1
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Zeng Q, Ou L, Wang W, Guo DY. Gastrin, Cholecystokinin, Signaling, and Biological Activities in Cellular Processes. Front Endocrinol (Lausanne) 2020; 11:112. [PMID: 32210918 PMCID: PMC7067705 DOI: 10.3389/fendo.2020.00112] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
The structurally-related peptides, gastrin and cholecystokinin (CCK), were originally discovered as humoral stimulants of gastric acid secretion and pancreatic enzyme release, respectively. With the aid of methodological advances in biochemistry, immunochemistry, and molecular biology in the past several decades, our concept of gastrin and CCK as simple gastrointestinal hormones has changed considerably. Extensive in vitro and in vivo studies have shown that gastrin and CCK play important roles in several cellular processes including maintenance of gastric mucosa and pancreatic islet integrity, neurogenesis, and neoplastic transformation. Indeed, gastrin and CCK, as well as their receptors, are expressed in a variety of tumor cell lines, animal models, and human samples, and might contribute to certain carcinogenesis. In this review, we will briefly introduce the gastrin and CCK system and highlight the effects of gastrin and CCK in the regulation of cell proliferation and apoptosis in both normal and abnormal conditions. The potential imaging and therapeutic use of these peptides and their derivatives are also summarized.
Collapse
Affiliation(s)
- Qiang Zeng
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Lei Ou
- Health Management Institute, People's Liberation Army General Hospital, Beijing, China
| | - Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Wei Wang
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- Dong-Yu Guo
| |
Collapse
|
3
|
Effect of topical rebamipide on conjunctival goblet cell recovery after vitrectomy. Sci Rep 2016; 6:19516. [PMID: 26762482 PMCID: PMC4725884 DOI: 10.1038/srep19516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/15/2015] [Indexed: 11/08/2022] Open
Abstract
In vitro and in vivo experiments have shown that topical rebamipide will increase the number of goblet cells in the bulbar conjunctiva. The purpose of this study was to determine whether topical rebamipide will enhance the recovery of conjunctival goblet cells that were damaged during vitrectomy. Forty patients who underwent vitrectomy surgery were studied. The 40 patients consisted of 20 with diabetes mellitus (DM) and 20 patients without DM. They were randomized in a 1:1 ratio into groups that were treated or not treated with topical 2% rebamipide after the surgery. Impression cytology was performed at the end of surgery and at 14 days after the surgery. The mean goblet cell density of each specimen was determined by averaging the total number of goblet cells obtained from three consecutive high magnification microscopic images. In patients without DM, the mean goblet cell density at 14 days after the vitrectomy was significantly higher in eyes with topical rebemipide than in eyes without rebemipide (P < 0.01). In patients with DM, a similar tendency was observed but the difference was not significant (P = 0.09). These results suggest that topical rebamipide can be helpful in patients with globlet cell damage that occur during and after vitrectomy.
Collapse
|
4
|
Zhang MM, Peng T, Zhao K. Effect of endogenous and exogenous gastrin on PGE 2 and EGF expression in dimethylhydrazine-induced colorectal cancer in rats. Shijie Huaren Xiaohua Zazhi 2013; 21:1914-1924. [DOI: 10.11569/wcjd.v21.i20.1914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the effect of endogenous and exogenous gastrin on the expression of epidermal growth factor (EGF) and prostaglandin E2 (PGE2) in dimethylhydrazine-induced colorectal cancer in rats to explore the role of gastrin (GAS), cyclooxygenase (COX)-2, EGF, PGE2, and EGF receptor (EGFR) in colorectal cancer.
METHODS: One hundred and forty rats were randomly divided into seven groups: DMH+GAS, DMH+PPI, DMH, DMH+GAS+PGL, DMH+PPI+PGL, DMH+PGL, and control group. The concentrations of GAS, EGF and PGE2 in serum and large intestine tissue homogenate were determined by radioimmunoassay. The expression of COX-2 and EGFR in the large intestine tissue was detected by immunohistochemistry and quantified by optical density analysis.
RESULTS: The concentrations of GAS (pg/mL) in serum and large intestine tissue homogenate were significantly higher in the DMH+GAS (15.59 ± 2.90, 0.38 ± 0.11) and DMH+GAS+PGL (15.31 ± 5.66, 0.35 ± 0.10) groups than in the control group (8.64 ± 2.36, 0.16 ± 0.03) (all P < 0.05), and in DMH+PPI (20.50 ± 3.71, 0.45 ± 0.13) and DMH+PPI+PGL (19.90 ± 5.10, 0.37 ± 0.11) groups than in the DMH (13.12 ± 3.47, 0.19 ± 0.04), DMH+PGL (11.45 ± 5.13, 0.20 ± 0.05) and blank control groups (all P < 0.05). The concentrations of EGF (ng/mL) in serum and large intestine tissue homogenate were significantly higher in the DMH+GAS (4.26 ± 0.92, 0.011 ± 0.005) and DMH+GAS+PGL (4.29 ± 0.50, 0.009 ± 0.005) groups than in the control group (2.91 ± 0.54, 0.002 ± 0.0007) (all P < 0.05), and in DMH+PPI (5.20 ± 1.03, 0.015 ± 0.007) and DMH+PPI+PGL (5.13 ± 0.50, 0.011 ± 0.007) groups than in the DMH (3.76 ± 1.47, 0.004 ± 0.002), DMH+PGL (3.59 ± 1.12, 0.002 ± 0.0018) and control groups (all P < 0.05). The concentrations of PGE2 (pg/mL) in serum and large intestine tissue homogenate were higher in the DMH+GAS (76.03 ± 60.75, 2.74 ± 0.76) and DMH+PPI (70.29 ± 66.58, 2.42 ± 0.89) groups than in other groups, but the differences were not statistically significant (all P > 0.05). Serum and tissue concentrations of GAS (32.06 pg/mg ± 15.84 pg/mg, 0.73 pg/mg ± 0.31 pg/mg), EGF (4.48 ng/mg ± 1.13 ng/mg, 0.045 ng/mg ± 0.020 ng/mg), PGE2 (99.05 pg/mg ± 60.80 pg/mg, 4.27 pg/mg ± 1.17 pg/mg) in adenocarcinoma were higher than those in the control group (all P < 0.05). The IA of EGFR (17161.67 ± 9851.33) and COX-2 (21403.33 ± 11377.25) in the adenocarcinoma group was higher than that in the adenoma (5154.00 ± 2744.13, 7291.60 ± 2849.12) and control (3327.11 ± 1880.44, 4822.90 ± 2340.89) groups (all P < 0.05). The positive rates of EGFR (66.7%) and COX-2 (81.5%) expression in the adenocarcinoma group was higher than those in the control group (0%, 30%) (all P < 0.05).
CONCLUSION: Endogenous and exogenous gastrin could induce the expression of EGF and stimulate the secretion of PGE2 in colorectal cancer. PGL does not inhibit the effect of GAS on EGF. GAS, EGF, PGE2, EGFR, and COX-2 play an important role in the formation of colorectal cancer. EGFR and COX-2 are involved in the proliferation of colorectal tumors.
Collapse
|
5
|
Cayrol C, Bertrand C, Kowalski-Chauvel A, Daulhac L, Cohen-Jonathan-Moyal E, Ferrand A, Seva C. α V integrin: A new gastrin target in human pancreatic cancer cells. World J Gastroenterol 2011; 17:4488-95. [PMID: 22110279 PMCID: PMC3218139 DOI: 10.3748/wjg.v17.i40.4488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/12/2011] [Accepted: 02/19/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyse αV integrin expression induced by gastrin in pancreatic cancer models.
METHODS: αV integrin mRNA expression in human pancreatic cancer cells was analysed using a “cancer genes” array and confirmed by real-time reverse transcription-polymerase chain reaction (PCR). Western blotting and semi-quantitative immunohistochemistry were used to examine protein levels in human pancreatic cancer cell lines and pancreatic tissues, respectively. The role of αV integrin on gastrin-induced cell adhesion was examined using blocking anti-αV integrin monoclonal antibodies. Adherent cells were quantified by staining with crystal violet.
RESULTS: Using a “cancer genes” array we identified αV integrin as a new gastrin target gene in human pancreatic cancer cells. A quantitative real-time PCR approach was used to confirm αV integrin gene expression. We also demonstrate that Src family kinases and the PI 3-kinase, two signalling pathways specifically activated by the CCK-2 receptor (CCK2R), are involved in gastrin-mediated αV integrin expression. In contrast, inhibition of the ERK pathway was without any effect on αV integrin expression induced by gastrin. Our results also show that gastrin modulates cell adhesion viaαV integrins. Indeed, in vitro adhesion assays performed on fibronectin show that gastrin significantly increases adhesion of pancreatic cancer cells. The use of blocking anti-αV integrin monoclonal antibodies completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we showed in vivo that the targeted CCK2R expression in the pancreas of Elas-CCK2 mice, leads to the overexpression of αV integrin. This process may contribute to pancreatic tumour development observed in these transgenic animals.
CONCLUSION: αV integrin is a new gastrin target in pancreatic cancer models and contributes to gastrin effects on cell adhesion.
Collapse
|
6
|
Copps J, Murphy RF, Lovas S. The production and role of gastrin-17 and gastrin-17-gly in gastrointestinal cancers. Protein Pept Lett 2010; 16:1504-18. [PMID: 20001914 DOI: 10.2174/092986609789839269] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptide hormone gastrin is responsible for initiating the release of gastric acid in the stomach in response to the presence of food and/or humoral factors such as gastrin releasing peptide. However, it has a role in the growth and maintenance of the gastric epithelium, and has been implicated in the formation and growth of gastric cancers. Hypergastrinemia resulting from atrophic gastritis and pernicious anemia leads to hyperplasia and carcinoid formation in rats, and contributes to tumor formation in humans. Additionally, gastrin has been suspected to play a role in the formation and growth of cancers of the colon, but recent studies have instead implicated gastrin processing intermediates, such as gastrin-17-Gly, acting upon a putative, non-cholecystokinin receptor. This review summarizes the production and chemical structures of gastrin and of the processing intermediate gastrin-17-Gly, as well as their activities in the gastrointestinal tract, particularly the promotion of colon cancers.
Collapse
Affiliation(s)
- Jeffrey Copps
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
7
|
Almeida-Vega S, Catlow K, Kenny S, Dimaline R, Varro A. Gastrin activates paracrine networks leading to induction of PAI-2 via MAZ and ASC-1. Am J Physiol Gastrointest Liver Physiol 2009; 296:G414-23. [PMID: 19074642 PMCID: PMC2643906 DOI: 10.1152/ajpgi.90340.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastric hormone gastrin regulates the expression of a variety of genes involved in control of acid secretion and also in the growth and organization of the gastric mucosa. One putative target is plasminogen activator inhibitor-2 (PAI-2), which is a component of the urokinase activator system that acts extracellularly to inhibit urokinase plasminogen activator (uPA) and intracellularly to suppress apoptosis. Previous studies have demonstrated that gastrin induces PAI-2 both in gastric epithelial cells expressing the gastrin (CCK-2) receptor and, via activation of paracrine networks, in adjacent cells that do not express the receptor. We have now sought to identify the response element(s) in the PAI-2 promoter targeted by paracrine mediators initiated by gastrin. Mutational analysis identified two putative response elements in the PAI-2 promoter that were downstream of gastrin-activated paracrine signals. One was identified as a putative MAZ site, mutation of which dramatically reduced both basal and gastrin-stimulated responses of the PAI-2 promoter by a mechanism involving PGE(2) and the small GTPase RhoA. Yeast one-hybrid screening identified the other as binding the activating signal cointegrator-1 (ASC-1) complex, which was shown to be the target of IL-8 released by gastrin. RNA interference (RNAi) knockdown of two subunits of the ASC-1 complex (p50 and p65) inhibited induction of PAI-2 expression by gastrin. The data reveal previously unsuspected transcriptional mechanisms activated as a consequence of gastrin-triggered paracrine networks and emphasize the elaborate and complex cellular control mechanisms required for a key component of tissue responses to damage and infection.
Collapse
Affiliation(s)
- Simon Almeida-Vega
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krista Catlow
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susan Kenny
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Pham H, Chong B, Vincenti R, Slice LW. Ang II and EGF synergistically induce COX-2 expression via CREB in intestinal epithelial cells. J Cell Physiol 2007; 214:96-109. [PMID: 17559081 DOI: 10.1002/jcp.21167] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cyclooxygenase (COX)-2 derived prostaglandins (PGs) play a major role in intestinal inflammation and colorectal carcinogenesis. Because COX-2 is the rate-limiting step in the production of PGs, mechanisms that regulate COX-2 expression control PG production in the cell. Using the non-tumorigenic, rat intestinal epithelial cell, IEC-18, we demonstrate that co-activation of endogenously expressed AT(1) receptor and EGFR resulted in synergistic expression of COX-2 mRNA and protein involving transcriptional and post-transcriptional mechanisms. Ang II and EGF induced transient phosphorylation of ERK, p38(MAPK) and CREB. Co-stimulation with Ang II and EGF prolonged phosphorylation of ERK, p38(MAPK), and CREB. The p38(MAPK) selective inhibitor, SB202190, but not the MEK selective inhibitor, PD98059, or the EGFR kinase inhibitor, AG1478, inhibited Ang II-dependent COX-2 expression and CREB phosphorylation. EGF-dependent COX-2 expression and CREB phosphorylation were inhibited by SB202190, PD98059, and AG1478. Inhibition of CREB expression using two separate RNAi methods blocked COX-2 expression by Ang II and EGF. Expression of a dominant negative CREB mutant inhibited Ang II- and EGF-dependent induction of the COX-2 promoter. Ang II induced luciferase expression in cells transfected with the CRE-luc reporter vector and cells co-transfected with Gal4-luc reporter vector and a Gal4-CREB expression vector. Chromatin immunoprecipitation assays demonstrated CREB binding to the proximal rat COX-2 promoter region containing a CRE cis-acting element. These results indicate that co-stimulation with Ang II and EGF synergistically induced COX-2 expression in these intestinal epithelial cells through p38(MAPK) mediated signaling cascades that converge onto CREB.
Collapse
Affiliation(s)
- Hung Pham
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1786, USA
| | | | | | | |
Collapse
|
9
|
Liu M, Yang SC, Sharma S, Luo J, Cui X, Peebles KA, Huang M, Sato M, Ramirez RD, Shay JW, Minna JD, Dubinett SM. EGFR signaling is required for TGF-beta 1 mediated COX-2 induction in human bronchial epithelial cells. Am J Respir Cell Mol Biol 2007; 37:578-88. [PMID: 17600311 PMCID: PMC2048680 DOI: 10.1165/rcmb.2007-0100oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a key enzyme in the production of prostaglandins and thromboxanes from free arachidonic acid. Increasing evidence suggests that COX-2 plays a role in tumorigenesis. A variety of stimuli induce COX-2 and it is overexpressed in many tumors, including non-small cell lung cancer (NSCLC). We studied the regulation of COX-2 expression in immortalized human bronchial epithelial cells (HBECs) by transforming growth factor-beta1 (TGF-beta1) and epidermal growth factor (EGF) because these two growth factors are present in both the pulmonary milieu of those at risk for lung cancer as well as in the tumor microenvironment. EGF significantly enhanced TGF-beta1-mediated induction of COX-2 and corresponding prostaglandin E2 (PGE2) production. TGF-beta1 and EGF induced COX-2 at the transcriptional and post-transcriptional levels. EGF receptor (EGFR) inhibition, neutralizing antibody against amphiregulin, or mitogen-activated protein kinase kinase (MEK) inhibition blocked TGF-beta1-mediated COX-2 induction. COX-2 induction by TGF-beta1 depended upon Smad3 signaling and required the activity of EGFR or its downstream mediators. Autocrine amphiregulin signaling maintains EGFR in a constitutively active state in HBECs, allowing for COX-2 induction by TGF-beta1. Thus, EGFR ligands, which are abundant in the pulmonary microenvironment of those at risk for lung cancer, potentiate and are required for COX-2 induction by TGF-beta1 in HBEC. These findings emphasize the central role of EGFR signaling in COX-2 induction by TGF-beta1 and suggest that inhibition of EGFR signaling should be investigated further for lung cancer prevention.
Collapse
Affiliation(s)
- Ming Liu
- Lung Cancer Research Program, Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The gastric epithelium is a complex structure formed into tubular branched gastric glands. The glands contain a wide variety of cell types concerned with the secretion of hydrochloric acid, proteases, mucus and a range of signalling molecules. All cell types originate from stem cells in the neck region of the gland, before migrating and differentiating to assume their characteristic positions and functions. Endocrine and local paracrine mediators are of crucial importance for maintaining structural and functional integrity of the epithelium, in the face of a hostile luminal environment. The first such mediator to be recognized, the hormone gastrin, was identified over a century ago and is now established as the major physiological stimulant of gastric acid secretion. Recent studies, including those using mice that overexpress or lack the gastrin gene, suggest a number of previously unrecognized roles for this hormone in the regulation of cellular proliferation, migration and differentiation. This review focuses on the identification of hitherto unsuspected gastrin-regulated genes and discusses the paracrine cascades that contribute to the maintenance of gastric epithelial architecture and secretory function. Helicobacter infection is also considered in cases where it shares targets and signalling mechanisms with gastrin.
Collapse
Affiliation(s)
- Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | |
Collapse
|
11
|
Abstract
Cholecystokinin and gastrin receptors (CCK1R and CCK2R) are G protein-coupled receptors that have been the subject of intensive research in the last 10 years with corresponding advances in the understanding of their functioning and physiology. In this review, we first describe general properties of the receptors, such as the different signaling pathways used to exert short- and long-term effects and the structural data that explain their binding properties, activation, and regulation. We then focus on peripheral cholecystokinin receptors by describing their tissue distribution and physiological actions. Finally, pathophysiological peripheral actions of cholecystokinin receptors and their relevance in clinical disorders are reviewed.
Collapse
Affiliation(s)
- Marlène Dufresne
- Institut National de la Santé et de la Recherche Médicale U. 531, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, France
| | | | | |
Collapse
|
12
|
Ríos JD, Shatos M, Urashima H, Tran H, Dartt DA. OPC-12759 increases proliferation of cultured rat conjunctival goblet cells. Cornea 2006; 25:573-81. [PMID: 16783146 DOI: 10.1097/01.ico.0000208819.24990.0d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine if the gastroprotective drug OPC-12759 increased proliferation of rat conjunctival goblet cells in culture. METHODS Cultured goblet cells were incubated with 10(-12) to 10(-8) M OPC-12759 for 1 to 7 days. Fetal bovine serum (FBS) was used as a positive control. Cell proliferation was determined by a MTT [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] colorimetric assay and by immunohistochemical staining with anti-Ki-67, a marker of cell division. Goblet cells were identified by double-labeling with anti-Ki-67, a marker of cell division, and Ulex europaeus agglutinin I lectin, anti-MUC5AC and anticytokeratin 7. Stratified squamous cells were identified by using Griffonia (Bandeiraea) simplicifolia lectin and anticytokeratin 4 antibody. RESULTS As determined by MTT conversion to formazan, OPC-12579 at 10(-11) M induced an almost 2-fold increase in goblet cell proliferation on Days 1 and 3 of incubation but not on Days 5 and 7. The FBS at 10% increased cell proliferation by 2- to 3-fold at each time point. Daily replenishment of OPC-12579 for 3 consecutive days induced cell proliferation at all concentrations. Proliferation as determined by the number of Ki-67 positive cells increased by 4- and 3-fold at Days 1 and 3, respectively with addition of 10(-11) M OPC-12579. The FBS at 10% induced a 10-fold increase in goblet cell proliferation on Days 1, 3, and 5. Colocalization of Ulex europaeus agglutinin I, MUC5AC and anticytokeratin 7 with Ki-67 indicated that proliferating cells were goblet cells. Proliferating cells were negative for the nongoblet cell markers Bandeiraea lectin and anticytokeratin 4. CONCLUSIONS The OPC-12759 stimulates proliferation of conjunctival goblet cells in primary culture.
Collapse
Affiliation(s)
- José D Ríos
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114-2500, USA.
| | | | | | | | | |
Collapse
|
13
|
Kosone T, Takagi H, Kakizaki S, Sohara N, Horiguchi N, Sato K, Yoneda M, Takeuchi T, Mori M. Integrative roles of transforming growth factor-alpha in the cytoprotection mechanisms of gastric mucosal injury. BMC Gastroenterol 2006; 6:22. [PMID: 16879752 PMCID: PMC1552080 DOI: 10.1186/1471-230x-6-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 08/01/2006] [Indexed: 02/06/2023] Open
Abstract
Background Transforming growth factor α (TGFα) protects against gastric mucosal injury and facilitates wound healing. However, its overexpression is known to induce hypertrophic gastropathy resembling Menetrier's disease in transgenic (TG) mice on an FVB background, as one of the authors reported previously. We studied another TGFα-expressing mouse line on a CD1 background, whose gastric mucosa appears normal. Since this TG mouse had a strong resistance to ethanol-induced gastric injury, we considered the long-term effect of TGFα on several gastric protection mechanisms. Methods TGFα-expressing transgenic (TG) mouse lines bearing human TGFα cDNA under the control of the mouse metallothionein gene I promoter were generated on a CD1 mouse background, and analyzed their ethanol injury-resistant phenotypes produced by TGFα. Results In the TG mucosa, blood flow was well maintained after ethanol injury. Further, neural and inducible types of NO synthases were consistently and widely expressed in the TG mucosa, compared with the limited distribution of neural type NO synthase in the luminal pit region of the wild-type (WT) mucosa. COX-2 and its upstream transcription factor NfkB were constitutively elevated in the TG mucosa even before ethanol administration, whereas they were induced in the same region of the WT mucosa only after ethanol injury. Two anti-apoptotic proteins, HSP70 and Bcl-2, were upregulated in the TG mucosa even before ethanol administration, while they were not expressed in the WT mucosa before the injury. Furthermore, pro-caspase 3 activation was inhibited in the TG mucosa, while it was converted to the active form in the WT mucosa following ethanol administration. Conclusion We conclude that TGFα maintains the gastric mucosal defense against gastric injury by integrating other cytoprotective mechanisms.
Collapse
Affiliation(s)
- Takashi Kosone
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hitoshi Takagi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Satoru Kakizaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Naondo Sohara
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Norio Horiguchi
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Ken Sato
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Masashi Yoneda
- Department of Gastroenterology, Dokkyo University School of Medicine, Tochigi 321-0293, Japan
| | - Toshiyuki Takeuchi
- Department of Molecular Medicine, the Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
14
|
Clarke PA, Dickson JH, Harris JC, Grabowska A, Watson SA. Gastrin enhances the angiogenic potential of endothelial cells via modulation of heparin-binding epidermal-like growth factor. Cancer Res 2006; 66:3504-12. [PMID: 16585174 DOI: 10.1158/0008-5472.can-05-0280] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined whether gastrin modulates endothelial cell activity via heparin-binding epidermal growth factor-like growth factor (HB-EGF) expression. Human umbilical vascular endothelial cells (HUVEC) were assessed for tubule formation in the presence of amidated gastrin-17 (G17) and glycine-extended gastrin-17 (GlyG17) peptides. HB-EGF gene and protein expressions were measured by quantitative reverse transcription-PCR, immunocytochemistry, and Western blotting, and HB-EGF shedding by ELISA. Matrix metalloproteinases MMP-2, MMP-3, and MMP-9 were assessed by Western blotting. Chick chorioallantoic membrane studies measured the in vivo angiogenic potential of gastrin and microvessel density (MVD) was assessed in large intestinal premalignant lesions of hypergastrinaemic APC(Min) mice. MVD was also examined in human colorectal tumor and resection margin normals and correlated with serum-amidated gastrin levels (via RIA) and HB-EGF protein expression (via immunohistochemistry). HUVEC cells showed increased tubule and node formation in response to G17 (186%, P < 0.0005) and GlyG17 (194%, P < 0.0005). This was blockaded by the cholecystokinin-2 receptor (CCK-2R) antagonists JB95008 and JMV1155 and by antiserum to gastrin and HB-EGF. Gastrin peptides increased HB-EGF gene expression/protein secretion in HUVEC and microvessel-derived endothelial cells and the levels of MMP-2, MMP-3, and MMP-9. G17 promoted angiogenesis in a chorioallantoic membrane assay, and MVD was significantly elevated in premalignant large intestinal tissue from hypergastrinaemic APC(Min) mice. In terms of the clinical situation, MVD in the normal mucosa surrounding colorectal adenocarcinomas correlated with patient serum gastrin levels and HB-EGF expression. Gastrin peptides, acting through the CCK-2R, enhance endothelial cell activity in models of angiogenesis. This may be mediated through enhanced expression and shedding of HB-EGF, possibly resulting from increased activity of matrix metalloproteinases. This proangiogenic effect translates to the in vivo and human situations and may add to the tumorigenic properties attributable to gastrin peptides in malignancy.
Collapse
Affiliation(s)
- Philip A Clarke
- Academic Unit of Cancer Studies, University of Nottingham, Queen's Medical Centre, University Hospital, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Zhu F, Sun WH, Li SD, Li ZS. Synergistic inhibitory effect of NS-398 combined with AG-041R on gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2006; 14:1262-1266. [DOI: 10.11569/wcjd.v14.i13.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects and mechanisms of combined treatment of a special COX-2 inhibitor (NS-398) and a special gastric receptor antagonist (AG-041R) on gastric cancer cell line MKN-45.
METHODS: The human gastric cancer cell line MKN-45 was treated with NS398 and AG-041R, respectively, or in combination. The growth of MKN-45 cells was detected by MTT assay; the cell apoptosis was detected by flow cytometry; the expression of c-Myc mRNA was determined by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS: NS-398 and AG-041R inhibited the growth of MKN-45 cells in a time- and dose-dependent manner (12-72 h; NS-398: 1 × 10-8 - 1 × 10-4 mol/L; AG-041R: 1 × 10-8 - 1 × 10-5 mol/L). AG-041R (1×10-6 mol/L) and NS-398 (1×10-5 mol/L) inhibited the proliferation of MKN-45 cells at rates of 42.1% and 41.8%, respectively, at 72 h. NS-398 and AG-041R in combination resulted in a synergistic effect on inhibiting growth, and the inhibition effect was enhanced along with time. When NS-398 (1×10-5 mol/L) or AG-041R (1×10-6 mol/L) or their combination was used, the rate of apoptosis was 9.57% ± 0.60%, 10.25% ± 0.68% and 20.83% ± 1.90%, respectively, which was significantly higher than the rate in the controls (1.67% ± 0.76%)(all P < 0.01), and the agents in combination induced a higher apoptosis rate than either of them did (P < 0.01). NS-398 and AG-041R down-regulated the level of c-Myc mRNA, respectively, but their combination down-regulated it more significantly than either of the agents did.
CONCLUSION: Combined treatment of NS-398 and AG-041R synergistically inhibits the growth of MKN-45 cells in a time- and dose-dependent manner, induces the cell apoptosis and down-regulates c-Myc mRNA expression in MKN-45 cells.
Collapse
|
16
|
Chang AJ, Song DH, Wolfe MM. Attenuation of Peroxisome Proliferator-activated Receptor γ (PPARγ) Mediates Gastrin-stimulated Colorectal Cancer Cell Proliferation. J Biol Chem 2006; 281:14700-10. [PMID: 16574647 DOI: 10.1074/jbc.m602623200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Peroxisome proliferators-activated receptor gamma (PPARgamma) has been shown to suppress cell proliferation and tumorigenesis, whereas the gastrointestinal regulatory peptide gastrin stimulates the growth of neoplastic cells. The present studies were directed to determine whether changes in PPARgamma expression might mediate the effects of gastrin on the proliferation of colorectal cancer (CRC). Initially, using growth assays, we determined that the human CRC cell line DLD-1 expressed both functional PPARgamma and gastrin receptors. Amidated gastrin (G-17) attenuated the growth suppressing effects of PPARgamma by decreasing PPARgamma activity and total protein expression, in part through an increase in the rate of proteasomal degradation. G-17-induced degradation of PPARgamma appeared to be mediated through phosphorylation of PPARgamma at serine 84 by a process involving the biphasic phosphorylation of ERK1/2 and activation of the epidermal growth factor receptor (EGFR). These results were confirmed through the use of EGFR antagonist AG1478 and MEK1 inhibitor PD98059. Furthermore, mutation of PPARgamma at serine 84 reduced the effects of G-17, as evident by inability of G-17 to attenuate PPARgamma promoter activity, degrade PPARgamma, or inhibit the growth suppressing effects of PPARgamma. The results of these studies demonstrate that the trophic properties of gastrin in CRC may be mediated in part by transactivation of the EGFR and phosphorylation of ERK1/2, leading to degradation of PPARgamma protein and a decrease in PPARgamma activation.
Collapse
Affiliation(s)
- Albert J Chang
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, 650 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
17
|
Cayrol C, Clerc P, Bertrand C, Gigoux V, Portolan G, Fourmy D, Dufresne M, Seva C. Cholecystokinin-2 receptor modulates cell adhesion through beta 1-integrin in human pancreatic cancer cells. Oncogene 2006; 25:4421-8. [PMID: 16547500 DOI: 10.1038/sj.onc.1209484] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several lines of evidence suggest that gastrin and the CCK-2 receptor (CCK2R) could contribute to pancreatic carcinogenesis by modulating processes such as proliferation, cell adhesion or migration. In the current study, we used a 'cancer gene array' and identified beta1-integrin subunit as a new gastrin-regulated gene in human pancreatic cancer cells. We also demonstrated that Src family kinases and the phosphatidylinositol-3-kinase (PI-3-kinase) pathway play a crucial role in the expression of beta1-integrin induced by gastrin. Our results also showed that gastrin modulates cell-substrate adhesion via beta1-integrin. Indeed, using blocking anti-beta1-integrin monoclonal antibodies, we completely reversed the increase in cell-substrate adhesion induced by gastrin. In addition, we observed that in response to gastrin, beta1-integrin is tyrosine phosphorylated by Src family kinases and associates with paxillin, a scaffold protein involved in focal adhesion and integrin signalling. This mechanism might be involved in gastrin-induced cell adhesion. Moreover, we showed in vivo that targeted CCK2R expression in the pancreas of Elas-CCK2 mice leads to the overexpression of beta1-integrin. This process may contribute to pancreatic tumour development observed in these transgenic animals.
Collapse
Affiliation(s)
- C Cayrol
- INSERM U 531, IFR 31, Institut Louis Bugnard, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Slice LW, Chiu T, Rozengurt E. Angiotensin II and epidermal growth factor induce cyclooxygenase-2 expression in intestinal epithelial cells through small GTPases using distinct signaling pathways. J Biol Chem 2004; 280:1582-93. [PMID: 15525649 DOI: 10.1074/jbc.m408172200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Colorectal carcinogenesis is a multistep process involving genetic mutations and alterations in rigorously controlled signaling pathways and gene expression that control intestinal epithelial cell proliferation, differentiation, and apoptosis. Cyclooxygenase-2 (COX-2) is aberrantly expressed in premalignant adenomatous polyps and colorectal carcinomas and is associated with increased epithelial cell proliferation, decreased apoptosis, and increased cell invasiveness. Currently, knowledge of the regulation of expression of COX-2 by endogenous cell-surface receptors is inadequate. Recently, in a non-transformed rat intestinal epithelial cell line (IEC-18), we showed induction of cell proliferation and DNA synthesis by angiotensin II (Ang II) via the endogenous Ang II type 1 receptor (Chiu, T., Santiskulvong, C., and Rozengurt, E. (2003) Am. J. Physiol. 285, G1-G11). We report that Ang II potently stimulated expression of COX-2 mRNA and protein as an immediate-early gene response through the Ang II type 1 receptor, correlating with an increase in prostaglandin I2 production. Ang II induced Cdc42 activation and filopodial formation. COX-2 expression was induced by epidermal growth factor (EGF), which activated Rac with lamellipodial formation. Inhibition of small GTPases by Clostridium difficile toxin B blocked COX-2 expression by Ang II and EGF. Inhibition of ERK activation by U0126 or PD98059 significantly decreased EGF-dependent COX-2 expression, but did not affect Ang II-dependent COX-2 expression. Conversely, inhibition of p38MAPK by SB202190 or PD169316 inhibited COX-2 expression by Ang II, but did not block COX-2 induction by EGF. Ang II caused Ca2+ mobilization. Inhibition of Ca2+ signaling by 2-aminobiphenyl borate blocked Ang II-dependent COX-2 expression. EGF did not induce Ca2+ mobilization, and 2-aminobiphenyl borate did not inhibit EGF-dependent COX-2 expression. Inhibition of COX-2 expression correlated with inhibition of prostaglandin I2 production. Luciferase promoter assays showed that Ang II-dependent transcriptional activation of the COX-2 promoter was dependent on activation of small GTPases and p38(MAPK) and on Ca2+ signaling via the cAMP-responsive element/activating transcription factor cis-acting element.
Collapse
Affiliation(s)
- Lee W Slice
- Department of Medicine, David Geffen School of Medicine at UCLA, the CURE: Digestive Diseases Research Center, the Jonnson Comprehensive Cancer Center, University of California, Los Angeles 90095-1786, USA.
| | | | | |
Collapse
|
19
|
Dockray G, Dimaline R, Varro A. Gastrin: old hormone, new functions. Pflugers Arch 2004; 449:344-55. [PMID: 15480747 DOI: 10.1007/s00424-004-1347-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
It is exactly a century since the gastric hormone gastrin was first described as a blood-borne regulator of gastric acid secretion. The identities of the main active forms of the hormone (the "classical gastrins") and their cellular and molecular sites of action in regulating acid secretion have all attracted sustained attention. However, recent work on peptides derived from the gastrin precursor that do not stimulate acid secretion ("non-classical gastrins"), together with studies on mice over-expressing the gene, or in which the gastrin gene has been deleted, suggest hitherto unsuspected roles in regulating cell proliferation, migration, and differentiation. Moreover, microarray and proteomic studies have identified previously unsuspected target genes of the classical gastrins. Some of the newer actions have implications for our understanding of the progression to cancer in oesophagus, stomach, pancreas and colon, all of which have recently been linked in one way or another to dysfunctional signalling involving products of the gastrin gene. The present review focuses on recent progress in understanding the biology of both classical and non-classical gastrins.
Collapse
Affiliation(s)
- Graham Dockray
- Physiological Laboratory, University of Liverpool, Liverpool, UK.
| | | | | |
Collapse
|
20
|
Pan F, Ren JG, Zhou CW, Zhang ZY, Zhao JN, Zhou XR. Correlation of platelet-derived endothelial cell growth factor/ thymidine phosphorylase and Cox-2 expression to angiogenesis and apoptosis in gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2004; 12:1268-1272. [DOI: 10.11569/wcjd.v12.i6.1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship of the expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) and Cox-2 to angiogenesis and apoptosis in gastric carcinoma.
METHODS: The expression of PD-ECGF and Cox-2 and the microvascular density (MVD) level were examined by immunohistochemical staining, and apoptotic index (AI) was examined by flow cytometry in 67 cases of gastric carcinoma.
RESULTS: There was a close correlation between PD-ECGF expression and several clinicopathological factors including lymph node metastasis (P < 0.05), histology (P < 0.05) and histological type (P < 0.05). The expression of Cox-2 was closely related to lymph node metastasis (P < 0.05); The expression of PD-ECGF or Cox-2 in gastric cancer tissues was positively correlated with MVD (P < 0.01) and negatively correlated with AI (P < 0.01). Combined analysis of PD-ECGF and Cox-2 showed that tumors with positive expression of both factors had a significantly lower AI and a significantly higher MVD than tumors with negative expression of both factors (P < 0.01).
CONCLUSION: Up-regulation of PD-ECGF and Cox-2 may facilitate tumor angiogenesis and inhibit apoptosis in gastric carcinoma, indicating cooperation between PD-ECGF and Cox-2 in gastric cancer, and therefore promote tumor growth and metastasis.
Collapse
|