1
|
de Oliveira Madeira JL, Antoneli F. Homeostasis in networks with multiple inputs. J Math Biol 2024; 89:17. [PMID: 38902549 PMCID: PMC11190020 DOI: 10.1007/s00285-024-02117-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
Homeostasis, also known as adaptation, refers to the ability of a system to counteract persistent external disturbances and tightly control the output of a key observable. Existing studies on homeostasis in network dynamics have mainly focused on 'perfect adaptation' in deterministic single-input single-output networks where the disturbances are scalar and affect the network dynamics via a pre-specified input node. In this paper we provide a full classification of all possible network topologies capable of generating infinitesimal homeostasis in arbitrarily large and complex multiple inputs networks. Working in the framework of 'infinitesimal homeostasis' allows us to make no assumption about how the components are interconnected and the functional form of the associated differential equations, apart from being compatible with the network architecture. Remarkably, we show that there are just three distinct 'mechanisms' that generate infinitesimal homeostasis. Each of these three mechanisms generates a rich class of well-defined network topologies-called homeostasis subnetworks. More importantly, we show that these classes of homeostasis subnetworks provides a topological basis for the classification of 'homeostasis types': the full set of all possible multiple inputs networks can be uniquely decomposed into these special homeostasis subnetworks. We illustrate our results with some simple abstract examples and a biologically realistic model for the co-regulation of calcium ( Ca ) and phosphate ( PO 4 ) in the rat. Furthermore, we identify a new phenomenon that occurs in the multiple input setting, that we call homeostasis mode interaction, in analogy with the well-known characteristic of multiparameter bifurcation theory.
Collapse
Affiliation(s)
| | - Fernando Antoneli
- Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| |
Collapse
|
2
|
Goldstein DS, Pekker MJ, Sullivan P, Isonaka R, Sharabi Y. Modeling the Progression of Cardiac Catecholamine Deficiency in Lewy Body Diseases. J Am Heart Assoc 2022; 11:e024411. [PMID: 35621196 PMCID: PMC9238705 DOI: 10.1161/jaha.121.024411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Background Lewy body diseases (LBDs) feature deficiency of the sympathetic neurotransmitter norepinephrine in the left ventricular myocardium and sympathetic intra-neuronal deposition of the protein alpha-synuclein (αS). LBDs therefore are autonomic synucleinopathies. Computational modeling has revealed multiple functional abnormalities in residual myocardial sympathetic noradrenergic nerves in LBDs, including decreased norepinephrine synthesis, vesicular storage, and recycling. We report an extended model that enables predictions about the progression of LBDs and effects of genetic predispositions and treatments on that progression. Methods and Results The model combines cardiac sympathetic activation with autotoxicity mediated by the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde. We tested the model by its ability to predict longitudinal empirical data based on cardiac sympathetic neuroimaging, effects of genetic variations related to particular intra-neuronal reactions, treatment by monoamine oxidase inhibition to decrease 3,4-dihydroxyphenylacetaldehyde production, and post-mortem myocardial tissue contents of catecholamines and αS. The new model generated a triphasic decline in myocardial norepinephrine content. This pattern was confirmed by empirical data from serial cardiac 18F-dopamine positron emission tomographic scanning in patients with LBDs. The model also correctly predicted empirical data about effects of genetic variants and monoamine oxidase inhibition and about myocardial levels of catecholamines and αS. Conclusions The present computational model predicts a triphasic decline in myocardial norepinephrine content as LBDs progress. According to the model, disease-modifying interventions begun at the transition from the first to the second phase delay the onset of symptomatic disease. Computational modeling coupled with biomarkers of preclinical autonomic synucleinopathy may enable early detection and more effective treatment of LBDs.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine SectionClinical Neurosciences ProgramDivision of Intramural ResearchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMD
| | - Mark J. Pekker
- Mathematical SciencesUniversity of Alabama at HuntsvilleHuntsvilleAL
| | - Patti Sullivan
- Autonomic Medicine SectionClinical Neurosciences ProgramDivision of Intramural ResearchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMD
| | - Risa Isonaka
- Autonomic Medicine SectionClinical Neurosciences ProgramDivision of Intramural ResearchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMD
| | - Yehonatan Sharabi
- Tel Aviv University Sackler Faculty of Medicine and Chaim Sheba Medical CenterTel HaShomerIsrael
| |
Collapse
|
3
|
A homeostasis criterion for limit cycle systems based on infinitesimal shape response curves. J Math Biol 2022; 84:24. [PMID: 35217884 DOI: 10.1007/s00285-022-01724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Homeostasis occurs in a control system when a quantity remains approximately constant as a parameter, representing an external perturbation, varies over some range. Golubitsky and Stewart (J Math Biol 74(1-2):387-407, 2017) developed a notion of infinitesimal homeostasis for equilibrium systems using singularity theory. Rhythmic physiological systems (breathing, locomotion, feeding) maintain homeostasis through control of large-amplitude limit cycles rather than equilibrium points. Here we take an initial step to study (infinitesimal) homeostasis for limit-cycle systems in terms of the average of a quantity taken around the limit cycle. We apply the "infinitesimal shape response curve" (iSRC) introduced by Wang et al. (SIAM J Appl Dyn Syst 82(7):1-43, 2021) to study infinitesimal homeostasis for limit-cycle systems in terms of the mean value of a quantity of interest, averaged around the limit cycle. Using the iSRC, which captures the linearized shape displacement of an oscillator upon a static perturbation, we provide a formula for the derivative of the averaged quantity with respect to the control parameter. Our expression allows one to identify homeostasis points for limit cycle systems in the averaging sense. We demonstrate in the Hodgkin-Huxley model and in a metabolic regulatory network model that the iSRC-based method provides an accurate representation of the sensitivity of averaged quantities.
Collapse
|
4
|
Hajnová V, Zlámal F, Lenárt P, Bienertova-Vasku J. Homeostatic model of human thermoregulation with bi-stability. Sci Rep 2021; 11:17327. [PMID: 34462454 PMCID: PMC8405675 DOI: 10.1038/s41598-021-96280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/22/2021] [Indexed: 12/02/2022] Open
Abstract
All homoiothermic organisms are capable of maintaining a stable body temperature using various negative feedback mechanisms. However, current models cannot satisfactorily describe the thermal adaptation of homoiothermic living systems in a physiologically meaningful way. Previously, we introduced stress entropic load, a novel variable designed to quantify adaptation costs, i.e. the stress of the organism, using a thermodynamic approach. In this study, we use stress entropic load as a starting point for the construction of a novel dynamical model of human thermoregulation. This model exhibits bi-stable mechanisms, a physiologically plausible features which has thus far not been demonstrated using a mathematical model. This finding allows us to predict critical points at which a living system, in this case a human body, may proceed towards two stabilities, only one of which is compatible with being alive. In the future, this may allow us to quantify not only the direction but rather the extent of therapeutic intervention in critical care patients.
Collapse
Affiliation(s)
- Veronika Hajnová
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Filip Zlámal
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Peter Lenárt
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
5
|
Golubitsky M, Stewart I. Homeostasis, singularities, and networks. J Math Biol 2016; 74:387-407. [PMID: 27255135 DOI: 10.1007/s00285-016-1024-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 04/17/2016] [Indexed: 12/15/2022]
Abstract
Homeostasis occurs in a biological or chemical system when some output variable remains approximately constant as an input parameter [Formula: see text] varies over some interval. We discuss two main aspects of homeostasis, both related to the effect of coordinate changes on the input-output map. The first is a reformulation of homeostasis in the context of singularity theory, achieved by replacing 'approximately constant over an interval' by 'zero derivative of the output with respect to the input at a point'. Unfolding theory then classifies all small perturbations of the input-output function. In particular, the 'chair' singularity, which is especially important in applications, is discussed in detail. Its normal form and universal unfolding [Formula: see text] is derived and the region of approximate homeostasis is deduced. The results are motivated by data on thermoregulation in two species of opossum and the spiny rat. We give a formula for finding chair points in mathematical models by implicit differentiation and apply it to a model of lateral inhibition. The second asks when homeostasis is invariant under appropriate coordinate changes. This is false in general, but for network dynamics there is a natural class of coordinate changes: those that preserve the network structure. We characterize those nodes of a given network for which homeostasis is invariant under such changes. This characterization is determined combinatorially by the network topology.
Collapse
Affiliation(s)
- Martin Golubitsky
- Mathematical Biosciences Institute, Ohio State University, 364 Jennings Hall, Columbus, OH, 43210, USA.
| | - Ian Stewart
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
6
|
Nijhout HF, Best J, Reed MC. Escape from homeostasis. Math Biosci 2014; 257:104-10. [PMID: 25242608 DOI: 10.1016/j.mbs.2014.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022]
Abstract
Many physiological systems, from gene networks to biochemistry to whole organism physiology, exhibit homeostatic mechanisms that keep certain variables within a fairly narrow range. Because homeostatic mechanisms buffer traits against environmental and genetic variation they allow the accumulation of cryptic genetic variation. Homeostatic mechanisms are never perfect and can be destabilized by mutations in genes that alter the kinetics of the underlying mechanism. We use mathematical models to study five diverse mechanisms of homeostasis: thermoregulation; maintenance of homocysteine concentration; neural control by a feed forward circuit; the myogenic response in the kidney; and regulation of extracellular dopamine levels in the brain. In all these cases there are homeostatic regions where the trait is relatively insensitive to genetic or environmental variation, flanked by regions where it is sensitive. Moreover, mutations or environmental changes can place an individual closer to the edge of the homeostatic region, thus predisposing that individual to deleterious effects caused by additional mutations or environmental changes. Mutations and environmental variables can also reduce the size of the homeostatic region, thus releasing potentially deleterious cryptic genetic variation. These considerations of mutations, environment, homeostasis, and escape from homeostasis help to explain why the etiology of so many diseases is complex.
Collapse
Affiliation(s)
| | - Janet Best
- Department of Mathematics, Duke University, Durham, NC 27705, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27705, USA
| |
Collapse
|
7
|
Activity pattern of the neotropical marsupial Didelphis aurita in south-eastern Brazilian Atlantic Forest. JOURNAL OF TROPICAL ECOLOGY 2014. [DOI: 10.1017/s0266467413000886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract:Nocturnal activity is generally presumed, but rarely evaluated in studies of tropical small mammals. When evaluated, activity is frequently presented as a fixed pattern, but actually it is the influence of biotic and abiotic factors on individuals. We investigated effects of age, sex, minimum temperature, reproductive and climatic seasons on activity of Didelphis aurita (Didelphimorphia, Didelphidae) in an Atlantic Forest area in south-eastern Brazil from June 2009 to December 2010. We captured 37 individuals, 51 times (28 females and 23 males). Activity of D. aurita was mostly nocturnal, but some individuals were active during the day (12%, N = 6). Nocturnal activity was bimodal, more prevalent in adults than juveniles, and different from most neotropical marsupials. Contrary to expectations, individuals of D. aurita were more active at colder temperatures, which indicates that low temperatures do not limit foraging behaviour.
Collapse
|
8
|
Godfrey GK. Body-temperatures and torpor in Sminthopsis crassicaudata and S. larapinta (Marsupialia-Dasyuridae). J Zool (1987) 2009. [DOI: 10.1111/j.1469-7998.1968.tb04367.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Treagust DF, Randall W, Folk G. A fourier regression analysis of body temperature of the American opossum,Didelphis virginiana. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/09291018009359696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
|
11
|
Treagust DF, Folk G, Randall W, Folk MA. The circadian rhythm of body temperature of unrestrained oppossums, Didelphis Virginiana. J Therm Biol 1979. [DOI: 10.1016/0306-4565(79)90010-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
|
13
|
McManus JJ. Temperature Regulation in the Opossum, Didelphis Marsupialis Virginiana. J Mammal 1969. [DOI: 10.2307/1378782] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Waring H, Moir RJ, Tyndale-Biscoe CH. Comparative physiology of marsupials. ADVANCES IN COMPARATIVE PHYSIOLOGY AND BIOCHEMISTRY 1966; 2:237-376. [PMID: 5330182 DOI: 10.1016/b978-0-12-395511-1.50009-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|