1
|
Kohyanagi N, Ohama T. The impact of SETBP1 mutations in neurological diseases and cancer. Genes Cells 2023; 28:629-641. [PMID: 37489294 PMCID: PMC11447826 DOI: 10.1111/gtc.13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
SE translocation (SET) is a cancer-promoting factor whose expression is upregulated in many cancers. High SET expression positively correlates with a poor cancer prognosis. SETBP1 (SET-binding protein 1/SEB/MRD29), identified as SET-binding protein, is the causative gene of Schinzel-Giedion syndrome, which is characterized by severe intellectual disability and a distorted facial appearance. Mutations in these genetic regions are also observed in some blood cancers, such as myelodysplastic syndromes, and are associated with a poor prognosis. However, the physiological role of SETBP1 and the molecular mechanisms by which the mutations lead to disease progression have not yet been fully elucidated. In this review, we will describe the current epidemiological data on SETBP1 mutations and shed light on the current knowledge about the SET-dependent and -independent functions of SETBP1.
Collapse
Affiliation(s)
- Naoki Kohyanagi
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Joint Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| |
Collapse
|
2
|
Wang BA, Mehta HM, Penumutchu SR, Tolbert BS, Cheng C, Kimmel M, Haferlach T, Maciejewski JP, Corey SJ. Alternatively spliced CSF3R isoforms in SRSF2 P95H mutated myeloid neoplasms. Leukemia 2022; 36:2499-2508. [PMID: 35941213 DOI: 10.1038/s41375-022-01672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Alternatively spliced colony stimulating factor 3 receptor (CSF3R) isoforms Class III and Class IV are observed in myelodysplastic syndromes (MDS), but their roles in disease remain unclear. We report that the MDS-associated splicing factor SRSF2 affects the expression of Class III and Class IV isoforms and perturbs granulopoiesis. Add-back of the Class IV isoform in Csf3r-null mouse progenitor cells increased granulocyte progenitors with impaired neutrophil differentiation, while add-back of the Class III produced dysmorphic neutrophils in fewer numbers. These CSF3R isoforms were elevated in patients with myeloid neoplasms harboring SRSF2 mutations. Using in vitro splicing assays, we confirmed increased Class III and Class IV transcripts when SRSF2 P95 mutations were co-expressed with the CSF3R minigene in K562 cells. Since SRSF2 regulates splicing partly by recognizing exonic splicing enhancer (ESE) sequences on pre-mRNA, deletion of either ESE motifs within CSF3R exon 17 decreased Class IV transcript levels without affecting Class III. CD34+ cells expressing SRSF2 P95H showed impaired neutrophil differentiation in response to G-CSF and was accompanied by increased levels of Class IV. Our findings suggest that SRSF2 P95H promotes Class IV splicing by binding to key ESE sequences in CSF3R exon 17, and that SRSF2, when mutated, contributes to dysgranulopoiesis.
Collapse
Affiliation(s)
- Borwyn A Wang
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Hrishikesh M Mehta
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marek Kimmel
- Departments of Statistics and Bioengineering, Rice University, Houston, TX, USA.,Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | | | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Montalban-Bravo G, Kanagal-Shamanna R, Sasaki K, Masarova L, Naqvi K, Jabbour E, DiNardo CD, Takahashi K, Konopleva M, Pemmaraju N, Kadia TM, Ravandi F, Daver N, Borthakur G, Estrov Z, Khoury JD, Loghavi S, Soltysiak KA, Pierce S, Bueso-Ramos C, Patel KP, Verstovsek S, Kantarjian HM, Bose P, Garcia-Manero G. Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer 2021; 127:3113-3124. [PMID: 33914911 DOI: 10.1002/cncr.33622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND There are limited data on the clonal mechanisms underlying leukemogenesis, prognostic factors, and optimal therapy for atypical chronic myeloid leukemia (aCML). METHODS The authors evaluated the clinicopathologic features, outcomes, and responses to therapy of 65 patients with aCML. The median age was 67 years (range, 46-89 years). RESULTS The most frequently mutated genes included ASXL1 (83%), SRSF2 (68%), and SETBP1 (58%). Mutations in SETBP1, SRSF2, TET2, and GATA2 appeared at variant allele frequencies (VAFs) greater than 40%, whereas other RAS pathway mutations were more likely to appear at low VAFs. The acquisition of new, previously undetectable mutations at transformation was observed in 63% of the evaluable patients, with the most common involving signaling pathway mutations. Hypomethylating agents (HMAs) were associated with the highest response rates but with a short duration of response (median, 2.7 months). Therapy with ruxolitinib was not associated with clinically significant responses as a single agent or in combination with an HMA. Allogeneic stem cell transplantation was the only therapy associated with improved outcomes (hazard ratio, 0.144; 95% CI, 0.035-0.593; P = .007). Age, platelet counts, bone marrow blast percentages, and serum lactate dehydrogenase (LDH) levels were independent predictors of survival and were integrated in a multivariable model that allowed the prediction of 1- and 3-year survival. CONCLUSIONS aCML is characterized by high frequencies of ASXL1, SRSF2, and SETBP1 mutations and is associated with a high risk of acute myeloid leukemia transformation. Response and survival outcomes with current therapies remain poor. The incorporation of age, platelet counts, bone marrow blast percentages, and LDH levels can allow survival prediction, and allogeneic stem cell transplantation should be considered for all eligible patients.
Collapse
Affiliation(s)
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kiran Naqvi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly A Soltysiak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
4
|
Yun JW, Yoon J, Jung CW, Lee KO, Kim JW, Kim SH, Kim HJ. Next-generation sequencing reveals unique combination of mutations in cis of CSF3R in atypical chronic myeloid leukemia. J Clin Lab Anal 2019; 34:e23064. [PMID: 31692115 PMCID: PMC7031557 DOI: 10.1002/jcla.23064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
Background Atypical chronic myeloid leukemia (aCML) is a hematologic disorder characterized by leukocytosis with increased dysplastic neutrophils and their precursors. In CSF3R gene, the activation mutation including T618I is frequently reported in aCML but is rarely accompanied by truncation mutations. Herein, we report a unique aCML patient with two CSF3R mutations (T618I and Y779*) in the same DNA strand. Methods High‐coverage next‐generation sequencing for 40 genes related with myeloid leukemia was performed. Sanger sequencing was performed to confirm CSF3R mutations. To confirm whether two CSF3R mutations are in cis or not, TA cloning was used. Clinical information and bone marrow pathology were reviewed by two hematopathologists. Results In the patient diagnosed with aCML in bone marrow study, two CSF3R mutations, (T618I and Y779*) a SETBP1 mutation (G870S) and an U2AF1 mutation (Q157P), were identified by high‐coverage next‐generation sequencing. The two CSF3R mutations were confirmed to be located in the same DNA strand by TA cloning, indicating that the two mutations are harbored in one malignant clone. The SETBP1 mutation is known to be related with poor prognosis in aCML. Likewise, the patient was refractory to hydroxyurea and showed disease progression. Additionally, we discussed the potential therapeutic targets by reviewing the molecular profile of the patient. Conclusion We believe that the accurate diagnosis and maximum therapeutic chance could be achieved by profiling the mutations and their characteristics.
Collapse
Affiliation(s)
- Jae Won Yun
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Yoon
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki-O Lee
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Jong Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|