1
|
Terzi M, Manousi N, Tzanavaras PD, Zacharis CK. Utilization of a pH-switchable hydrophilicity solvent for the microextraction of clomipramine from human urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1235:124060. [PMID: 38417274 DOI: 10.1016/j.jchromb.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Clomipramine (CLP) is a tricyclic antidepressant drug, and its determination in biological samples is of high importance in clinical and forensic evaluations to assure appropriate drug concentrations. In the present study, benzoic acid was employed as a pH-switchable hydrophilicity solvent (SHS) for the microextraction of CLP from authentic human urine samples prior to its determination by high performance liquid chromatography-ultraviolet detection (HPLC-UV). The microextraction protocol was based on the phase transition of the SHS through pH alteration that resulted in its rapid dispersion and simultaneous phase separation. The obtained solid was collected in a syringe filter, dissolved in methanol, and analyzed. The main parameters that affected the efficiency of the microextraction procedure were studied and optimized to ensure high extraction efficiency for CLP and the analytical method was validated. Under optimum conditions, good linearity was observed between 0.05 and 5.0 μg mL-1. The limit of detection and limit of quantification were found to be 0.015 and 0.05 μg mL-1, respectively. The RSD values for intra-day repeatability and inter-day precision were 2.4-8.9 % and 1.7-9.1 %, respectively. The relative recovery values were within 90.0 and 110.0 % in all cases, demonstrating good method accuracy. The proposed SHS microextraction showed cost-efficiency, handling simplicity, and rapidity resulting in enhanced sample throughput. Moreover, the proposed method exhibited a green character and good applicability based on its evaluation by Green Analytical Procedure Index and Blue Applicability Grade Index.
Collapse
Affiliation(s)
- Maria Terzi
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
2
|
Ciuca MD, Racovita RC. Development of Visible Spectrophotometric Methods for the Determination of Tricyclic Antidepressants Based on Formation of Molecular Complexes with p-Benzoquinones. Int J Mol Sci 2023; 24:16744. [PMID: 38069067 PMCID: PMC10706237 DOI: 10.3390/ijms242316744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Tricyclic antidepressants are commonly employed in the management of major depressive disorders. The present work describes two visible (VIS) spectrophotometric techniques that utilize the formation of charge transfer complexes between four antidepressant compounds, namely, amitriptyline hydrochloride (AMI), imipramine hydrochloride (IMI), clomipramine hydrochloride (CLO), and trimipramine maleate (TRI) acting as electron donors and two p-benzoquinones, namely, p-chloranilic acid (pCA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), serving as electron acceptors. The stoichiometry of the compounds produced exhibited a consistent 1:1 ratio in all instances, as established by Job's method. Molar absorptivities, equilibrium association constants, and several other spectroscopic properties were determined for all complexes. The developed spectrophotometric techniques were validated intra-laboratory and successfully applied for quantitative assessment of the four antidepressant active ingredients in several commercial pharmaceutical formulations. The methods are relatively simple, fast, and use readily available laboratory instrumentation, making them easily applicable by most quality control laboratories worldwide.
Collapse
Affiliation(s)
| | - Radu C. Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania;
| |
Collapse
|
3
|
Zamani R, Yamini Y. On-Chip Electromembrane Surrounded Solid Phase Microextraction for Determination of Tricyclic Antidepressants from Biological Fluids Using Poly(3,4-ethylenedioxythiophene)-Graphene Oxide Nanocomposite as a Fiber Coating. BIOSENSORS 2023; 13:bios13010139. [PMID: 36671973 PMCID: PMC9856149 DOI: 10.3390/bios13010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/10/2023]
Abstract
In the present study, on-chip electromembrane surrounded solid phase microextraction (EM-SPME) was employed in the determination of tricyclic antidepressants (TCAs), including amitriptyline, nortriptyline, imipramine, desipramine, maprotiline, and sertraline, from various biological fluids. In this regard, poly(3,4-ethylenedioxythiophene)-graphene oxide (PEDOT-GO) was electrodeposited on an SPME fiber as a conductive coating, then the fiber played the acceptor-electrode role during the extraction. Thus, the immigration of the analytes under the influence of an electric field and their absorption onto the fiber coating were accomplished simultaneously. Under the optimized conditions, the limits of detection for the target analytes were acquired in the range of 0.005-0.025 µg L-1 using gas chromatography-mass spectrometry. The linearity of the method was 0.010-500 µg L-1 for the imipramine and sertraline, 0.025-500 µg L-1 for the amitriptyline, nortriptyline, and desipramine, and 1.000-250 µg L-1 for the maprotiline (R2 ≥ 0.9984). Moreover, this method provided suitable precision and fiber-to-fiber reproducibility, with RSDs ≤ 8.4%. The applicability of the proposed setup was eventually investigated for extraction of the drugs from human bone marrow aspirate, urine, plasma, and well water samples, in which satisfactory relative recoveries, from 93-105%, were obtained.
Collapse
|
4
|
Badea A, Ghosh R, Lynch KL, Wu AHB. Lack of Cross-Reactivity of Tianeptine with Tricyclic Antidepressant Immunoassays. J Anal Toxicol 2021; 45:e8-e9. [PMID: 33410462 DOI: 10.1093/jat/bkab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Adina Badea
- Department of Laboratory Medicine, University of California, San Francisco, Zuckerberg San Francisco General, 1001 Potrero Avenue, ZSFG Bldg 5, San Francisco, CA, USA.,Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Rohit Ghosh
- Department of Laboratory Medicine, University of California, San Francisco, Zuckerberg San Francisco General, 1001 Potrero Avenue, ZSFG Bldg 5, San Francisco, CA, USA
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California, San Francisco, Zuckerberg San Francisco General, 1001 Potrero Avenue, ZSFG Bldg 5, San Francisco, CA, USA
| | - Alan H B Wu
- Department of Laboratory Medicine, University of California, San Francisco, Zuckerberg San Francisco General, 1001 Potrero Avenue, ZSFG Bldg 5, San Francisco, CA, USA
| |
Collapse
|
5
|
Saito K, Hagiwara N, Sakamoto M, Wakana D, Ito R, Hosoe T. Elucidation of Degradation Behavior of Tricyclic Antidepressant Amoxapine in Artificial Gastric Juice. Chem Pharm Bull (Tokyo) 2020; 68:848-854. [PMID: 32879225 DOI: 10.1248/cpb.c20-00313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The degradation behavior of eight tricyclic antidepressants (TCAs; amitriptyline, amoxapine (AMX), imipramine, clomipramine, desipramine, doxepin, dothiepin, and nortriptyline) in artificial gastric juice was investigated to estimate their pharmacokinetics in the stomach. As a result, among the eight TCAs, only AMX was degraded in artificial gastric juice. The degradation was a pseudo first-order reaction; activation energy (Ea) was 88.70 kJ/mol and activation entropy (ΔS) was -80.73 J/K·mol. On the other hand, the recovery experiment revealed that the degradation product did not revert to AMX and accordingly, this reaction was considered to be irreversible. In the AMX degradation experiment, peaks considered to be degradation products A (I) and B (II) were detected at retention times of around 3 min and 30 min in LC/UV measurements, respectively. Structural analysis revealed that compound (I) was [2-(2-aminophenoxy)-5-chlorophenyl]-piperazin-1-yl-methanone, a new compound, and compound (II) was 2-chlorodibenzo[b,f][1,4]oxazepin-11(10H)-one. As for the degradation behavior, it was estimated that AMX was degraded into (II) via (I), i.e., (II) was the final product. The results are expected to be useful in clinical chemistry and forensic science, including the estimation of drugs to be used at the time of judicial dissection and suspected drug addiction.
Collapse
Affiliation(s)
- Koichi Saito
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Nami Hagiwara
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Miho Sakamoto
- Department of Pharmaceutical Sciences, Tokyo Metropolitan Institute of Public Health
| | - Daigo Wakana
- Department of Bioregulatory Science, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Rie Ito
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University
| | - Tomoo Hosoe
- Department of Bioregulatory Science, Faculty of Pharmaceutical Sciences, Hoshi University
| |
Collapse
|
6
|
Shin SS, Borg D, Stripp R. Developing and Validating a Fast and Accurate Method to Quantify 18 Antidepressants in Oral Fluid Samples Using SPE and LC-MS-MS. J Anal Toxicol 2020; 44:610-617. [PMID: 32115632 DOI: 10.1093/jat/bkz117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 11/12/2022] Open
Abstract
Antidepressant drugs are one of the most widely used medicines for treating major depressive disorders for long time periods. Oral fluid (OF) testing offers an easy and non-invasive sample collection. Detection of antidepressants in OF is important in clinical and forensic settings, such as therapeutic drug monitoring and roadside testing for driving under influence. We developed and validated a comprehensive liquid chromatography-tandem mass spectrometry method for 18 antidepressants (amitriptyline, bupropion, citalopram, clomipramine, cyclobenzaprine, desipramine, desvenlafaxine, doxepin, duloxetine, fluoxetine, imipramine, mirtazapine, nortriptyline, paroxetine, sertraline, trazodone, trimipramine, venlafaxine) in oral fluid collected by Quantisal® oral collection devices. One-half milliliter of Quantisal® OF (125 μL of neat OF) was submitted to solid-phase extraction. The chromatographic separation was performed employing a biphenyl column in gradient mode with a total run time of 5 min. The MS detection was achieved by multiple-reaction monitoring with two transitions per compound. The range for linearity of all analytes was from 10 to 1,000 ng/mL, with a limit of detection of 10 ng/mL. Intra and inter-day accuracy and precision (n = 15) were all within acceptable limits, ±20% error and ±15% relative standard deviation. Analyte recovery at 400 ng/mL concentration (n = 15) ranged from 91 to 129%. Matrix effect ranged from 73.7 to 157%. The internal proficiency test detected all antidepressants with accuracy ranging from 83.1 to 112.1%. The authentic patient sample showed a percentage difference compared to the previously calculated concentration of 86.3-111%. This method provides for the rapid detection of 18 antidepressants and metabolites in OF, which is readily applicable to a routine laboratory.
Collapse
Affiliation(s)
- Sanghee Sarah Shin
- Toxicology Department, Houston Forensic Science Center, 500 Jefferson St 13th Floor, Houston, TX 77002, USA
| | - Damon Borg
- Research and Development Laboratory, Cordant Health Solutions, 789 Park Ave, Huntington, NY 11743, USA
| | - Richard Stripp
- Research and Development Laboratory, Cordant Health Solutions, 789 Park Ave, Huntington, NY 11743, USA
| |
Collapse
|
7
|
Oliveira FMD, Scheel GL, Augusti R, Tarley CRT, Nascentes CC. Supramolecular microextraction combined with paper spray ionization mass spectrometry for sensitive determination of tricyclic antidepressants in urine. Anal Chim Acta 2020; 1106:52-60. [DOI: 10.1016/j.aca.2020.01.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
|
8
|
Luiz Oenning A, Birk L, Eller S, Franco de Oliveira T, Merib J, Carasek E. A green and low-cost method employing switchable hydrophilicity solvent for the simultaneous determination of antidepressants in human urine by gas chromatography - mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1143:122069. [PMID: 32213465 DOI: 10.1016/j.jchromb.2020.122069] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
Abstract
In this study, the use of switchable hydrophilicity solvent with a simple and low-cost lab-made device for the extraction procedure in homogeneous liquid-liquid microextraction is proposed for the first time in the determination of antidepressants in human urine. The antidepressants studied consisted of fluoxetine, amitriptyline, nortriptyline, imipramine, desipramine and sertraline. The optimization of the main parameters that can influence on the extraction efficiency was performed through multivariate approaches. The analytes were separated and identified by gas chromatography coupled to mass spectrometry (GC-MS). The optimal extraction conditions consisted of using N,N-dimethylcyclohexylamine (DMCHA) as the switchable hydrophilicity solvent (SHS), 500 µL of urine sample previously diluted with ultrapure water at 1:1 ratio (v/v), 200 μL of a mixture of SHS:HCl 6 mol L-1 (1:1 v/v), 600 μL of NaOH 10 mol L-1 and 3 min of extraction time. A volume of 40 µL of diphenylamine at concentration of 500 µg L-1 (20 ng) was used as internal standard. The method developed was in-house validated, providing coefficients of determination higher than 0.995 for all analytes, limits of detection (LOD) from 0.02 to 0.88 µg L-1, limits of quantification (LOQ) from 0.05 to 2.92 µg L-1, relative recoveries of 68 to 102%, intra-day precision from 0.5 to 15.9%, inter-day precision from 4.2 to 19.3%, selectivity and robustness. The method proposed was successfully applied in five human urine samples from a Toxicological Information Center located in Porto Alegre (Brazil). The results demonstrated that the µP-SHS-HLLME approach is highly cost-effective, rapid, simple and environmentally-friendly with satisfactory analytical performance.
Collapse
Affiliation(s)
- Anderson Luiz Oenning
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040900, SC, Brazil
| | - Letícia Birk
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Sarah Eller
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Tiago Franco de Oliveira
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil.
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040900, SC, Brazil.
| |
Collapse
|
9
|
Manousi N, Samanidou VF. Recent Advances in the HPLC Analysis of Tricyclic Antidepressants in Bio-Samples. Mini Rev Med Chem 2020; 20:24-38. [DOI: 10.2174/1389557519666190617150518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 01/15/2023]
Abstract
:
Tricyclic Antidepressants (TCAs) are a group of the main category of antidepressant drugs,
which are commonly prescribed to treat major depressive disorder. Determination of TCA drugs is
very important for clinical and forensic toxicology, especially for therapeutic drug monitoring in various
biofluids. High Performance Liquid Chromatography (HPLC) is a well-established technique for
this purpose. A lot of progress has been made in this field since the past 10 years. Novel extraction
techniques, and novel materials for sample preparation, novel columns and novel applications of analysis
of various biofluids for the determination of TCAs in combination with other drugs are some typical
examples. Moreover, advances have been performed in terms of Green Analytical Chemistry principles.
Herein, we aim to discuss the developed HPLC methods that were reported in the literature for
the time span of 2008-2018.
Collapse
Affiliation(s)
- Natalia Manousi
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Victoria F. Samanidou
- Department of Chemistry, Laboratory of Analytical Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Muñoz-Muñoz AC, Pekol T, Schubring D, Hyland R, Johnson C, Andrade L. Characterization of an Amphetamine Interference from Gabapentin in an LC-HRMS Method. J Anal Toxicol 2020; 44:36-40. [PMID: 31263895 DOI: 10.1093/jat/bkz046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
An amphetamine interference was observed during the development of an liquid chromatography-high-resolution mass spectrometry (LC-HRMS) multi-class confirmation method for the determination of 47 drugs and metabolites in urine. The interference passed all qualitative criteria for amphetamine leading to potential false-positive results. Upon investigation, it was found that the amphetamine interference was correlated with the presence of high levels of gabapentin. Gabapentin is routinely detected in patient urine specimens at levels in excess of 1 mg/mL as it is widely prescribed at high doses and does not undergo significant metabolism. The source of the interference was identified as a gabapentin in-source fragment isomeric with protonated amphetamine. Here we describe the characterization of this interference and how its effect was mitigated in the LC-HRMS method.
Collapse
Affiliation(s)
- Ana Celia Muñoz-Muñoz
- Research and Development, Dominion Diagnostics LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA
| | - Teresa Pekol
- Research and Development, Dominion Diagnostics LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA
| | - Dana Schubring
- Research and Development, Dominion Diagnostics LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA
| | - Robin Hyland
- Research and Development, Dominion Diagnostics LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA
| | - Charlene Johnson
- Research and Development, Dominion Diagnostics LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA
| | - Lawrence Andrade
- Research and Development, Dominion Diagnostics LLC, 211 Circuit Drive, North Kingstown, RI 02852, USA
| |
Collapse
|
11
|
Storage of urine specimens in point of care (POC) urine drug testing cups reduces concentrations of many drugs. Clin Chim Acta 2019; 499:81-86. [PMID: 31491368 DOI: 10.1016/j.cca.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Many clinical toxicology laboratories receive urine specimens in urine cups that contain point of care (POC) drug testing strips. We conducted this study to evaluate the effect on the stability of commonly measured drugs in the clinical toxicology laboratory when urine is exposed to POC urine drug testing cups. METHODS Drug free urine was spiked with 85 drugs that were measured by a validated liquid chromatography mass spectrometry (LCMS) method after exposure to POC urine drug testing cups at ambient and 2-6 °C temperatures. Alterations ≥20% were defined as significant changes in the drugs concentration. RESULTS Concentrations of amitriptyline, cyclobenzaprine, fentanyl, fluoxetine, flunitrazepam, nortriptyline, paroxetine, and sertraline were significantly reduced when urine specimens were stored inside POC urine drug testing cups for 24 h at ambient temperature. Storage of urine in urine chemistry dipsticks reduced the concentration of several drugs. When spiked urine was exposed to an increasing number of POC urine drug testing strips, the concentrations of some drugs were reduced in a dose-dependent manner. The drugs that were absorbed by POC urine drug testing strips were partially back extracted from the strips. CONCLUSION Exposure of urine specimens to POC urine drug testing strips reduces the concentration of several drugs measured by LCMS method.
Collapse
|
12
|
Salamat Q, Yamini Y, Moradi M, Farahani A, Feizi N. Extraction of antidepressant drugs in biological samples using alkanol‐based nano structured supramolecular solvent microextraction followed by gas chromatography with mass spectrometric analysis. J Sep Sci 2019; 42:1620-1628. [DOI: 10.1002/jssc.201801152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qamar Salamat
- Department of ChemistryFaculty of SciencesTarbiat Modares University Tehran Iran
| | - Yadollah Yamini
- Department of ChemistryFaculty of SciencesTarbiat Modares University Tehran Iran
| | - Morteza Moradi
- Materials and Energy Research CenterDepartment of Semiconductors Karaj Iran
| | - Abolfazl Farahani
- Department of EnvironmentIranian Mineral Processing Research CenterMinistry of Industry and Mineral Karaj Iran
| | - Neda Feizi
- Department of ChemistryFaculty of SciencesTarbiat Modares University Tehran Iran
| |
Collapse
|
13
|
Abdul Keyon AS, Miskam M, Ishak NS, Mahat NA, Mohamed Huri MA, Abdul Wahab R, Chandren S, Abdul Razak FI, Ng NT, Ali TG. Capillary electrophoresis for the analysis of antidepressant drugs: A review. J Sep Sci 2019; 42:906-924. [PMID: 30605233 DOI: 10.1002/jssc.201800859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/11/2022]
Abstract
Depression is a common mental disorder that may lead to major mental health problems, and antidepressant drugs have been used as a treatment of choice to mitigate symptoms of major depressive disorders by ameliorating the chemical imbalances of neurotransmitters in brain. Since abusing antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressant drugs can cause severe adverse effects, continuous toxicological monitoring of the parent compounds as well as their metabolites using numerous analytical methods appears pertinent. Among them, capillary electrophoresis has been popularly utilized since the method has a lot of advantages viz. using small amounts of sample and solvents, ease of operation, and rapid analysis. This review paper brings a survey of more than 30 papers on capillary electrophoresis of antidepressant drugs published approximately from 1999 until 2018. It focuses on the reported capillary electrophoresis techniques and their applications and challenges for determining antidepressant drugs and their metabolites. It is organized according to the commonly used capillary zone electrophoresis method, followed by non-aqueous capillary electrophoresis and micellar electrokinetic chromatography, with details on breakthrough findings. Where available, information is given about the background electrolyte used, detector utilized, and sensitivity obtained.
Collapse
Affiliation(s)
- Aemi Syazwani Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | | | - Nur Syazwani Ishak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Naji Arafat Mahat
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Mohamad Afiq Mohamed Huri
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Sheela Chandren
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Fazira Ilyana Abdul Razak
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Nyuk-Ting Ng
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Timothy Gandu Ali
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| |
Collapse
|
14
|
|
15
|
Rosado T, Gonçalves A, Martinho A, Alves G, Duarte AP, Domingues F, Silvestre S, Granadeiro LB, Oliveira V, Leitão C, Gallardo E. Simultaneous Quantification of Antidepressants and Metabolites in Urine and Plasma Samples by GC–MS for Therapeutic Drug Monitoring. Chromatographia 2017. [DOI: 10.1007/s10337-017-3240-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Santos MG, Tavares IMC, Barbosa AF, Bettini J, Figueiredo EC. Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification. Talanta 2016; 163:8-16. [PMID: 27886774 DOI: 10.1016/j.talanta.2016.10.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Abstract
The use of a new class of hybrid materials, called restricted access molecularly imprinted polymers (RAMIPs) seems to present a good strategy for the sample preparation of complex matrices, since these materials combine good protein elimination capacity with high degree selectivity. Mass spectrometers (MS) have been successfully used for polar drug identification and quantification. In order to combine the advantages of both RAMIPs and mass spectrometry, we proposed a study that joins these properties in a single system, where we could analyse tricyclic antidepressants from human plasma, without offline extraction or chromatographic separation. A RAMIP for amitriptyline was synthesised by the bulk method, using methacrylic acid as a functional monomer and glycidilmethacrylate as a hydrophilic co-monomer. Then, epoxide ring openings were made and the polymer was covered with bovine serum albumin (BSA). A column filled with RAMIP-BSA was coupled to a MS/MS instrument in an online configuration, using water as loading and reconditioning mobile phase and a 0.01% acetic acid aqueous solution: acetonitrile at 30:70 as elution mobile phase. The system was used for on-line extraction and simultaneous quantification of nortriptyline, desipramine, amitriptyline, imipramine, clomipramine and clomipramine-d3 (IS) (from 15.0 to 500.0μgL-1) from plasma samples. The correlation coefficient was higher than 0.99 for all analytes. The CV (coefficient of variation) values ranged from 1.34% to 19.13% for intra assay precision and 1.32-19.77% for inter assay precision. The E% (relative error) values ranged from -19.15% to 19.51% for intra assay accuracy and from -9.04% to 16.22% for inter assay accuracy.
Collapse
Affiliation(s)
- Mariane Gonçalves Santos
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva Street, 37130-000 Alfenas, MG, Brazil.
| | - Isabela Maria Campos Tavares
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva Street, 37130-000 Alfenas, MG, Brazil
| | - Adriano Francisco Barbosa
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva Street, 37130-000 Alfenas, MG, Brazil
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, 13083-970 Campinas, SP, Brazil
| | - Eduardo Costa Figueiredo
- Toxicants and Drugs Analysis Laboratory - LATF, Faculty of Pharmaceutical Sciences, Federal University of Alfenas - Unifal-MG, 700 Gabriel Monteiro da Silva Street, 37130-000 Alfenas, MG, Brazil
| |
Collapse
|
17
|
Rahman N, Sameen S, Kashif M. Spectroscopic study of charge transfer complexation between doxepin and π–acceptors and its application in quantitative analysis. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.125] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Krieg AK, Gauglitz G. Ultrasensitive label-free immunoassay for optical determination of amitriptyline and related tricyclic antidepressants in human serum. Anal Chem 2015. [PMID: 26208238 DOI: 10.1021/acs.analchem.5b01895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present work focuses on the development of a label-free and ultrasensitive immunoassay for the detection of the drug amitriptyline in human serum. Reflectometric interference spectroscopy is used as the detection method, providing a simple, but highly sensitive optical setup. Amitriptyline is a common antidepressant; however, it has a small therapeutic window and can cause severe side effects in case of wrong dosage. Therefore, it is highly recommended for therapeutic drug monitoring to control the drug level. The limit of detection for this optical immunosensor was determined in buffer (0.3 μg/L) and in human serum (0.5 μg/L). It has become evident that this assay can compete with HPLC measurements. For drug concentrations at a normal level or above, the sample can be diluted up to 1:100. Especially for limited sample volumes, this is a great advantage. The sensor surface shows very high stability, and together with the regeneration solution 80 measurement cycles can be performed on each transducer chip. Cross-reactivity experiments indicate that a sum determination of several tricyclic antidepressants is possible.
Collapse
Affiliation(s)
- Anne Katrin Krieg
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University , Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| | - Günter Gauglitz
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University , Auf der Morgenstelle 18, 72076 Tuebingen, Germany
| |
Collapse
|
19
|
Simultaneous Quantitation of 78 Drugs and Metabolites in Urine with a Dilute-And-Shoot LC–MS-MS Assay. J Anal Toxicol 2015; 39:335-46. [DOI: 10.1093/jat/bkv024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Abstract
BACKGROUND Rates of prescription drug abuse have reached epidemic proportions. Large-scale epidemiologic surveys of this under-recognized clinical problem have not included antidepressants despite their contribution to morbidity and mortality. The purpose of this review is to look specifically at the misuse of antidepressants and how this behavior may fit into the growing crisis of nonmedical use of prescription drugs. METHODS We conducted a comprehensive search on PubMed, Medline, and PsycINFO using the search terms "antidepressant", "abuse", "misuse", "nonmedical use", "dependence", and "addiction", as well as individual antidepressant classes (eg, "SSRI") and individual antidepressants (eg, "fluoxetine") in various combinations, to identify articles of antidepressant misuse and abuse. RESULTS A small but growing literature on the misuse and abuse of antidepressants consists largely of case reports. Most cases of antidepressant abuse have occurred in individuals with comorbid substance use and mood disorders. The most commonly reported motivation for abuse is to achieve a psychostimulant-like effect. Antidepressants are abused at high doses and via a variety of routes of administration (eg, intranasal, intravenous). Negative consequences vary based upon antidepressant class and pharmacology, but these have included seizures, confusion, and psychotic-like symptoms. CONCLUSION The majority of individuals prescribed antidepressants do not misuse the medication. However, certain classes of antidepressants do carry abuse potential. Vulnerable patient populations include those with a history of substance abuse and those in controlled environments. Warning signs include the presence of aberrant behaviors. Physicians should include antidepressants when screening for risky prescription medication use. When antidepressant misuse is detected, a thoughtful treatment plan, including referral to an addiction specialist, should be developed and implemented.
Collapse
Affiliation(s)
- Elizabeth A Evans
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Maria A Sullivan
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
21
|
Quantitative analysis of trazodone in human plasma by using HPLC-fluorescence detector coupled with strong cation exchange chromatographic column: Application to a pharmacokinetic study in Chinese healthy volunteers. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 944:43-8. [DOI: 10.1016/j.jchromb.2013.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/01/2013] [Accepted: 11/06/2013] [Indexed: 11/17/2022]
|