1
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
3
|
Wang L, Fan R, Li Z, Wang L, Bai X, Bu T, Dong Y, Xu Y, Quan C. Insights into the structure and function of the histidine kinase ComP from Bacillus amyloliquefaciens based on molecular modeling. Biosci Rep 2022; 42:BSR20220352. [PMID: 36052710 PMCID: PMC9620489 DOI: 10.1042/bsr20220352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
The ComPA two-component signal transduction system (TCS) is essential in Bacillus spp. However, the molecular mechanism of the histidine kinase ComP remains unclear. Here, we predicted the structure of ComP from Bacillus amyloliquefaciens Q-426 (BaComP) using an artificial intelligence approach, analyzed the structural characteristics based on the molecular docking results and compared homologous proteins, and then investigated the biochemical properties of BaComP. We obtained a truncated ComPS protein with high purity and correct folding in solution based on the predicted structures. The expression and purification of BaComP proteins suggested that the subdomains in the cytoplasmic region influenced the expression and stability of the recombinant proteins. ComPS is a bifunctional enzyme that exhibits the activity of both histidine kinase and phosphotransferase. We found that His571 played an obligatory role in the autophosphorylation of BaComP based on the analysis of the structures and mutagenesis studies. The molecular docking results suggested that the HATPase_c domain contained an ATP-binding pocket, and the ATP molecule was coordinated by eight conserved residues from the N, G1, and G2 boxes. Our study provides novel insight into the histidine kinase BaComP and its homologous proteins.
Collapse
Affiliation(s)
- Lulu Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
| | - Ruochen Fan
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
| | - Zhuting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Lina Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Lvshun Road, Dalian 116044, Liaoning, China
| | - Xue Bai
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Tingting Bu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Liaoning, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| |
Collapse
|
4
|
Pan Y, Liu Z, Tang Y, Tao J, Deng F, Lei Y, Tan Y, Zhu S, Wen X, Guo L, Li R, Deng M, Liu R. HIF-1α drives the transcription of NOG to inhibit osteogenic differentiation of periodontal ligament stem cells in response to hypoxia. Exp Cell Res 2022; 419:113324. [PMID: 36002046 DOI: 10.1016/j.yexcr.2022.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Osteogenic differentiation of periodontal ligament stem cells (PDLSCs) is limited in hypoxia, and HIF-1α is key to the response to hypoxia. However, its mechanisms remain largely unknown. This study discovered an osteogenesis-related gene sensitive to hypoxia in PDLSCs, and investigated the molecular mechanisms between HIF-1α and the gene. NOG, a gene that negatively regulates osteogenesis, was discovered by RNA-seq. Under normoxic conditions, HIF-1α overexpression led to enhanced expression of NOG/Noggin and inhibited the expression of osteogenesis-related genes, while inhibition of HIF-1α reversed this effect. The expression of HIF-1α, NOG/Noggin and the osteogenesis-related genes were detected by qRT-PCR or Western blot. Mechanistically, we verified that HIF-1α binds to the hypoxia response element (-1505 to -1502) in the promotor of NOG to enhance secretion of Noggin by chromatin immunoprecipitation and a dual-luciferase reporter assay. IHC staining findings in an animal model verified that Noggin-associated osteogenic differentiation was inhibited in hypoxia. NOG displayed a concordant relationship with HIF-1α, and secreted more with increasing of HIF-1α. Hypoxia stabilized HIF-1α, which bound to the HRE (-1505 to -1502) of the NOG promotor to enhance NOG transcription resulted in inhibiting osteogenic differentiation of PDLSCs. This study offers a promising therapy for periodontitis.
Collapse
Affiliation(s)
- Yingzi Pan
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhihua Liu
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; Department of Stomatology, The Army 955th Hospital of PLA, 52 Gadong Street, Karuo District, Changdu City, Tibet Autonomous Region, 540302, China
| | - Yaping Tang
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jie Tao
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuzhu Lei
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yan Tan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shunyao Zhu
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Xiujie Wen
- Department of Orthodontics, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ling Guo
- Chongqing Savaid Stomatology Hospital, University of Chinese Academy of Sciences, China
| | - Rulei Li
- Department of Orthopedics, General Hospital of Tibet Military Region, Lasa, 850007, China
| | - Manjing Deng
- Chongqing Savaid Stomatology Hospital, University of Chinese Academy of Sciences, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| |
Collapse
|
5
|
Elemam NM, Malek AI, Mahmoud EE, El-Huneidi W, Talaat IM. Insights into the Role of Gremlin-1, a Bone Morphogenic Protein Antagonist, in Cancer Initiation and Progression. Biomedicines 2022; 10:biomedicines10020301. [PMID: 35203511 PMCID: PMC8869528 DOI: 10.3390/biomedicines10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The bone morphogenic protein (BMP) antagonist Gremlin-1 is a biologically significant regulator known for its crucial role in tissue differentiation and embryonic development. Nevertheless, it has been reported that Gremlin-1 can exhibit its function through BMP dependent and independent pathways. Gremlin-1 has also been reported to be involved in organ fibrosis, which has been correlated to the development of other diseases, such as renal inflammation and diabetic nephropathy. Based on growing evidence, Gremlin-1 has recently been implicated in the initiation and progression of different types of cancers. Further, it contributes to the stemness state of cancer cells. Herein, we explore the recent findings on the role of Gremlin-1 in various cancer types, including breast, cervical, colorectal, and gastric cancers, as well as glioblastomas. Additionally, we highlighted the impact of Gremlin-1 on cellular processes and signaling pathways involved in carcinogenesis. Therefore, it was suggested that Gremlin-1 might be a promising prognostic biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Imadeddin Malek
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Esraa Elaraby Mahmoud
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Correspondence: (W.E.-H.); (I.M.T.)
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (W.E.-H.); (I.M.T.)
| |
Collapse
|
6
|
Mishra S, Kumar S, Choudhuri KSR, Longkumer I, Koyyada P, Kharsyiemiong ET. Structural exploration with AlphaFold2-generated STAT3α structure reveals selective elements in STAT3α-GRIM-19 interactions involved in negative regulation. Sci Rep 2021; 11:23145. [PMID: 34848745 PMCID: PMC8633360 DOI: 10.1038/s41598-021-01436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
STAT3, an important transcription factor constitutively activated in cancers, is bound specifically by GRIM-19 and this interaction inhibits STAT3-dependent gene expression. GRIM-19 is therefore, considered as an inhibitor of STAT3 and may be an effective anti-cancer therapeutic target. While STAT3 exists in a dimeric form in the cytoplasm and nucleus, it is mostly present in a monomeric form in the mitochondria. Although GRIM-19-binding domains of STAT3 have been identified in independent experiments, yet the identified domains are not the same, and hence, discrepancies exist. Human STAT3-GRIM-19 complex has not been crystallised yet. Dictated by fundamental biophysical principles, the binding region, interactions and effects of hotspot mutations can provide us a clue to the negative regulatory mechanisms of GRIM-19. Prompted by the very nature of STAT3 being a challenging molecule, and to understand the structural basis of binding and interactions in STAT3α-GRIM-19 complex, we performed homology modelling and ab-initio modelling with evolutionary information using I-TASSER and avant-garde AlphaFold2, respectively, to generate monomeric, and subsequently, dimeric STAT3α structures. The dimeric form of STAT3α structure was observed to potentially exist in an anti-parallel orientation of monomers. We demonstrate that during the interactions with both unphosphorylated and phosphorylated STAT3α, the NTD of GRIM-19 binds most strongly to the NTD of STAT3α, in direct contrast to the earlier works. Key arginine residues at positions 57, 58 and 68 of GRIM-19 are mainly involved in the hydrogen-bonded interactions. An intriguing feature of these arginine residues is that these display a consistent interaction pattern across unphosphorylated and phosphorylated monomers as well as unphosphorylated dimers in STAT3α-GRIM-19 complexes. MD studies verified the stability of these complexes. Analysing the binding affinity and stability through free energy changes upon mutation, we found GRIM-19 mutations Y33P and Q61L and among GRIM-19 arginines, R68P and R57M, to be one of the top-most major and minor disruptors of binding, respectively. The proportionate increase in average change in binding affinity upon mutation was inclined more towards GRIM-19 mutants, leading to the surmise that GRIM-19 may play a greater role in the complex formation. These studies propound a novel structural perspective of STAT3α-GRIM-19 binding and inhibitory mechanisms in both the monomeric and dimeric forms of STAT3α as compared to that observed from the earlier experiments, these experimental observations being inconsistent among each other.
Collapse
Affiliation(s)
- Seema Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Santosh Kumar
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Imliyangla Longkumer
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Praveena Koyyada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|