1
|
Zheng F, Liu Y, Yang Y, Wen Y, Li M. Assessing computational tools for predicting protein stability changes upon missense mutations using a new dataset. Protein Sci 2024; 33:e4861. [PMID: 38084013 PMCID: PMC10751734 DOI: 10.1002/pro.4861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Insight into how mutations affect protein stability is crucial for protein engineering, understanding genetic diseases, and exploring protein evolution. Numerous computational methods have been developed to predict the impact of amino acid substitutions on protein stability. Nevertheless, comparing these methods poses challenges due to variations in their training data. Moreover, it is observed that they tend to perform better at predicting destabilizing mutations than stabilizing ones. Here, we meticulously compiled a new dataset from three recently published databases: ThermoMutDB, FireProtDB, and ProThermDB. This dataset, which does not overlap with the well-established S2648 dataset, consists of 4038 single-point mutations, including over 1000 stabilizing mutations. We assessed these mutations using 27 computational methods, including the latest ones utilizing mega-scale stability datasets and transfer learning. We excluded entries with overlap or similarity to training datasets to ensure fairness. Pearson correlation coefficients for the tested tools ranged from 0.20 to 0.53 on unseen data, and none of the methods could accurately predict stabilizing mutations, even those performing well in anti-symmetric property analysis. While most methods present consistent trends for predicting destabilizing mutations across various properties such as solvent exposure and secondary conformation, stabilizing mutations do not exhibit a clear pattern. Our study also suggests that solely addressing training dataset bias may not significantly enhance accuracy of predicting stabilizing mutations. These findings emphasize the importance of developing precise predictive methods for stabilizing mutations.
Collapse
Affiliation(s)
- Feifan Zheng
- MOE Key Laboratory of Geriatric Diseases and ImmunologySchool of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Yang Liu
- MOE Key Laboratory of Geriatric Diseases and ImmunologySchool of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Yan Yang
- MOE Key Laboratory of Geriatric Diseases and ImmunologySchool of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Yuhao Wen
- MOE Key Laboratory of Geriatric Diseases and ImmunologySchool of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Minghui Li
- MOE Key Laboratory of Geriatric Diseases and ImmunologySchool of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow UniversitySuzhouChina
| |
Collapse
|
2
|
Thakur S, Planeta Kepp K, Mehra R. Predicting virus Fitness: Towards a structure-based computational model. J Struct Biol 2023; 215:108042. [PMID: 37931730 DOI: 10.1016/j.jsb.2023.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Predicting the impact of new emerging virus mutations is of major interest in surveillance and for understanding the evolutionary forces of the pathogens. The SARS-CoV-2 surface spike-protein (S-protein) binds to human ACE2 receptors as a critical step in host cell infection. At the same time, S-protein binding to human antibodies neutralizes the virus and prevents interaction with ACE2. Here we combine these two binding properties in a simple virus fitness model, using structure-based computation of all possible mutation effects averaged over 10 ACE2 complexes and 10 antibody complexes of the S-protein (∼380,000 computed mutations), and validated the approach against diverse experimental binding/escape data of ACE2 and antibodies. The ACE2-antibody selectivity change caused by mutation (i.e., the differential change in binding to ACE2 vs. immunity-inducing antibodies) is proposed to be a key metric of fitness model, enabling systematic error cancelation when evaluated. In this model, new mutations become fixated if they increase the selective binding to ACE2 relative to circulating antibodies, assuming that both are present in the host in a competitive binding situation. We use this model to categorize viral mutations that may best reach ACE2 before being captured by antibodies. Our model may aid the understanding of variant-specific vaccines and molecular mechanisms of viral evolution in the context of a human host.
Collapse
Affiliation(s)
- Shivani Thakur
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India
| | - Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800 Kongens Lyngby, Denmark
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India; Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Kutelabhata, Durg - 491001, Chhattisgarh, India.
| |
Collapse
|
3
|
Tsishyn M, Pucci F, Rooman M. Quantification of biases in predictions of protein-protein binding affinity changes upon mutations. Brief Bioinform 2023; 25:bbad491. [PMID: 38197311 PMCID: PMC10777193 DOI: 10.1093/bib/bbad491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Understanding the impact of mutations on protein-protein binding affinity is a key objective for a wide range of biotechnological applications and for shedding light on disease-causing mutations, which are often located at protein-protein interfaces. Over the past decade, many computational methods using physics-based and/or machine learning approaches have been developed to predict how protein binding affinity changes upon mutations. They all claim to achieve astonishing accuracy on both training and test sets, with performances on standard benchmarks such as SKEMPI 2.0 that seem overly optimistic. Here we benchmarked eight well-known and well-used predictors and identified their biases and dataset dependencies, using not only SKEMPI 2.0 as a test set but also deep mutagenesis data on the severe acute respiratory syndrome coronavirus 2 spike protein in complex with the human angiotensin-converting enzyme 2. We showed that, even though most of the tested methods reach a significant degree of robustness and accuracy, they suffer from limited generalizability properties and struggle to predict unseen mutations. Interestingly, the generalizability problems are more severe for pure machine learning approaches, while physics-based methods are less affected by this issue. Moreover, undesirable prediction biases toward specific mutation properties, the most marked being toward destabilizing mutations, are also observed and should be carefully considered by method developers. We conclude from our analyses that there is room for improvement in the prediction models and suggest ways to check, assess and improve their generalizability and robustness.
Collapse
Affiliation(s)
- Matsvei Tsishyn
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| |
Collapse
|
4
|
Sapozhnikov Y, Patel JS, Ytreberg FM, Miller CR. Statistical modeling to quantify the uncertainty of FoldX-predicted protein folding and binding stability. BMC Bioinformatics 2023; 24:426. [PMID: 37953256 PMCID: PMC10642056 DOI: 10.1186/s12859-023-05537-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Computational methods of predicting protein stability changes upon missense mutations are invaluable tools in high-throughput studies involving a large number of protein variants. However, they are limited by a wide variation in accuracy and difficulty of assessing prediction uncertainty. Using a popular computational tool, FoldX, we develop a statistical framework that quantifies the uncertainty of predicted changes in protein stability. RESULTS We show that multiple linear regression models can be used to quantify the uncertainty associated with FoldX prediction for individual mutations. Comparing the performance among models with varying degrees of complexity, we find that the model precision improves significantly when we utilize molecular dynamics simulation as part of the FoldX workflow. Based on the model that incorporates information from molecular dynamics, biochemical properties, as well as FoldX energy terms, we can generally expect upper bounds on the uncertainty of folding stability predictions of ± 2.9 kcal/mol and ± 3.5 kcal/mol for binding stability predictions. The uncertainty for individual mutations varies; our model estimates it using FoldX energy terms, biochemical properties of the mutated residue, as well as the variability among snapshots from molecular dynamics simulation. CONCLUSIONS Using a linear regression framework, we construct models to predict the uncertainty associated with FoldX prediction of stability changes upon mutation. This technique is straightforward and can be extended to other computational methods as well.
Collapse
Affiliation(s)
- Yesol Sapozhnikov
- Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Jagdish Suresh Patel
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| | - F Marty Ytreberg
- Department of Physics, University of Idaho, Moscow, ID, 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| | - Craig R Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA.
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
5
|
Umerenkov D, Nikolaev F, Shashkova TI, Strashnov PV, Sindeeva M, Shevtsov A, Ivanisenko NV, Kardymon OL. PROSTATA: a framework for protein stability assessment using transformers. Bioinformatics 2023; 39:btad671. [PMID: 37935419 PMCID: PMC10651431 DOI: 10.1093/bioinformatics/btad671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
MOTIVATION Accurate prediction of change in protein stability due to point mutations is an attractive goal that remains unachieved. Despite the high interest in this area, little consideration has been given to the transformer architecture, which is dominant in many fields of machine learning. RESULTS In this work, we introduce PROSTATA, a predictive model built in a knowledge-transfer fashion on a new curated dataset. PROSTATA demonstrates advantage over existing solutions based on neural networks. We show that the large improvement margin is due to both the architecture of the model and the quality of the new training dataset. This work opens up opportunities to develop new lightweight and accurate models for protein stability assessment. AVAILABILITY AND IMPLEMENTATION PROSTATA is available at https://github.com/AIRI-Institute/PROSTATA and https://prostata.airi.net.
Collapse
Affiliation(s)
| | | | | | - Pavel V Strashnov
- Bioinformatics Group, AIRI, Moscow 121170, Russia
- Department of Computer Design and Technology, Bauman Moscow State Technical University, Moscow 105005, Russia
| | | | - Andrey Shevtsov
- Bioinformatics Group, AIRI, Moscow 121170, Russia
- Regulatory Transcriptomics and Epigenomics Group, Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow 117036, Russia
| | - Nikita V Ivanisenko
- Bioinformatics Group, AIRI, Moscow 121170, Russia
- Laboratory of Computational Proteomics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | |
Collapse
|
6
|
Thakur S, Verma RK, Kepp KP, Mehra R. Modelling SARS-CoV-2 spike-protein mutation effects on ACE2 binding. J Mol Graph Model 2023; 119:108379. [PMID: 36481587 PMCID: PMC9690204 DOI: 10.1016/j.jmgm.2022.108379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The binding affinity of the SARS-CoV-2 spike (S)-protein to the human membrane protein ACE2 is critical for virus function. Computational structure-based screening of new S-protein mutations for ACE2 binding lends promise to rationalize virus function directly from protein structure and ideally aid early detection of potentially concerning variants. We used a computational protocol based on cryo-electron microscopy structures of the S-protein to estimate the change in ACE2-affinity due to S-protein mutation (ΔΔGbind) in good trend agreement with experimental ACE2 affinities. We then expanded predictions to all possible S-protein mutations in 21 different S-protein-ACE2 complexes (400,000 ΔΔGbind data points in total), using mutation group comparisons to reduce systematic errors. The results suggest that mutations that have arisen in major variants as a group maintain ACE2 affinity significantly more than random mutations in the total protein, at the interface, and at evolvable sites. Omicron mutations as a group had a modest change in binding affinity compared to mutations in other major variants. The single-mutation effects seem consistent with ACE2 binding being optimized and maintained in omicron, despite increased importance of other selection pressures (antigenic drift), however, epistasis, glycosylation and in vivo conditions will modulate these effects. Computational prediction of SARS-CoV-2 evolution remains far from achieved, but the feasibility of large-scale computation is substantially aided by using many structures and mutation groups rather than single mutation effects, which are very uncertain. Our results demonstrate substantial challenges but indicate ways forward to improve the quality of computer models for assessing SARS-CoV-2 mutation effects.
Collapse
Affiliation(s)
- Shivani Thakur
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Rajaneesh Kumar Verma
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India
| | - Kasper Planeta Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, 2800, Kongens Lyngby, Denmark.
| | - Rukmankesh Mehra
- Department of Chemistry, Indian Institute of Technology Bhilai, Sejbahar, Raipur, 492015, Chhattisgarh, India.
| |
Collapse
|
7
|
Sora V, Laspiur AO, Degn K, Arnaudi M, Utichi M, Beltrame L, De Menezes D, Orlandi M, Stoltze UK, Rigina O, Sackett PW, Wadt K, Schmiegelow K, Tiberti M, Papaleo E. RosettaDDGPrediction for high-throughput mutational scans: From stability to binding. Protein Sci 2023; 32:e4527. [PMID: 36461907 PMCID: PMC9795540 DOI: 10.1002/pro.4527] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022]
Abstract
Reliable prediction of free energy changes upon amino acid substitutions (ΔΔGs) is crucial to investigate their impact on protein stability and protein-protein interaction. Advances in experimental mutational scans allow high-throughput studies thanks to multiplex techniques. On the other hand, genomics initiatives provide a large amount of data on disease-related variants that can benefit from analyses with structure-based methods. Therefore, the computational field should keep the same pace and provide new tools for fast and accurate high-throughput ΔΔG calculations. In this context, the Rosetta modeling suite implements effective approaches to predict folding/unfolding ΔΔGs in a protein monomer upon amino acid substitutions and calculate the changes in binding free energy in protein complexes. However, their application can be challenging to users without extensive experience with Rosetta. Furthermore, Rosetta protocols for ΔΔG prediction are designed considering one variant at a time, making the setup of high-throughput screenings cumbersome. For these reasons, we devised RosettaDDGPrediction, a customizable Python wrapper designed to run free energy calculations on a set of amino acid substitutions using Rosetta protocols with little intervention from the user. Moreover, RosettaDDGPrediction assists with checking completed runs and aggregates raw data for multiple variants, as well as generates publication-ready graphics. We showed the potential of the tool in four case studies, including variants of uncertain significance in childhood cancer, proteins with known experimental unfolding ΔΔGs values, interactions between target proteins and disordered motifs, and phosphomimetics. RosettaDDGPrediction is available, free of charge and under GNU General Public License v3.0, at https://github.com/ELELAB/RosettaDDGPrediction.
Collapse
Affiliation(s)
- Valentina Sora
- Cancer Structural Biology, Danish Cancer Society Research CenterCopenhagenDenmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Adrian Otamendi Laspiur
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Matteo Arnaudi
- Cancer Structural Biology, Danish Cancer Society Research CenterCopenhagenDenmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Mattia Utichi
- Cancer Structural Biology, Danish Cancer Society Research CenterCopenhagenDenmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Ludovica Beltrame
- Cancer Structural Biology, Danish Cancer Society Research CenterCopenhagenDenmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Dayana De Menezes
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Matteo Orlandi
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Ulrik Kristoffer Stoltze
- Department of Clinical GeneticsCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Department of Pediatrics and Adolescent MedicineUniversity Hospital RigshospitaletCopenhagenDenmark
- Institute of Clinical Medicine, Faculty of MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Olga Rigina
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Peter Wad Sackett
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| | - Karin Wadt
- Department of Clinical GeneticsCopenhagen University Hospital RigshospitaletCopenhagenDenmark
- Institute of Clinical Medicine, Faculty of MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent MedicineUniversity Hospital RigshospitaletCopenhagenDenmark
- Institute of Clinical Medicine, Faculty of MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research CenterCopenhagenDenmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research CenterCopenhagenDenmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and TechnologyTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
8
|
Stability and expression of SARS-CoV-2 spike-protein mutations. Mol Cell Biochem 2022; 478:1269-1280. [PMID: 36302994 PMCID: PMC9612610 DOI: 10.1007/s11010-022-04588-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022]
Abstract
Protein fold stability likely plays a role in SARS-CoV-2 S-protein evolution, together with ACE2 binding and antibody evasion. While few thermodynamic stability data are available for S-protein mutants, many systematic experimental data exist for their expression. In this paper, we explore whether such expression levels relate to the thermodynamic stability of the mutants. We studied mutation-induced SARS-CoV-2 S-protein fold stability, as computed by three very distinct methods and eight different protein structures to account for method- and structure-dependencies. For all methods and structures used (24 comparisons), computed stability changes correlate significantly (99% confidence level) with experimental yeast expression from the literature, such that higher expression is associated with relatively higher fold stability. Also significant, albeit weaker, correlations were seen between stability and ACE2 binding effects. The effect of thermodynamic fold stability may be direct or a correlate of amino acid or site properties, notably the solvent exposure of the site. Correlation between computed stability and experimental expression and ACE2 binding suggests that functional properties of the SARS-CoV-2 S-protein mutant space are largely determined by a few simple features, due to underlying correlations. Our study lends promise to the development of computational tools that may ideally aid in understanding and predicting SARS-CoV-2 S-protein evolution.
Collapse
|
9
|
Structural heterogeneity and precision of implications drawn from cryo-electron microscopy structures: SARS-CoV-2 spike-protein mutations as a test case. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:555-568. [PMID: 36167828 PMCID: PMC9514682 DOI: 10.1007/s00249-022-01619-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
Abstract
Protein structures may be used to draw functional implications at the residue level, but how sensitive are these implications to the exact structure used? Calculation of the effects of SARS-CoV-2 S-protein mutations based on experimental cryo-electron microscopy structures have been abundant during the pandemic. To understand the precision of such estimates, we studied three distinct methods to estimate stability changes for all possible mutations in 23 different S-protein structures (3.69 million ΔΔG values in total) and explored how random and systematic errors can be remedied by structure-averaged mutation group comparisons. We show that computational estimates have low precision, due to method and structure heterogeneity making results for single mutations uninformative. However, structure-averaged differences in mean effects for groups of substitutions can yield significant results. Illustrating this protocol, functionally important natural mutations, despite individual variations, average to a smaller stability impact compared to other possible mutations, independent of conformational state (open, closed). In summary, we document substantial issues with precision in structure-based protein modeling and recommend sensitivity tests to quantify these effects, but also suggest partial solutions to the problem in the form of structure-averaged “ensemble” estimates for groups of residues when multiple structures are available.
Collapse
|
10
|
García-Cebollada H, López A, Sancho J. Protposer: the web server that readily proposes protein stabilizing mutations with high PPV. Comput Struct Biotechnol J 2022; 20:2415-2433. [PMID: 35664235 PMCID: PMC9133766 DOI: 10.1016/j.csbj.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 01/23/2023] Open
Abstract
Protein stability is a requisite for most biotechnological and medical applications of proteins. As natural proteins tend to suffer from a low conformational stability ex vivo, great efforts have been devoted toward increasing their stability through rational design and engineering of appropriate mutations. Unfortunately, even the best currently used predictors fail to compute the stability of protein variants with sufficient accuracy and their usefulness as tools to guide the rational stabilisation of proteins is limited. We present here Protposer, a protein stabilising tool based on a different approach. Instead of quantifying changes in stability, Protposer uses structure- and sequence-based screening modules to nominate candidate mutations for subsequent evaluation by a logistic regression model, carefully trained to avoid overfitting. Thus, Protposer analyses PDB files in search for stabilization opportunities and provides a ranked list of promising mutations with their estimated success rates (eSR), their probabilities of being stabilising by at least 0.5 kcal/mol. The agreement between eSRs and actual positive predictive values (PPV) on external datasets of mutations is excellent. When Protposer is used with its Optimal kappa selection threshold, its PPV is above 0.7. Even with less stringent thresholds, Protposer largely outperforms FoldX, Rosetta and PoPMusiC. Indicating the PDB file of the protein suffices to obtain a ranked list of mutations, their eSRs and hints on the likely source of the stabilization expected. Protposer is a distinct, straightforward and highly successful tool to design protein stabilising mutations, and it is freely available for academic use at http://webapps.bifi.es/the-protposer.
Collapse
|