1
|
Kristan A, Debeljak N. Targeted Next-Generation Sequencing in Rare Diseases. Methods Mol Biol 2025; 2866:45-57. [PMID: 39546196 DOI: 10.1007/978-1-0716-4192-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Targeted next-generation sequencing (NGS) in rare disease focuses on genetic analysis of specific regions in genome that are linked to a rare disease. In addition to library preparation, sequencing, and data analysis, targeted NGS includes an additional step of target enrichment of selected genes and regions. It allows for more sensitive and profound sequencing, as it is a fast and cost-effective approach with less data burden and is therefore often a method of choice for identifying rare variants in known genes, especially in diagnostics of rare diseases. Several in silico tools address the pathogenicity predictions of rare variants of unknown significance (VUS) and can therefore facilitate clinical interpretation.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Anžej Doma S, Kraljić N, Kristan A, Debeljak N, Maver A, Pajič T, Preložnik Zupan I. Utility of next-generation sequencing in identifying congenital erythrocytosis in patients with idiopathic erythrocytosis. Front Med (Lausanne) 2024; 11:1440712. [PMID: 39309680 PMCID: PMC11412850 DOI: 10.3389/fmed.2024.1440712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Background Congenital erythrocytosis (CE) is increasingly recognized as the cause of erythrocytosis in patients in whom polycythemia vera and secondary acquired causes have been excluded. The aim of our study was to determine possible genetic background in patients with idiopathic erythrocytosis. Methods 40 patients with idiopathic erythrocytosis, referred to our institution in a 5-year period, were analyzed. We collected data on erythropoietin (Epo) levels, hemoglobin (Hgb), hematocrit (Hct), erythrocyte count, age, gender, past thrombotic events, concomitant diseases, and smoking status. CE was tested using next-generation sequencing (NGS), in the majority of patients also measurement of P50 and Hgb electrophoresis were performed. Patients with signs of iron overload were tested for genetic variants in the HFE gene. Results The median patient age at analysis was 46.5 years (range 22-73), with 37 out of 40 being males (93 %). The median Hgb, Hct and red blood cells count were 180 g/L, 0.51, 5.985 x 1012/L in men and 171 g/L, 0.50 and 5.68 x 1012/L in women, respectively. Epo levels were decreased in three, increased in one patient and within the normal range in the rest (median 7.55 mIU/mL; range 2.90-19.50). Eight patients (20 %) smoked. 32 (80 %) were treated with low-dose aspirin, and 20 (50 %) underwent at least one phlebotomy. Thromboembolic events were recorded in 2 patients (5 %). P50 was measured in 20 out of 40 patients, and it was above 24 mm Hg (3.12 kPa) in all of them. Hemoglobin electrophoresis was performed in 73 % of patients, with no abnormal Hgb detected. Variants in the HFE gene were found in 8 out of 40 patients (20 %), but in only one patient the results were associated with an increased risk for hemochromatosis. Although no pathogenic variants for CE were detected by NGS, two variants of uncertain significance, namely EGLN1 (NM_022051.2):c.1072C>T (p.(Pro358Ser)) and EGLN1 (NM_022051.2):c.1124A>G (p.(Glu375Gly)) were identified as strong etiologic candidates. Conclusion CE is an extremely rare condition. Genetic testing is advised in young individuals with a long-standing persistent erythrocytosis, possibly with a family history and after exclusion of more frequent secondary causes and polycytemia vera.
Collapse
Affiliation(s)
- Saša Anžej Doma
- Hematology Department, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nika Kraljić
- Hematology Department, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleša Kristan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Pajič
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Clinical Biochemistry, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Irena Preložnik Zupan
- Hematology Department, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Benetti A, Bertozzi I, Ceolotto G, Cortella I, Regazzo D, Biagetti G, Cosi E, Randi ML. Coexistence of Multiple Gene Variants in Some Patients with Erythrocytoses. Mediterr J Hematol Infect Dis 2024; 16:e2024021. [PMID: 38468832 PMCID: PMC10927185 DOI: 10.4084/mjhid.2024.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024] Open
Abstract
Background Erythrocytosis is a relatively common condition; however, a large proportion of these patients (70%) remain without a clear etiologic explanation. Methods We set up a targeted NGS panel for patients with erythrocytosis, and 118 sporadic patients with idiopathic erythrocytosis were studied. Results In 40 (34%) patients, no variant was found, while in 78 (66%), we identified at least one germinal variant; 55 patients (70.5%) had 1 altered gene, 18 (23%) had 2 alterations, and 5 (6.4%) had 3. An altered HFE gene was observed in 51 cases (57.1%), EGLN1 in 18 (22.6%) and EPAS1, EPOR, JAK2, and TFR2 variants in 7.7%, 10.3%, 11.5%, and 14.1% patients, respectively. In 23 patients (19.45%), more than 1 putative variant was found in multiple genes. Conclusions Genetic variants in patients with erythrocytosis were detected in about 2/3 of our cohort. An NGS panel including more candidate genes should reduce the number of cases diagnosed as "idiopathic" erythrocytosis in which a cause cannot yet be identified. It is known that HFE variants are common in idiopathic erythrocytosis. TFR2 alterations support the existence of a relationship between genes involved in iron metabolism and impaired erythropoiesis. Some novel multiple variants were identified. Erythrocytosis appears to be often multigenic.
Collapse
Affiliation(s)
- Andrea Benetti
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Irene Bertozzi
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Giulio Ceolotto
- Emergency Medicine, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Irene Cortella
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Daniela Regazzo
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Giacomo Biagetti
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Elisabetta Cosi
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Maria Luigia Randi
- First Medical Clinic, Department of Medicine – DIMED, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Yu H, Yu H, Zhang R, Peng D, Yan D, Gu Y, Bao Y, Jia W, Zhang H, Hu C. Targeted gene panel provides advantages over whole-exome sequencing for diagnosing obesity and diabetes mellitus. J Mol Cell Biol 2023; 15:mjad040. [PMID: 37327085 PMCID: PMC10847719 DOI: 10.1093/jmcb/mjad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/12/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023] Open
Abstract
A small fraction of patients diagnosed with obesity or diabetes mellitus has an underlying monogenic cause. Here, we constructed a targeted gene panel consisting of 83 genes reported to be causative for monogenic obesity or diabetes. We performed this panel in 481 patients to detect causative variants and compared these results with whole-exome sequencing (WES) data available for 146 of these patients. The coverage of targeted gene panel sequencing was significantly higher than that of WES. The diagnostic yield in patients sequenced by the panel was 32.9% with subsequent WES leading to three additional diagnoses with two novel genes. In total, 178 variants in 83 genes were detected in 146 patients by targeted sequencing. Three of the 178 variants were missed by WES, although the WES-only approach had a similar diagnostic yield. For the 335 samples only receiving targeted sequencing, the diagnostic yield was 32.2%. In conclusion, taking into account the lower costs, shorter turnaround time, and higher quality of data, targeted sequencing is a more effective screening method for monogenic obesity and diabetes compared to WES. Therefore, this approach could be routinely established and used as a first-tier test in clinical practice for specific patients.
Collapse
Affiliation(s)
- Hairong Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Haoyong Yu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dandan Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yunjuan Gu
- Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuqian Bao
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China
| |
Collapse
|
5
|
Mutational Landscape of Patients Referred for Elevated Hemoglobin Level. Curr Oncol 2022; 29:7209-7217. [PMID: 36290845 PMCID: PMC9600330 DOI: 10.3390/curroncol29100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Since the identification of JAK2 V617F and exon 12 mutations as driver mutations in polycythemia vera (PV) in 2005, molecular testing of these mutations for patients with erythrocytosis has become a routine clinical practice. However, the incidence of myeloid mutations other than the common JAK2 V617F mutation in unselected patients referred for elevated hemoglobin is not well studied. This study aimed to characterize the mutational landscape in a real-world population of patients referred for erythrocytosis using a targeted next-generation sequencing (NGS)-based assay. Method: A total of 529 patients (hemoglobin levels >160 g/L in females or >165 g/L in males) were assessed between January 2018 and May 2021 for genetic variants using the Oncomine Myeloid Research Assay (ThermoFisher Scientific, Waltham, MA, USA) targeting 40 key genes with diagnostic and prognostic implications in hematological conditions (17 full genes and 23 genes with clinically relevant "hotspot" regions) and a panel of 29 fusion driver genes (>600 fusion partners). Results: JAK2 mutations were detected in 10.9% (58/529) of patients, with 57 patients positive for JAK2 V617F, while one patient had a JAK2 exon 12 mutation. Additional mutations were detected in 34.5% (20/58) of JAK2-positive patients: TET2 (11; 19%), DNMT3A (2;3.4%), ASXL1 (2; 3.4%), SRSF2 (2; 3.4%), BCOR (1; 1.7%), TP53 (1; 1.7%), and ZRSR2 (1; 1.7%). Diagnosis of PV was suspected in 2 JAK2-negative patients based on the 2016 World Health Organization (WHO) diagnostic criteria. Notably, one patient carried mutations in the SRSF2 and TET2 genes, and the other patient carried mutations in the SRSF2, IDH2, and ASXL1 genes. Three JAK2-negative patients with elevated hemoglobin who tested positive for BCR/ABL1 fusion were diagnosed with chronic myeloid leukemia (CML) and excluded from further analysis. The remaining 466 JAK2-negative patients were diagnosed with secondary erythrocytosis and mutations were found in 6% (28/466) of these cases. Conclusion: Mutations other than JAK2 mutations were frequently identified in patients referred for erythrocytosis, with mutations in the TET2, DNMT3A, and ASXL1 genes being detected in 34.5% of JAK2-positive PV patients. The presence of additional mutations, such as ASXL1 mutations, in this population has implications for prognosis. Both the incidence and mutation type identified in patients with secondary erythrocytosis likely reflects incidental, age-associated clonal hematopoiesis of indeterminate potential (CHIP).
Collapse
|
6
|
Hruby M, Martínez IIS, Stephan H, Pouckova P, Benes J, Stepanek P. Chelators for Treatment of Iron and Copper Overload: Shift from Low-Molecular-Weight Compounds to Polymers. Polymers (Basel) 2021; 13:3969. [PMID: 34833268 PMCID: PMC8618197 DOI: 10.3390/polym13223969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Iron and copper are essential micronutrients needed for the proper function of every cell. However, in excessive amounts, these elements are toxic, as they may cause oxidative stress, resulting in damage to the liver and other organs. This may happen due to poisoning, as a side effect of thalassemia infusion therapy or due to hereditary diseases hemochromatosis or Wilson's disease. The current golden standard of therapy of iron and copper overload is the use of low-molecular-weight chelators of these elements. However, these agents suffer from severe side effects, are often expensive and possess unfavorable pharmacokinetics, thus limiting the usability of such therapy. The emerging concepts are polymer-supported iron- and copper-chelating therapeutics, either for parenteral or oral use, which shows vivid potential to keep the therapeutic efficacy of low-molecular-weight agents, while avoiding their drawbacks, especially their side effects. Critical evaluation of this new perspective polymer approach is the purpose of this review article.
Collapse
Affiliation(s)
- Martin Hruby
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400, 01328 Dresden, Germany; (I.I.S.M.); (H.S.)
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Jiri Benes
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic; (P.P.); (J.B.)
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic Heyrovského Náměstí 2, 162 06 Prague, Czech Republic;
| |
Collapse
|
7
|
Kristan A, Pajič T, Maver A, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Podgornik H, Anžej Doma S, Preložnik Zupan I, Rozman D, Debeljak N. Identification of Variants Associated With Rare Hematological Disorder Erythrocytosis Using Targeted Next-Generation Sequencing Analysis. Front Genet 2021; 12:689868. [PMID: 34349782 PMCID: PMC8327209 DOI: 10.3389/fgene.2021.689868] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
An erythrocytosis is present when the red blood cell mass is increased, demonstrated as elevated hemoglobin and hematocrit in the laboratory evaluation. Congenital predispositions for erythrocytosis are rare, with germline variants in several genes involved in oxygen sensing (VHL, EGLN1, and EPAS1), signaling for hematopoietic cell maturation (EPOR and EPO), and oxygen transfer (HBB, HBA1, HBA2, and BPGM) that were already associated with the eight congenital types (ECYT1–8). Screening for variants in known congenital erythrocytosis genes with classical sequencing approach gives a correct diagnosis for only up to one-third of the patients. The genetic background of erythrocytosis is more heterogeneous, and additional genes involved in erythropoiesis and iron metabolism could have a putative effect on the development of erythrocytosis. This study aimed to detect variants in patients with yet unexplained erythrocytosis using the next-generation sequencing (NGS) approach, targeting genes associated with erythrocytosis and increased iron uptake and implementing the diagnostics of congenital erythrocytosis in Slovenia. Selected 25 patients with high hemoglobin, high hematocrit, and no acquired causes were screened for variants in the 39 candidate genes. We identified one pathogenic variant in EPAS1 gene and three novel variants with yet unknown significance in genes EPAS1, JAK2, and SH2B3. Interestingly, a high proportion of patients were heterozygous carriers for two variants in HFE gene, otherwise pathogenic for the condition of iron overload. The association between the HFE variants and the development of erythrocytosis is not clearly understood. With a targeted NGS approach, we determined an actual genetic cause for the erythrocytosis in one patient and contributed to better management of the disease for the patient and his family. The effect of variants of unknown significance on the enhanced production of red blood cells needs to be further explored with functional analysis. This study is of great significance for the improvement of diagnosis of Slovenian patients with unexplained erythrocytosis and future research on the etiology of this rare hematological disorder.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Pajič
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Količ
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Andrej Vuga
- Kemomed Research and Development, Kemomed Ltd., Ljubljana, Slovenia
| | - Martina Fink
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Špela Žula
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Saša Anžej Doma
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irena Preložnik Zupan
- Department of Hematology, University Medical Centre Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Anžej Doma S, Drnovšek E, Kristan A, Fink M, Sever M, Podgornik H, Belčič Mikič T, Debeljak N, Preložnik Zupan I. Diagnosis and management of non-clonal erythrocytosis remains challenging: a single centre clinical experience. Ann Hematol 2021; 100:1965-1973. [PMID: 34013406 PMCID: PMC8285333 DOI: 10.1007/s00277-021-04546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/01/2021] [Indexed: 12/31/2022]
Abstract
Erythrocytosis has a diverse background. While polycythaemia vera has well defined criteria, the diagnostic approach and management of other types of erythrocytosis are more challenging. The aim of study was to retrospectively analyse the aetiology and management of non-clonal erythrocytosis patients referred to a haematology outpatient clinic in an 8-year period using a 3-step algorithm. The first step was inclusion of patients with Hb > 185 g/L and/or Hct > 0.52 in men and Hb > 165 g/L and/or Hct > 0.48 in women on two visits ≥ two months apart, thus confirming true erythrocytosis. Secondly, polycythaemia vera was excluded and secondary causes of erythrocytosis (SE) identified. Thirdly, idiopathic erythrocytosis patients (IE) were referred to next-generation sequencing for possible genetic background evaluation. Of the 116 patients, 75 (65%) are men and 41 (35%) women, with non-clonal erythrocytosis 34/116 (29%) had SE, 15/116 (13%) IE and 67/116 (58%) stayed incompletely characterized (ICE). Patients with SE were significantly older and had significantly higher Hb and Hct compared to patients with IE. Most frequently, SE was attributed to obstructive sleep apnoea and smoking. Phlebotomies were performed in 56, 53 and 40% of patients in the SE, IE, and ICE group, respectively. Approx. 70% of patients in each group received aspirin. Thrombotic events were registered in 12, 20 and 15% of SE, IE and ICE patients, respectively. Congenital erythrocytosis type 4 (ECYT4) was diagnosed in one patient. The study demonstrates real-life management of non-clonal erythrocytosis which could be optimized using a 3-step diagnostic algorithm.
Collapse
Affiliation(s)
- Saša Anžej Doma
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Eva Drnovšek
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Martina Fink
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia
| | - Matjaž Sever
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Tanja Belčič Mikič
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Irena Preložnik Zupan
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|