1
|
Esmaeili E, Dezaki ES, Amini-Khoei H, Mokhtarian K, Abdizadeh R, Esmaili M, Raesi H. In Vitro Antileishmanial and Immune Modulation of Trigonelline Against Leishmania major. Parasite Immunol 2024; 46:e13076. [PMID: 39633249 DOI: 10.1111/pim.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
The mechanistic study of new pharmaceutical compounds is crucial for evaluating their efficacy, identifying potential side effects, and optimising drug formulations. This study aimed to investigate the mechanism of action of trigonelline on the promastigote and amastigote stages of Leishmania major (MRHO/IR/75/ER). An initial in silico study was conducted to examine the pharmacological effects of trigonelline using molecular docking to evaluate the potential binding affinity of trigonelline with nitrate, a crucial molecule in the macrophage immune response against Leishmania. In this experimental study, the inhibitory mechanism of trigonelline on promastigotes was evaluated by measuring metacaspase expression levels. In the amastigote stage of L. major, the expression levels of inducible nitric oxide synthase (iNOS), interleukin 12 (IL-12), interferon-gamma (IFN-γ), tumour necrosis factor alpha (TNF-α), transforming growth factor-β (TGF-β) and interleukin 10 (IL-10) genes were assessed using Real-time PCR. Trigonelline demonstrated a high-binding affinity to the iNOS molecule in computer modelling. In macrophages treated with various concentrations of trigonelline, glucantime and their combination, the expression levels of metacaspase, IL-12, TNF-α, IFN-γ and iNOS genes significantly increased compared to the control group (p < 0.05), whereas IL-10 and TGF-β gene expression levels significantly decreased (p < 0.05). Trigonelline exerts its antileishmanial effects through its high antioxidant properties, non-cytotoxicity to macrophages, and its ability to enhance apoptosis and cell cycle arrest in promastigotes of L. major.
Collapse
Affiliation(s)
- Elaheh Esmaeili
- Department of Parasitology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ebrahim Saedi Dezaki
- Department of Parasitology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossin Amini-Khoei
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kobra Mokhtarian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rahman Abdizadeh
- Department of Parasitology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Esmaili
- Department Food and Druge, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hadi Raesi
- Department of Epidemiology and Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
2
|
Ullah N, Sagar M, Abidin ZU, Naeem MA, Din SZU, Ahmad I. Photodynamic therapy in management of cutaneous leishmaniasis: A systematic review. Lasers Med Sci 2024; 39:226. [PMID: 39207568 DOI: 10.1007/s10103-024-04174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
This systematic review evaluated the efficacy and safety of photodynamic therapy (PDT) in the management of cutaneous leishmaniasis (CL). The electronic search for identification of relevant studies, adhered to the PICOS (Population, Intervention, Comparator, Outcomes and Study type) framework, was conducted through PubMed, Google scholar, Dimensions, X-mol, and Semantic Scholar till December 2023. All types of studies reporting PDT in the management of CL with no language restriction were included. Methodological quality appraised of the selected studies was performed using Jadad index. Of the 317 identified studies, 21 reported PDT for the treatment of CL lesions, consisting of two randomized controlled trials (RCTs), four single-center open study, one case series and 14 case reports. Collectively, these studies presented a total of 304 patients with ages ranging from 1 to 82 years, undergoing varying number of PDT sessions (3-28) and follow-up durations spanning 4 weeks to 24 months. The CL lesions predominantly manifested on the exposed body areas, such as face, limbs, neck, ear and nose, and characterized with the use of clinical variables, such as plaques, papules, erythema and ulceration. PDT protocols differed in the photosensitizer type, incubation time, light source characteristics (e.g., wavelength, output power, and energy density), duration of light illumination, number of PDT sessions and their respective frequencies. Treatment response was assessed through the clinical presentation (i.e., at the baseline and after PDT completion) or by the absence of Leishmania parasites. Adverse effects comprised of pain, burning and tingling sensation experienced during PDT, followed by erythema, pigmentation changes and edema post-treatment. This systematic review revealed that PDT is an efficacious and safe modality for the treatment of CL, with mild and transient side effects.
Collapse
Affiliation(s)
- Naeem Ullah
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Zain Ul Abidin
- Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | | | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
3
|
Golle L, Sunderkötter C, Ehrenreich J, Wohlrab J. Erfolgreiche Therapie einer komplexen kutanen Leishmaniose ( L. tropica) bei einem 3‐jährigen syrischen Jungen mit Miltefosin. J Dtsch Dermatol Ges 2024; 22:1153-1155. [PMID: 39105235 DOI: 10.1111/ddg.15438_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/26/2024] [Indexed: 08/07/2024]
Affiliation(s)
- Linda Golle
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
| | - Cord Sunderkötter
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
| | - Jovine Ehrenreich
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
| | - Johannes Wohlrab
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
| |
Collapse
|
4
|
Golle L, Sunderkötter C, Ehrenreich J, Wohlrab J. Successful treatment of complex cutaneous leishmaniasis (L. tropica) in a 3-year-old Syrian boy with miltefosine. J Dtsch Dermatol Ges 2024; 22:1153-1155. [PMID: 38934555 DOI: 10.1111/ddg.15438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/26/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Linda Golle
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
| | - Cord Sunderkötter
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
| | - Jovine Ehrenreich
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
| | - Johannes Wohlrab
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
| |
Collapse
|
5
|
Bharadava K, Upadhyay TK, Kaushal RS, Ahmad I, Alraey Y, Siddiqui S, Saeed M. Genomic Insight of Leishmania Parasite: In-Depth Review of Drug Resistance Mechanisms and Genetic Mutations. ACS OMEGA 2024; 9:12500-12514. [PMID: 38524425 PMCID: PMC10955595 DOI: 10.1021/acsomega.3c09400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Leishmaniasis, which is caused by a parasitic protozoan of the genus Leishmania, is still a major threat to global health, impacting millions of individuals worldwide in endemic areas. Chemotherapy has been the principal method for managing leishmaniasis; nevertheless, the evolution of drug resistance offers a significant obstacle to therapeutic success. Drug-resistant behavior in these parasites is a complex phenomenon including both innate and acquired mechanisms. Resistance is frequently related to changes in drug transportation, drug target alterations, and enhanced efflux of the drug from the pathogen. This review has revealed specific genetic mutations in Leishmania parasites that are associated with resistance to commonly used antileishmanial drugs such as pentavalent antimonials, miltefosine, amphotericin B, and paromomycin, resulting in changes in gene expression along with the functioning of various proteins involved in drug uptake, metabolism, and efflux. Understanding the genetic changes linked to drug resistance in Leishmania parasites is essential for creating approaches for tackling and avoiding the spread of drug-resistant variants. Based on which specific treatments focus on mutations and pathways could potentially improve treatment efficacy and help long-term leishmaniasis control. More study is needed to uncover the complete range of genetic changes generating medication resistance and to develop new therapies based on available information.
Collapse
Affiliation(s)
- Krupanshi Bharadava
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Radhey Shyam Kaushal
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Yasser Alraey
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Samra Siddiqui
- Department
of Health Service Management, College of Public Health and Health
Informatics, University of Hail, Hail 55476, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 55476, Saudi Arabia
| |
Collapse
|
6
|
Agostino VS, Buerdsell ML, Uliana SRB, Denny PW, Coelho AC, Steel PG. Clemastine/tamoxifen hybrids as easily accessible antileishmanial drug leads. Org Biomol Chem 2024; 22:1812-1820. [PMID: 38328995 DOI: 10.1039/d3ob02091f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A library of hybrid molecules is developed based on the common chemical features shared by clemastine and tamoxifen both of which are well known for their antileishmanial activities. In the initial screening against Leishmania major and L. amazonensis promastigotes, as well as cytotoxicity assays using HepG2 cells, several hybrids showed submicromolar activity against the parasite and no toxicity against human cells. The compounds with an EC50 < 2 μM against promastigotes of both species and a selectivity index >10 were further characterized against intracellular amastigotes as well as promastigotes of species that cause both visceral and cutaneous leishmaniasis, such as L. infantum and L. braziliensis, respectively. These sequential screenings revealed the high pan-activity of this class of molecules against these species, with several compounds displaying an EC50 ≤ 2 μM against both promastigotes and intracellular amastigotes. Two of them were identified as the potential templates for lead optimization of this series having shown the highest activities against all species in both stages of parasite. The present findings can serve as a good starting point in the search for novel antileishmanial compounds that are easy to access and highly active.
Collapse
Affiliation(s)
- V S Agostino
- Department of Chemistry, Durham University, UK.
- Department of Animal Biology, Institute of Biology, University of Campinas, Brazil
| | | | - S R B Uliana
- Department of Parasitology, Biomedical Sciences Institute, University of Sao Paulo, Brazil
| | - P W Denny
- Department of Biosciences, Durham University, UK
| | - A C Coelho
- Department of Animal Biology, Institute of Biology, University of Campinas, Brazil
| | - P G Steel
- Department of Chemistry, Durham University, UK.
| |
Collapse
|
7
|
Gomes MC, Padilha EKA, Diniz GRA, Gomes EC, da Silva Santos-Júnior PF, Zhan P, da Siva-Júnior EF. Multi-target Compounds against Trypanosomatid Parasites and Mycobacterium tuberculosis. Curr Drug Targets 2024; 25:602-619. [PMID: 38910467 DOI: 10.2174/0113894501306843240606114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
Multi-target drug treatment has become popular as a substitute for traditional monotherapy. Monotherapy can lead to resistance and side effects. Multi-target drug discovery is gaining importance as data on bioactivity becomes more abundant. The design of multi-target drugs is expected to be an important development in the pharmaceutical industry in the near future. This review presents multi-target compounds against trypanosomatid parasites (Trypanosoma cruzi, T. brucei, and Leishmania sp.) and tuberculosis (Mycobacterium tuberculosis), which mainly affect populations in socioeconomically unfavorable conditions. The article analyzes the studies, including their chemical structures, viral strains, and molecular docking studies, when available. The objective of this review is to establish a foundation for designing new multi-target inhibitors for these diseases.
Collapse
Affiliation(s)
- Midiane Correia Gomes
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Emanuelly Karla Araújo Padilha
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Gustavo Rafael Angelo Diniz
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Edilma Correia Gomes
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Paulo Fernando da Silva Santos-Júnior
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Peng Zhan
- Department of Medicinal - Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Edeildo Ferreira da Siva-Júnior
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| |
Collapse
|
8
|
Montaner-Angoiti E, Llobat L. Is leishmaniasis the new emerging zoonosis in the world? Vet Res Commun 2023; 47:1777-1799. [PMID: 37438495 DOI: 10.1007/s11259-023-10171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Leishmania is a genus of parasitic protozoa that causes a disease called leishmaniasis. Leishmaniasis is transmitted to humans through the bites of infected female sandflies. There are several different species of Leishmania that can cause various forms of the disease, and the symptoms can range from mild to severe, depending on species of Leishmania involved and the immune response of the host. Leishmania parasites have a variety of reservoirs, including humans, domestic animals, horses, rodents, wild animals, birds, and reptiles. Leishmaniasis is endemic of 90 countries, mainly in South American, East and West Africa, Mediterranean region, Indian subcontinent, and Central Asia. In recent years, cases have been detected in other countries, and it is already an infection present throughout the world. The increase in temperatures due to climate change makes it possible for sandflies to appear in countries with traditionally colder regions, and the easy movement of people and animals today, facilitate the appearance of Leishmania species in new countries. These data mean that leishmaniasis will probably become an emerging zoonosis and a public health problem in the coming years, which we must consider controlling it from a One Health point of view. This review summarizes the prevalence of Leishmania spp. around the world and the current knowledge regarding the animals that could be reservoirs of the parasite.
Collapse
Affiliation(s)
- Esperanza Montaner-Angoiti
- Molecular Mechanisms of Zoonotic Disease (MMOPS) Group, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities Valencia, Valencia, Spain
| | - Lola Llobat
- Molecular Mechanisms of Zoonotic Disease (MMOPS) Group, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities Valencia, Valencia, Spain.
| |
Collapse
|
9
|
Salarkia E, Sharifi I, Keyhani A, Tavakoli Oliaee R, Khosravi A, Sharifi F, Bamorovat M, Babaei Z. In silico and in vitro potentials of crocin and amphotericin B on Leishmania major: Multiple synergistic mechanisms of actions. PLoS One 2023; 18:e0291322. [PMID: 37682934 PMCID: PMC10490900 DOI: 10.1371/journal.pone.0291322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
A significant barrier to optimal antileishmanial treatment is low efficacy and the emergence of drug resistance. Multiple approaches were used to monitor and assess crocin (a central component of saffron) mixed with amphotericin B (AmpB) potential in silico and in vitro consequences. The binding behavior of crocin and iNOS was the purpose of molecular docking. The results showed that crocin coupled with AmpB demonstrated a safe combination, extremely antileishmanial, suppressed Leishmania arginase absorption, and increased parasite death. This natural flower component is a robust antioxidant, significantly promoting the expression of the Th1-connected cytokines (IL12p40, IFN-γ, and TNF- α), iNOS, and transcription factors (Elk-1, c-Fos, and STAT-1). In comparison, the expression of the Th2-associated phenotypes (IL-10, IL-4, and TGF-β) was significantly reduced. The leishmanicidal effect of this combination was also mediated through programmed cell death (PCD), as confirmed by the manifestation of phosphatidylserine and cell cycle detention at the sub-GO/G1 phase. In conclusion, crocin with AmpB synergistically exerted in vitro antileishmanial action, generated nitric oxide and reactive oxygen species, modulated Th1, and Th2 phenotypes and transfer factors, enhanced PCD profile and arrested the cell cycle of Leishmania major promastigotes. The main action of crocin and AmpB involved wide-ranging mechanistic insights for conducting other clinical settings as promising drug candidates for cutaneous leishmaniasis. Therefore, this combination could be esteemed as a basis for a potential bioactive component and a logical source for leishmanicidal drug development against CL in future advanced clinical settings.
Collapse
Affiliation(s)
- Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Tavakoli Oliaee
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Liu L, He Y, Chang J. Efficacy of photodynamic therapy in cutaneous leishmaniasis: A systematic review. Photodiagnosis Photodyn Ther 2023; 43:103627. [PMID: 37245683 DOI: 10.1016/j.pdpdt.2023.103627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To systematically review the efficacy of photodynamic therapy (PDT) in the treatment of cutaneous leishmaniasis (CL). METHODS PubMed, Embase and Cochrane Library databases were searched for articles published by November 16, 2022, with no time restrictions. 'Cutaneous leishmaniasis' and 'photodynamic therapy' were searched using predefined search strings. INCLUSION CRITERIA (i) Randomized control trials; (ii) controlled clinical trials; (iii) case series; (iv) case reports; (v) participants were humans; (vi) clinical diagnosis was CL; (vii) treatment method used was PDT; and (viii) articles published in English. RESULTS In total, 303 articles were identified, including 14 papers meeting the criteria. The number of patients in each study ranged from 1 to 60 and the age ranged from 1 to 82 years. Aminolevulinic acid and methyl aminolevulinate were used as photosensitizers. Red light and sunlight were used as light sources. All reported satisfactory clinical effects. Side effects of treatment included burning sensation, pain and pigmentation after treatment. However, they were tolerable and temporary. The follow-up time ranged between 9 weeks and 24 months. A total of two patients recurred, but one did not recur after another round of PDT during the follow-up period. CONCLUSIONS The present study suggests that PDT is a safe and effective method for the treatment of CL, with tolerable side effects and good efficacy. As an alternative treatment method of CL, PDT has great potential. However, to verify the efficacy and specific mechanism of PDT for the optimal treatment strategy of CL, further research with larger sample sizes and longer follow-up times are needed.
Collapse
Affiliation(s)
- Lin Liu
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, China
| | - Yuexi He
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, China
| | - Jianmin Chang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Morgado FN, Conceição-Silva F, Pimentel MIF, Porrozzi R. Advancement in Leishmaniasis Diagnosis and Therapeutics. Trop Med Infect Dis 2023; 8:tropicalmed8050270. [PMID: 37235318 DOI: 10.3390/tropicalmed8050270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis is a complex of clinical manifestations that affects thousands of people in the world each year according to WHO [...].
Collapse
Affiliation(s)
- Fernanda N Morgado
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil
| | - Fátima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil
| | - Maria Inês F Pimentel
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Renato Porrozzi
- Laboratório de Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
12
|
Domagalska MA, Barrett MP, Dujardin JC. Drug resistance in Leishmania: does it really matter? Trends Parasitol 2023; 39:251-259. [PMID: 36803859 DOI: 10.1016/j.pt.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/19/2023]
Abstract
Treatment failure (TF) jeopardizes the management of parasitic diseases, including leishmaniasis. From the parasite's point of view, drug resistance (DR) is generally considered as central to TF. However, the link between TF and DR, as measured by in vitro drug susceptibility assays, is unclear, some studies revealing an association between treatment outcome and drug susceptibility, others not. Here we address three fundamental questions aiming to shed light on these ambiguities. First, are the right assays being used to measure DR? Second, are the parasites studied, which are generally those that adapt to in vitro culture, actually appropriate? Finally, are other parasite factors - such as the development of quiescent forms that are recalcitrant to drugs - responsible for TF without DR?
Collapse
Affiliation(s)
| | - Michael P Barrett
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
13
|
Herrera-Acevedo C, de Menezes RPB, de Sousa NF, Scotti L, Scotti MT, Coy-Barrera E. Kaurane-Type Diterpenoids as Potential Inhibitors of Dihydrofolate Reductase-Thymidylate Synthase in New World Leishmania Species. Antibiotics (Basel) 2023; 12:antibiotics12040663. [PMID: 37107025 PMCID: PMC10135059 DOI: 10.3390/antibiotics12040663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The bifunctional enzyme Dihydrofolate reductase-thymidylate synthase (DHFR-TS) plays a crucial role in the survival of the Leishmania parasite, as folates are essential cofactors for purine and pyrimidine nucleotide biosynthesis. However, DHFR inhibitors are largely ineffective in controlling trypanosomatid infections, largely due to the presence of Pteridine reductase 1 (PTR1). Therefore, the search for structures with dual inhibitory activity against PTR1/DHFR-TS is crucial in the development of new anti-Leishmania chemotherapies. In this research, using the Leishmania major DHFR-TS recombinant protein, enzymatic inhibitory assays were performed on four kauranes and two derivatives that had been previously tested against LmPTR1. The structure 302 (6.3 µM) and its derivative 302a (4.5 µM) showed the lowest IC50 values among the evaluated molecules. To evaluate the mechanism of action of these structures, molecular docking calculations and molecular dynamics simulations were performed using a DHFR-TS hybrid model. Results showed that hydrogen bond interactions are critical for the inhibitory activity against LmDHFR-TS, as well as the presence of the p-hydroxyl group of the phenylpropanoid moiety of 302a. Finally, additional computational studies were performed on DHFR-TS structures from Leishmania species that cause cutaneous and mucocutaneous leishmaniasis in the New World (L. braziliensis, L. panamensis, and L. amazonensis) to explore the targeting potential of these kauranes in these species. It was demonstrated that structures 302 and 302a are multi-Leishmania species compounds with dual DHFR-TS/PTR1 inhibitory activity.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia
| | - Renata Priscila Barros de Menezes
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Natália Ferreira de Sousa
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil (M.T.S.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Correspondence:
| |
Collapse
|
14
|
Knight CA, Harris DR, Alshammari SO, Gugssa A, Young T, Lee CM. Leishmaniasis: Recent epidemiological studies in the Middle East. Front Microbiol 2023; 13:1052478. [PMID: 36817103 PMCID: PMC9932337 DOI: 10.3389/fmicb.2022.1052478] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
Leishmaniasis, one of the most neglected tropical diseases (NTDs), is the third most important vector-borne disease worldwide. This disease has a global impact and severity of the infection and is greatest in the Middle East. The agent of infection is a protozoan parasite of the genus, Leishmania, and is generally transmitted by blood-sucking female sandflies. In humans, there are three clinical forms of infection: (1) cutaneous (CL), (2) mucocutaneous (ML), and (3) visceral leishmaniasis (VL). This review aims to discuss the current epidemiological status of leishmaniasis in Saudi Arabia, Iraq, Syria, and Yemen with a consideration of treatment options. The elevated risk of leishmaniasis is influenced by the transmission of the disease across endemic countries into neighboring non-infected regions.
Collapse
Affiliation(s)
| | - David R. Harris
- Department of Biology, Tuskegee University, Tuskegee, AL, United States
| | | | - Ayele Gugssa
- Department of Biology, Howard University, Washington, DC, United States
| | - Todd Young
- Department of Biology, Howard University, Washington, DC, United States
| | - Clarence M. Lee
- Department of Biology, Howard University, Washington, DC, United States
| |
Collapse
|
15
|
Arts RJ, Ector GI, Bosch-Nicolau P, Molina I, McCall MB, van der Velden WJ, van Laarhoven A, de Mast Q, van Dorp S. A difficult to treat Leishmania infantum relapse after allogeneic stem cell transplantation. IDCases 2023; 32:e01753. [PMID: 37063784 PMCID: PMC10091026 DOI: 10.1016/j.idcr.2023.e01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Here we describe a complicated case of a relapsed Leishmania infantum infection after an allogeneic stem cell transplantation (allo-SCT) for primary myelofibrosis. Three years earlier the patient had been diagnosed with a hemophagocytic lymphohistiocytosis secondary to a visceral Leishmania infantum infection, for which he was effectively treated with a cumulative dose of 40 mg/kg liposomal amphotericin B. During the first disease episode he was also diagnosed with primary myelofibrosis for which he received medical follow-up. One year later ruxolitinib was started due to progressive disease. No Leishmania relapse occurred. Nevertheless, the marrow fibrosis progressed, and an allo-SCT was performed. Two months after allo-SCT prolonged fever and a persistent pancytopenia occurred, which was due to a relapse of visceral Leishmaniasis. The infection was refractory to a prolonged treatment with liposomal amphotericin B with a cumulative dose up to 100 mg/kg. Salvage treatment with miltefosine led to reduction of fever within a few days and was followed by a slow recovery of pancytopenia over the following months. The Leishmania parasite load by PCR started to decline and after 3.5 months no Leishmania DNA could be detected anymore and follow-up until ten months afterwards did not show a relapse.
Collapse
|
16
|
Duthie MS, Machado BAS, Badaró R, Kaye PM, Reed SG. Leishmaniasis Vaccines: Applications of RNA Technology and Targeted Clinical Trial Designs. Pathogens 2022; 11:pathogens11111259. [PMID: 36365010 PMCID: PMC9695603 DOI: 10.3390/pathogens11111259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Leishmania parasites cause a variety of discrete clinical diseases that present in regions where their specific sand fly vectors sustain transmission. Clinical and laboratory research indicate the potential of immunization to prevent leishmaniasis and a wide array of vaccine candidates have been proposed. Unfortunately, multiple factors have precluded advancement of more than a few Leishmania targeting vaccines to clinical trial. The recent maturation of RNA vaccines into licensed products in the context of COVID-19 indicates the likelihood of broader use of the technology. Herein, we discuss the potential benefits provided by RNA technology as an approach to address the bottlenecks encountered for Leishmania vaccines. Further, we outline a variety of strategies that could be used to more efficiently evaluate Leishmania vaccine efficacy, including controlled human infection models and initial use in a therapeutic setting, that could prioritize candidates before evaluation in larger, longer and more complicated field trials.
Collapse
Affiliation(s)
| | - Bruna A S Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Roberto Badaró
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador 41650-010, Bahia, Brazil
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Steven G Reed
- HDT Bio, 1616 Eastlake Ave E, Seattle, WA 98102, USA
| |
Collapse
|
17
|
Limon ACD, Patabendige HMLW, Azhari A, Sun X, Kyle DE, Wilson NG, Baker BJ. Chemistry and Bioactivity of the Deep-Water Antarctic Octocoral Alcyonium sp. Mar Drugs 2022; 20:576. [PMID: 36135765 PMCID: PMC9505732 DOI: 10.3390/md20090576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of an Antarctic deep-water octocoral has led to the isolation of four new compounds, including three illudalane sesquiterpenoids (1-3) related to the alcyopterosins, a highly oxidized steroid, alcyosterone (5), and five known alcyopterosins (4, 6-9). The structures were established by extensive 1D and 2D NMR analyses, while 9 was verified by XRD. Alcyopterosins are unusual for their nitrate ester functionalization and have been characterized with cytotoxicity related to their DNA binding properties. Alcyopterosins V (3) and E (4) demonstrated single-digit micromolar activity against Clostridium difficile, an intestinal bacterium capable of causing severe diarrhea that is increasingly associated with drug resistance. Alcyosterone (5) and several alcyopterosins were similarly potent against the protist Leishmania donovani, the causative agent of leishmaniasis, a disfiguring disease that can be fatal if not treated. While the alcyopterosin family of sesquiterpenes is known for mild cytotoxicity, the observed activity against C. difficile and L. donovani is selective for the infectious agents.
Collapse
Affiliation(s)
- Anne-Claire D. Limon
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL 33620, USA
| | - Hiran M. L. W. Patabendige
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA
| | - Ala Azhari
- USF Center for Global Health and Infectious Diseases Research, University of South Florida, 3010 USF Banyan Circle, IDRB 304, Tampa, FL 33612, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA
| | - Dennis E. Kyle
- USF Center for Global Health and Infectious Diseases Research, University of South Florida, 3010 USF Banyan Circle, IDRB 304, Tampa, FL 33612, USA
| | - Nerida G. Wilson
- Collections & Research, Western Australian Museum, 49 Kew Street, Welshpool 6106, Perth, WA 6106, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Bill J. Baker
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL 33620, USA
| |
Collapse
|