1
|
Arribas EV, Maitra NT. Electronic Coherences in Molecules: The Projected Nuclear Quantum Momentum as a Hidden Agent. PHYSICAL REVIEW LETTERS 2024; 133:233201. [PMID: 39714655 DOI: 10.1103/physrevlett.133.233201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024]
Abstract
Electronic coherences are key to understanding and controlling photoinduced molecular transformations. We identify a crucial quantum-mechanical feature of electron-nuclear correlation, the projected nuclear quantum momenta, essential to capture the correct coherence behavior. For simulations, we show that, unlike traditional trajectory-based schemes, exact-factorization-based methods approximate these correlation terms and correctly capture electronic coherences in a range of situations, including their spatial dependence, an important aspect that influences subsequent electron dynamics and that is becoming accessible in more experiments.
Collapse
|
2
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
3
|
Ariyageadsakul P, Baeck KK. Dynamics of FHCl Including Two Bidirectional Dissociation Channels: Comparative Study Using Quantum Nuclear Wavepackets and Semiclassical Trajectory Surface Hopping. J Phys Chem A 2024; 128:8659-8671. [PMID: 39321032 DOI: 10.1021/acs.jpca.4c04346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The dynamics starting from the charge transfer excited state of neutral FHCl includes two bidirectional dissociation channels, producing "FH" and "Cl" fragments or "F" and "HCl" fragments by electron-transfer (ET) or proton-transfer (PT) processes, respectively. The quantum features of its dynamics were studied using the quantum dynamics of nuclear wavepacket propagation and the semiclassical dynamics of trajectory surface hopping propagation. The MS-CASPT2(17,11)/aug-cc-pVTZ method was used for calculating the energies of electronic states. Two critical quantum features identified in previous studies were the dominance of PT over ET and the ∼80 fs time gap between the onset of the earlier PT and the later ET processes. These features, in contrast to classical anticipation, were confirmed again, and their classical interpretations were developed based on the results of semiclassical dynamics. The relative location of nonadiabatic regions with respect to the starting point of dynamics and the activation of angular motion altering the HFCl angle play crucial roles in governing the two quantum features.
Collapse
Affiliation(s)
- Pinit Ariyageadsakul
- Department of Chemistry, National Gangneung-Wonju University, Gangneung, Gangwon-do 25457, Republic of Korea
| | - Kyoung Koo Baeck
- Department of Chemistry, National Gangneung-Wonju University, Gangneung, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
4
|
Li G, Shi Z, Huang L, Wang L. Multiconfigurational Surface Hopping: a Time-Dependent Variational Approach with Momentum-Jump Trajectories. J Chem Theory Comput 2024. [PMID: 39215702 DOI: 10.1021/acs.jctc.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Ehrenfest mean field dynamics and trajectory surface hopping have been widely used in nonadiabatic dynamics simulations. Based on the time-dependent variational principle (TDVP), the multiconfigurational Ehrenfest (MCE) method has also been developed and can be regarded as a multiconfigurational extension of the traditional Ehrenfest dynamics. However, it is not straightforward to apply the TDVP to surface hopping trajectories because there exists momentum jump during surface hops. To solve this problem, we here propose a multiconfigurational surface hopping (MCSH) method, where continuous momenta are obtained by linear interpolation and the interpolated trajectories are used to construct the basis functions for TDVP in a postprocessing manner. As demonstrated in a series of representative spin-boson models, MCSH achieves high accuracy with only several hundred trajectory bases and can uniformly improve the performance of surface hopping. In principle, MCSH can be combined with all kinds of mixed quantum-classical trajectories and thus has the potential to properly describe general nonadiabatic dynamics.
Collapse
Affiliation(s)
- Guijie Li
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhecun Shi
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Lei Huang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Huang H, Peng J, Zhang Y, Gu FL, Lan Z, Xu C. The development of the QM/MM interface and its application for the on-the-fly QM/MM nonadiabatic dynamics in JADE package: Theory, implementation, and applications. J Chem Phys 2024; 160:234101. [PMID: 38884395 DOI: 10.1063/5.0215036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.
Collapse
Affiliation(s)
- Haiyi Huang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yulin Zhang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Filatov M, Mironov V, Kraka E. Unraveling the effect of aromaticity for the dynamics of excited states of single benzene fluorophores. J Comput Chem 2024; 45:1033-1045. [PMID: 38216513 DOI: 10.1002/jcc.27304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/23/2023] [Accepted: 12/23/2023] [Indexed: 01/14/2024]
Abstract
The photophysical properties of a series of recently synthesized single benzene fluorophores were investigated using ensemble density functional theory calculations. The energetic stability of the ground and excited state species were counterposed against the aromaticity index derived from local vibrational modes. It was found that the large Stokes shift of the fluorophores (up to ca. 5800 cm - 1 ) originates from the effect of electron donating and electron withdrawing substituents rather than π -delocalization and related (anti-)aromaticity. On the basis of nonadiabatic molecular dynamics simulations, the absence of fluorescence from one of the regioisomers was explained by the occurrence of easily accessible S 1 /S 0 conical intersections below the vertical excitation energy level. It is demonstrated in the manuscript that the analysis of local mode force constants and the related aromaticity index represent a useful tool for the characterization of π -delocalization effects in π -conjugated compounds.
Collapse
Affiliation(s)
- Michael Filatov
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, Republic of Korea
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | | | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
7
|
Lee IS, Filatov M, Min SK. Formulation of transition dipole gradients for non-adiabatic dynamics with polaritonic states. J Chem Phys 2024; 160:154103. [PMID: 38624116 DOI: 10.1063/5.0202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
A general formulation of the strong coupling between photons confined in a cavity and molecular electronic states is developed for the state-interaction state-average spin-restricted ensemble-referenced Kohn-Sham method. The light-matter interaction is included in the Jaynes-Cummings model, which requires the derivation and implementation of the analytical derivatives of the transition dipole moments between the molecular electronic states. The developed formalism is tested in the simulations of the nonadiabatic dynamics in the polaritonic states resulting from the strong coupling between the cavity photon mode and the ground and excited states of the penta-2,4-dieniminium cation, also known as PSB3. Comparison with the field-free simulations of the excited-state decay dynamics in PSB3 reveals that the light-matter coupling can considerably alter the decay dynamics by increasing the excited state lifetime and hindering photochemically induced torsion about the C=C double bonds of PSB3. The necessity of obtaining analytical transition dipole gradients for the accurate propagation of the dynamics is underlined.
Collapse
Affiliation(s)
- In Seong Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Michael Filatov
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Kim SS, Rhee YM. Potential energy interpolation with target-customized weighting coordinates: application to excited-state dynamics of photoactive yellow protein chromophore in water. Phys Chem Chem Phys 2024; 26:9021-9036. [PMID: 38440829 DOI: 10.1039/d3cp05643k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Interpolation of potential energy surfaces (PESs) can provide a practical route to performing molecular dynamics simulations with a reliability matching a high-level quantum chemical calculation. An obstacle to its widespread use is perhaps the lack of general and optimal interpolation settings that can be applied in a black-box manner for any given molecular system. How to set up the weights for interpolation is one such task, and we still need to diversify the approaches in order to treat various systems. Here, we develop a new interpolation weighting scheme, which allows us to choose the weighting coordinates in a system-specific manner, by amplifying the contribution from specific internal coordinates. The new weighting scheme with an appropriate selection of coordinates is proved to be effective in reducing the interpolation error along the reaction pathway. As a demonstration, we consider the photoactive yellow protein chromophore system, as it constitutes itself as an interesting target that bears long-standing questions related to excited-state dynamics inside protein environments. We build its two-state diabatic interpolated PES with the new weighting scheme. We indeed see the utility of our scheme by conducting nonadiabatic molecular dynamics simulations with the required semi-global PES based on a limited number of data points.
Collapse
Affiliation(s)
- Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
9
|
Dupuy L, Rikus A, Maitra NT. Exact-Factorization-Based Surface Hopping without Velocity Adjustment. J Phys Chem Lett 2024:2643-2649. [PMID: 38422391 DOI: 10.1021/acs.jpclett.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
While surface hopping has emerged as a powerful method for simulating non-adiabatic dynamics in large molecules, the ad hoc nature of the necessary velocity adjustments and decoherence corrections in the algorithm somewhat reduces its reliability. Here we propose a new scheme that eliminates these aspects by combining the nuclear equation from the quantum-trajectory surface-hopping approach with the electronic equation derived from the exact-factorization approach. The resulting method, denoted QTSH-XF, yields a surface-hopping method on firmer ground than previous and is shown to successfully capture dynamics in Tully models and in a linear vibronic coupling model of the photoexcited uracil cation.
Collapse
Affiliation(s)
- Lucien Dupuy
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Anton Rikus
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
- University of Münster, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, 48149 Münster, Germany
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
Pieroni C, Sangiogo Gil E, Ibele LM, Persico M, Granucci G, Agostini F. Investigating the Photodynamics of trans-Azobenzene with Coupled Trajectories. J Chem Theory Comput 2024; 20:580-596. [PMID: 38177105 DOI: 10.1021/acs.jctc.3c00978] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this work, we present the first implementation of coupled-trajectory Tully surface hopping (CT-TSH) suitable for applications to molecular systems. We combine CT-TSH with the semiempirical floating occupation molecular orbital-configuration interaction electronic structure method to investigate the photoisomerization dynamics of trans-azobenzene. Our study shows that CT-TSH can capture correctly decoherence effects in this system, yielding consistent electronic and nuclear dynamics in agreement with (standard) decoherence-corrected TSH. Specifically, CT-TSH is derived from the exact factorization and the electronic coefficients' evolution is directly influenced by the coupling of trajectories, resulting in the improvement of internal consistency if compared to standard TSH.
Collapse
Affiliation(s)
- Carlotta Pieroni
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Eduarda Sangiogo Gil
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Lea M Ibele
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Maurizio Persico
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giovanni Granucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
11
|
Villaseco Arribas E, Vindel-Zandbergen P, Roy S, Maitra NT. Different flavors of exact-factorization-based mixed quantum-classical methods for multistate dynamics. Phys Chem Chem Phys 2023; 25:26380-26395. [PMID: 37750820 DOI: 10.1039/d3cp03464j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The exact factorization approach has led to the development of new mixed quantum-classical methods for simulating coupled electron-ion dynamics. We compare their performance for dynamics when more than two electronic states are occupied at a given time, and analyze: (1) the use of coupled versus auxiliary trajectories in evaluating the electron-nuclear correlation terms, (2) the approximation of using these terms within surface-hopping and Ehrenfest frameworks, and (3) the relevance of the exact conditions of zero population transfer away from nonadiabatic coupling regions and total energy conservation. Dynamics through the three-state conical intersection in the uracil radical cation as well as polaritonic models in one dimension are studied.
Collapse
Affiliation(s)
| | - Patricia Vindel-Zandbergen
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Saswata Roy
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA.
| |
Collapse
|
12
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
13
|
Freixas VM, Malone W, Li X, Song H, Negrin-Yuvero H, Pérez-Castillo R, White A, Gibson TR, Makhov DV, Shalashilin DV, Zhang Y, Fedik N, Kulichenko M, Messerly R, Mohanam LN, Sharifzadeh S, Bastida A, Mukamel S, Fernandez-Alberti S, Tretiak S. NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2023; 19:5356-5368. [PMID: 37506288 DOI: 10.1021/acs.jctc.3c00583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.
Collapse
Affiliation(s)
- Victor M Freixas
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Walter Malone
- Department of Physics, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Xinyang Li
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Royle Pérez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Alexander White
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie R Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | | | - Yu Zhang
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikita Fedik
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maksim Kulichenko
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Richard Messerly
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Luke Nambi Mohanam
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
14
|
Vainikka P, Marrink SJ. Martini 3 Coarse-Grained Model for Second-Generation Unidirectional Molecular Motors and Switches. J Chem Theory Comput 2023; 19:596-604. [PMID: 36625495 PMCID: PMC9878727 DOI: 10.1021/acs.jctc.2c00796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/11/2023]
Abstract
Artificial molecular motors (MMs) and switches (MSs), capable of undergoing unidirectional rotation or switching under the appropriate stimuli, are being utilized in multiple complex and chemically diverse environments. Although thorough theoretical work utilizing QM and QM/MM methods have mapped out many of the critical properties of MSs and MMs, as the experimental setups become more complex and ambitious, there is an ever increasing need to study the behavior and dynamics of these molecules as they interact with their environment. To this end, we have parametrized two coarse-grained (CG) models of commonly used MMs and a model for an oxindole-based MS, which can be used to study the ground state behavior of MMs and MSs in large simulations for significantly longer periods of time. We also propose methods to perturb these systems which can allow users to approximate how such systems would respond to MMs rotating or the MSs switching.
Collapse
Affiliation(s)
- Petteri Vainikka
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| | - Siewert J. Marrink
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AGGroningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AGGroningen, The Netherlands
| |
Collapse
|
15
|
Barbatti M, Bondanza M, Crespo-Otero R, Demoulin B, Dral PO, Granucci G, Kossoski F, Lischka H, Mennucci B, Mukherjee S, Pederzoli M, Persico M, Pinheiro Jr M, Pittner J, Plasser F, Sangiogo Gil E, Stojanovic L. Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles. J Chem Theory Comput 2022; 18:6851-6865. [PMID: 36194696 PMCID: PMC9648185 DOI: 10.1021/acs.jctc.2c00804] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 12/01/2022]
Abstract
Newton-X is an open-source computational platform to perform nonadiabatic molecular dynamics based on surface hopping and spectrum simulations using the nuclear ensemble approach. Both are among the most common methodologies in computational chemistry for photophysical and photochemical investigations. This paper describes the main features of these methods and how they are implemented in Newton-X. It emphasizes the newest developments, including zero-point-energy leakage correction, dynamics on complex-valued potential energy surfaces, dynamics induced by incoherent light, dynamics based on machine-learning potentials, exciton dynamics of multiple chromophores, and supervised and unsupervised machine learning techniques. Newton-X is interfaced with several third-party quantum-chemistry programs, spanning a broad spectrum of electronic structure methods.
Collapse
Affiliation(s)
- Mario Barbatti
- Aix
Marseille University, CNRS, ICR, 13013Marseille, France
- Institut
Universitaire de France, 75231Paris, France
| | - Mattia Bondanza
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | - Rachel Crespo-Otero
- Department
of Chemistry, Queen Mary University of London, Mile End Road, E1 4NSLondon, U.K.
| | | | - Pavlo O. Dral
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, Department
of Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, 361005Xiamen, China
| | - Giovanni Granucci
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | - Fábris Kossoski
- Laboratoire
de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31000Toulouse, France
| | - Hans Lischka
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas79409, United States
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | | | - Marek Pederzoli
- J.
Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223Prague 8, Czech Republic
| | - Maurizio Persico
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | | | - Jiří Pittner
- J.
Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223Prague 8, Czech Republic
| | - Felix Plasser
- Department
of Chemistry, Loughborough University, LE11 3TULoughborough, U.K.
| | - Eduarda Sangiogo Gil
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Moruzzi
13, 56124Pisa, Italy
| | - Ljiljana Stojanovic
- Department
of Physics and Astronomy, University College
London, Gower Street, WC1E 6BTLondon, U.K.
| |
Collapse
|
16
|
Towards the engineering of a photon-only two-stroke rotary molecular motor. Nat Commun 2022; 13:6433. [PMID: 36307476 PMCID: PMC9616945 DOI: 10.1038/s41467-022-33695-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/27/2022] [Indexed: 12/25/2022] Open
Abstract
The rational engineering of photoresponsive materials, e.g., light-driven molecular motors, is a challenging task. Here, we use structure-related design rules to prepare a prototype molecular rotary motor capable of completing an entire revolution using, exclusively, the sequential absorption of two photons; i.e., a photon-only two-stroke motor. The mechanism of rotation is then characterised using a combination of non-adiabatic dynamics simulations and transient absorption spectroscopy measurements. The results show that the rotor moiety rotates axially relative to the stator and produces, within a few picoseconds at ambient T, an intermediate with the same helicity as the starting structure. We discuss how such properties, that include a 0.25 quantum efficiency, can help overcome the operational limitations of the classical overcrowded alkene designs.
Collapse
|
17
|
Villaseco Arribas E, Agostini F, Maitra NT. Exact Factorization Adventures: A Promising Approach for Non-Bound States. Molecules 2022; 27:molecules27134002. [PMID: 35807246 PMCID: PMC9267945 DOI: 10.3390/molecules27134002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Modeling the dynamics of non-bound states in molecules requires an accurate description of how electronic motion affects nuclear motion and vice-versa. The exact factorization (XF) approach offers a unique perspective, in that it provides potentials that act on the nuclear subsystem or electronic subsystem, which contain the effects of the coupling to the other subsystem in an exact way. We briefly review the various applications of the XF idea in different realms, and how features of these potentials aid in the interpretation of two different laser-driven dissociation mechanisms. We present a detailed study of the different ways the coupling terms in recently-developed XF-based mixed quantum-classical approximations are evaluated, where either truly coupled trajectories, or auxiliary trajectories that mimic the coupling are used, and discuss their effect in both a surface-hopping framework as well as the rigorously-derived coupled-trajectory mixed quantum-classical approach.
Collapse
Affiliation(s)
| | - Federica Agostini
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, 91405 Orsay, France;
| | - Neepa T. Maitra
- Department of Physics, Rutgers University, Newark, NJ 07102, USA;
- Correspondence:
| |
Collapse
|
18
|
Lee IS, Min SK. Generalized Formulation of the Density Functional Tight Binding-Based Restricted Ensemble Kohn-Sham Method with Onsite Correction to Long-Range Correction. J Chem Theory Comput 2022; 18:3391-3409. [PMID: 35549266 DOI: 10.1021/acs.jctc.2c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a generalized formulation for the combination of the density functional tight binding (DFTB) approach and the state-interaction state-average spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS or SSR) method by considering onsite correction (OC) as well as the long-range corrected (LC) functional. The OC contribution provides more accurate energies and analytic gradients for individual microstates, while the multireference character of the SSR provides the correct description for conical intersections. We benchmark the LC-OC-DFTB/SSR method against various DFTB calculation methods for excitation energies and conical intersection structures with π/π* or n/π* characters. Furthermore, we perform excited-state molecular dynamics simulations with a molecular rotary motor with variations of LC-OC-DFTB/SSR approaches. We show that the OC contribution to the LC functional is crucial to obtain the correct geometry of conical intersections.
Collapse
Affiliation(s)
- In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| |
Collapse
|
19
|
Talotta F, Lauvergnat D, Agostini F. Describing the photo-isomerization of a retinal chromophore model with coupled and quantum trajectories. J Chem Phys 2022; 156:184104. [DOI: 10.1063/5.0089415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The exact factorization of the electron-nuclear wavefunction is applied to the study of the photo- isomerization of a retinal chromophore model. We describe such an ultrafast nonadiabatic process by analyzing the time-dependent potentials of the theory and by mimicking nuclear dynamics with quantum and coupled trajectories. The time-dependent vector and scalar potentials are the signature of the exact factorization, as they guide nuclear dynamics by encoding the complete electronic dynamics and including excited-state effects. Analysis of the potentials is, thus, essential - when possible - to predict the time-dependent behavior of the system of interest. In this work, we employ the exact time-dependent potentials, available for the numerically-exactly solvable model used here, to propagate quantum nuclear trajectories representing the isomerization reaction of the retinal chromophore. The quantum trajectories are the best possible trajectory-based description of the reaction when using the exact-factorization formalism, and thus allow us to assess the performance of the coupled-trajectory, fully approximate, schemes derived from the exact-factorization equations.
Collapse
Affiliation(s)
| | - David Lauvergnat
- Institut de Chimie Physique, UMR 8000, CNRS Délégation Ile-de-France Sud, France
| | | |
Collapse
|
20
|
Ha JK, Min SK. Independent Trajectory Mixed Quantum-Classical Approaches Based on the Exact Factorization. J Chem Phys 2022; 156:174109. [DOI: 10.1063/5.0084493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mixed quantum-classical dynamics based on the exact factorization exploits the "derived" electron-nuclear correlation (ENC) term aiming for the description of quantum coherences. The ENC contains interactions between the phase of electronic states and nuclear quantum momenta which depend on the spatial shape of the nuclear density.The original surface hopping based on the exact factorization (SHXF) [\textit{J. Phys. Chem. Lett.} \textbf{2018}, \textit{9}, 1097] exploits frozen Gaussian functions to construct the nuclear density in the ENC term while the phase of electronic states is approximated as a fictitious nuclear momentum change.However, in reality, the width of nuclear wave packets varies in time depending on the shape of potential energy surfaces.In this work, we present a modified SHXF approach and a newly-developed Ehrenfest dynamics based on the exact factorization (EhXF) with time-dependent Gaussian functions and phases by enforcing total energy conservation.We perform numerical tests for various one-dimensional two-state model Hamiltonians.Overall, the time-dependent width of Gaussian functions and the energy conserving phase show a reliable decoherence compared to the original frozen Gaussian-based SHXF and the exact quantum mechanical calculation.Especially, the energy conserving phase is crucial for EhXF to reproduce the correct quantum dynamics.
Collapse
Affiliation(s)
- Jong-Kwon Ha
- Chemistry, Ulsan National Institute of Science and Technology, Korea, Republic of (South Korea)
| | - Seung Kyu Min
- Ulsan National Institute of Science and Technology, Korea, Republic of (South Korea)
| |
Collapse
|
21
|
Vindel-Zandbergen P, Matsika S, Maitra NT. Exact-Factorization-Based Surface Hopping for Multistate Dynamics. J Phys Chem Lett 2022; 13:1785-1790. [PMID: 35170972 DOI: 10.1021/acs.jpclett.1c04132] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A surface-hopping algorithm recently derived from the exact factorization approach, SHXF [Ha et al. J. Phys. Chem. Lett. 2018, 9, 1097], introduces an additional term in the electronic equation of surface hopping that couples electronic states through the quantum momentum. This term not only provides a first-principles description of decoherence, but here we show it is crucial to accurately capture nonadiabatic dynamics when more than two states are occupied at any given time. Using a vibronic coupling model of the uracil cation, we show that the lack of this term in traditional surface-hopping methods, including those with decoherence corrections, leads to failure to predict the dynamics through a three-state intersection, while SHXF performs similarly to the multiconfiguration time-dependent Hartree quantum dynamics benchmark.
Collapse
Affiliation(s)
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
22
|
Coupled- and Independent-Trajectory Approaches Based on the Exact Factorization Using the PyUNIxMD Package. Top Curr Chem (Cham) 2022; 380:8. [PMID: 35083549 DOI: 10.1007/s41061-021-00361-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
We present mixed quantum-classical approaches based on the exact factorization framework. The electron-nuclear correlation term in the exact factorization enables us to deal with quantum coherences by accounting for electronic and nuclear nonadiabatic couplings effectively within classical nuclei approximation. We compare coupled- and independent-trajectory approximations with each other to understand algorithms in description of the bifurcation of nuclear wave packets and the correct spatial distribution of electronic wave functions along with nuclear trajectories. Finally, we show numerical results for comparisons of coupled- and independent-trajectory approaches for the photoisomerization of a protonated Schiff base from excited state molecular dynamics (ESMD) simulations with the recently developed Python-based ESMD code, namely, the PyUNIxMD program.
Collapse
|
23
|
Abstract
In this paper, we discuss coupled-trajectory schemes for molecular-dynamics simulations of excited-state processes. New coupled-trajectory strategies to capture decoherence effects, revival of coherence and nonadiabatic interferences in long-time dynamics are proposed, and compared to independent-trajectory schemes. The working framework is provided by the exact factorization of the electron-nuclear wave function, and it exploits ideas emanating from various surface-hopping schemes. The new coupled-trajectory algorithms are tested on a one-dimensional two-state system using different model parameters which allow one to induce different dynamics. The benchmark is provided by the numerically exact solution of the time-dependent Schrödinger equation.
Collapse
Affiliation(s)
- Carlotta Pieroni
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France.,Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Federica Agostini
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
24
|
Vindel-Zandbergen P, Ibele LM, Ha JK, Min SK, Curchod BFE, Maitra NT. Study of the Decoherence Correction Derived from the Exact Factorization Approach for Nonadiabatic Dynamics. J Chem Theory Comput 2021; 17:3852-3862. [PMID: 34138553 PMCID: PMC8280698 DOI: 10.1021/acs.jctc.1c00346] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
We present a detailed
study of the decoherence correction to surface
hopping that was recently derived from the exact factorization approach.
Ab initio multiple spawning calculations that use the same initial
conditions and the same electronic structure method are used as a
reference for three molecules: ethylene, the methaniminium cation,
and fulvene, for which nonadiabatic dynamics follows a photoexcitation.
A comparison with the Granucci–Persico energy-based decoherence
correction and the augmented fewest-switches surface-hopping scheme
shows that the three decoherence-corrected methods operate on individual
trajectories in a qualitatively different way, but the results averaged
over trajectories are similar for these systems.
Collapse
Affiliation(s)
| | - Lea M Ibele
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Jong-Kwon Ha
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Neepa T Maitra
- Department of Physics, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
25
|
Lee IS, Ha JK, Han D, Kim TI, Moon SW, Min SK. PyUNIxMD: A Python-based excited state molecular dynamics package. J Comput Chem 2021; 42:1755-1766. [PMID: 34197646 PMCID: PMC8362049 DOI: 10.1002/jcc.26711] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 01/17/2023]
Abstract
Theoretical/computational description of excited state molecular dynamics is nowadays a crucial tool for understanding light-matter interactions in many materials. Here we present an open-source Python-based nonadiabatic molecular dynamics program package, namely PyUNIxMD, to deal with mixed quantum-classical dynamics for correlated electron-nuclear propagation. The PyUNIxMD provides many interfaces for quantum chemical calculation methods with commercial and noncommercial ab initio and semiempirical quantum chemistry programs. In addition, the PyUNIxMD offers many nonadiabatic molecular dynamics algorithms such as fewest-switch surface hopping and its derivatives as well as decoherence-induced surface hopping based on the exact factorization (DISH-XF) and coupled-trajectory mixed quantum-classical dynamics (CTMQC) for general purposes. Detailed structures and flows of PyUNIxMD are explained for the further implementations by developers. We perform a nonadiabatic molecular dynamics simulation for a molecular motor system as a simple demonstration.
Collapse
Affiliation(s)
- In Seong Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jong-Kwon Ha
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Daeho Han
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae In Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sung Wook Moon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|