidade do Porto , Alameda Professor Hernâni Monteiro , 4200-319 Porto , Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina , Faculdade de Medicina da Universidade do Porto , Alameda Professor Hernâni Monteiro , 4200-319 Porto , Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina , Faculdade de Medicina da Universidade do Porto , Alameda Professor Hernâni Monteiro , 4200-319 Porto , Portugal
| |
Collapse
|
26
|
Teixeira CSS, Ramos MJ, Sousa SF, Cerqueira NMFSA. Solving the Catalytic Mechanism of Tryptophan Synthase: an Emergent Drug Target in the Treatment of Tuberculosis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla S. Silva Teixeira
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| | - Maria J. Ramos
- UCIBIO@REQUIMTEDepartamento de Química e BioquímicaFaculdade de CiênciasUniversidade do Porto Porto 4169-007 Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTEBioSIMDepartamento de BiomedicinaFaculdade de MedicinaUniversidade do Porto Porto 4200-319 Portugal
| |
Collapse
|
27
|
Paiva P, Sousa SF, Fernandes PA, João Ramos M. Human Fatty Acid Synthase: A Computational Study of the Transfer of the Acyl Moieties from MAT to the ACP Domain. ChemCatChem 2019. [DOI: 10.1002/cctc.201900548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pedro Paiva
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - Sérgio F. Sousa
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
- UCIBIO@REQUIMTE, BioSIM – Departamento de Biomedicina Faculdade de MedicinaUniversidade do Porto Alameda Prof. Hernâni Monteiro 4200-319 Porto Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| | - Maria João Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica Faculdade de CiênciasUniversidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal
| |
Collapse
|
28
|
Fernandes HS, Ramos MJ, Cerqueira NMFSA. Catalytic Mechanism of the Serine Hydroxymethyltransferase: A Computational ONIOM QM/MM Study. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Henrique S. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria João Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
29
|
Sameera WMC, Maseras F. Expanding the Range of Force Fields Available for ONIOM Calculations: The SICTWO Interface. J Chem Inf Model 2018; 58:1828-1835. [PMID: 30137980 DOI: 10.1021/acs.jcim.8b00332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ONIOM scheme is one of the most popular QM/MM approaches, but its extended application has been so far hindered by the limited availability of force fields in most practical implementations. This paper describes a simple software code to overcome this limitation, and its application to three representative chemical problems. The "Shell Interface for Combining Tinker With ONIOM" (SICTWO) program gives access to all force fields available in the Tinker molecular mechanics program from a Gaussian09 or Gaussian16 calculation. The first application presented is the geometry optimization of dithienobicyclo-[4.4.1]-undeca-3,8-diene-11-one ethylene glycol ketal. A variety of force fields were tested for the MM part, and the molecular structure using the ONIOM(B3LYP:OPLS-AA) method shows good agreement with the experimental results. The second problem is related with enantioselectivity of the vanadium-catalyzed asymmetric oxidation of 1,2-bis( tert-butyl)-disulfide. ONIOM(B3LYP:MM3) results, obtained with SICTWO, are consistent with those of a previous IMOMM(B3LYP:MM3) study. In the third application, we have combined AMOEBA09 polarizable force field with ONIOM to study a water molecule binding on water ice. Calculated ONIOM(ωB97X-D:AMOEBA09) binding energies are consistent with the ωB97X-D results. These studies show SICTWO as an easy-to-use tool that can further expand the use of the multiscale ONIOM method within computational chemistry and computational biology.
Collapse
Affiliation(s)
- W M C Sameera
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avgda. Països Catalans 16 , 43007 , Tarragona , Spain.,Institute of Low Temperature Science , Hokkaido University , Sapporo , Hokkaido 060-0819 , Japan
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avgda. Països Catalans 16 , 43007 , Tarragona , Spain.,Departament de Química , Universitat Autònoma de Barcelona , 08193 Bellaterra , Spain
| |
Collapse
|