1
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Lithium and hormesis: Enhancement of adaptive responses and biological performance via hormetic mechanisms. J Trace Elem Med Biol 2023; 78:127156. [PMID: 36958112 DOI: 10.1016/j.jtemb.2023.127156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Biomedical and consumer interest in the health-promoting properties of pure single entities of known or unknown chemical constituents and mixtures has never been greater. Since its "rediscovery" in the 1950s, lithium is an example of such a constituent that represents an array of scientific and public health challenges and medical potentials that may now be understood best when seen through the lens of the dose-response paradigm known as hormesis. The present paper represents the first review of the capacity of lithium to induce hormetic dose responses in a broad range of biological models, organ systems, and endpoints. Of significance is that the numerous hormetic findings occur with extensive concentration/dose response evaluations with the optimal dosing being similar across multiple organ systems. The particular focus of these hormetic dose-response findings was targeted to research with a broad spectrum of stem cell types and neuroprotective effects. These findings suggest that lithium may have critically valuable systemic effects with respect to those therapeutically treated with lithium as well as for exposures that may be achieved via dietary intervention.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Peter Pressman
- Saba University School of Medicine, Caribbean, the Netherlands
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences; School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| |
Collapse
|
2
|
Abdollahzadeh R, Azarnezhad A, Paknahad S, Mansoori Y, Pirhoushiaran M, Kanaani K, Bafandeh N, Jafari D, Tavakkoly-Bazzaz J. A Proposed TUSC7/miR-211/Nurr1 ceRNET Might Potentially be Disturbed by a cer-SNP rs2615499 in Breast Cancer. Biochem Genet 2022; 60:2200-2225. [PMID: 35296964 DOI: 10.1007/s10528-022-10216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/24/2022] [Indexed: 12/09/2022]
Abstract
Evidence and in silico analyses showed that TUSC7, miR-211, and Nurr1 may be involved in BC pathogenesis by ceRNET signaling axis. This study aimed to investigate the potential role of TUSC7/miR-211/Nurr1 ceRNET and rs2615499 variant as a novel cer-SNP in BC subjects. The expression assays were conducted by qPCR on tumor tissues (n = 50), tumor-adjacent normal tissues (TANTs) (n = 50), and clinically healthy control tissues (n = 50). The expression of TUSC7 and Nurr1 significantly decreased, but the level of miR-211 significantly increased in tumor tissues compared to TANTs and healthy normal tissues. Altered expression of TUSC7 and miR-211 was associated with poor prognosis of patients. The Nurr1 exhibited a double-edged sword-like activity in BC. In addition, TUSC7, Nurr1, and miR-211 expressions were significantly related to a novel BC-associated rs2615499 (A > C) located in the miR-211 binding site on Nurr1 3'-UTR. In the second part of the study, a case-control study was performed on BC patients (n = 100) and matched healthy controls (n = 100). The genomic DNA was isolated and genotyping was performed using Tetra-Primer ARMS PCR. The CC and AC genotypes were associated with higher expression levels of Nurr1 and worse outcomes of the disease. Our findings revealed that TUSC7 functions as a tumor suppressor in BC potentially via miR-211/Nurr1, which might be disturbed by the cer-SNP rs2615499. However, functional studies are needed to validate these results.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sahereh Paknahad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khaled Kanaani
- Faculty of Nursing and Midwifery, Kowsar Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Bafandeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Khreesha L, Qaswal AB, Al Omari B, Albliwi MA, Ababneh O, Albanna A, Abunab'ah A, Iswaid M, Alarood S, Guzu H, Alshawabkeh G, Zayed FM, Abuhilaleh MA, Al-Jbour MN, Obeidat S, Suleiman A. Quantum Tunneling-Induced Membrane Depolarization Can Explain the Cellular Effects Mediated by Lithium: Mathematical Modeling and Hypothesis. MEMBRANES 2021; 11:851. [PMID: 34832080 PMCID: PMC8625630 DOI: 10.3390/membranes11110851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Lithium imposes several cellular effects allegedly through multiple physiological mechanisms. Membrane depolarization is a potential unifying concept of these mechanisms. Multiple inherent imperfections of classical electrophysiology limit its ability to fully explain the depolarizing effect of lithium ions; these include incapacity to explain the high resting permeability of lithium ions, the degree of depolarization with extracellular lithium concentration, depolarization at low therapeutic concentration, or the differences between the two lithium isotopes Li-6 and Li-7 in terms of depolarization. In this study, we implemented a mathematical model that explains the quantum tunneling of lithium ions through the closed gates of voltage-gated sodium channels as a conclusive approach that decodes the depolarizing action of lithium. Additionally, we compared our model to the classical model available and reported the differences. Our results showed that lithium can achieve high quantum membrane conductance at the resting state, which leads to significant depolarization. The quantum model infers that quantum membrane conductance of lithium ions emerges from quantum tunneling of lithium through the closed gates of sodium channels. It also differentiates between the two lithium isotopes (Li-6 and Li-7) in terms of depolarization compared with the previous classical model. Moreover, our study listed many examples of the cellular effects of lithium and membrane depolarization to show similarity and consistency with model predictions. In conclusion, the study suggests that lithium mediates its multiple cellular effects through membrane depolarization, and this can be comprehensively explained by the quantum tunneling model of lithium ions.
Collapse
Affiliation(s)
- Lubna Khreesha
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Baheth Al Omari
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Omar Ababneh
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmad Albanna
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | | | - Mohammad Iswaid
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Salameh Alarood
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Hasan Guzu
- Anesthesia Department, Farah Medical Campus, 18 Mai Zeyadeh Street, Amman 11942, Jordan
| | - Ghadeer Alshawabkeh
- Anesthesia and Pain Management Department, King Hussein Cancer Center, Amman 11942, Jordan
| | | | | | | | - Salameh Obeidat
- Department of Anesthesia, Intensive Care and Pain Management, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Aiman Suleiman
- Department of Anesthesia, Intensive Care and Pain Management, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
4
|
Rouhani M, Ramshini S, Omidi M. The Psychiatric Drug Lithium Increases DNA Damage and Decreases Cell Survival in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines Expos ed to Ionizing Radiation. Curr Mol Pharmacol 2019; 12:301-310. [DOI: 10.2174/1874467212666190503151753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 01/24/2023]
Abstract
Background:
Breast cancer is the most common cancer among women. Radiation therapy
is used for treating almost every stage of breast cancer. A strategy to reduce irradiation side effects and
to decrease the recurrence of cancer is concurrent use of radiation and radiosensitizers. We studied the
effect of the antimanic drug lithium on radiosensitivity of estrogen-receptor (ER)-positive MCF-7 and
ER-negative, invasive, and radioresistant MDA-MB-231 breast cancer cell lines.
Methods:
MCF-7 and MDA-MB-231 breast cancer cell lines were treated with 30 mM and 20 mM
concentrations of lithium chloride (LiCl), respectively. These concentrations were determined by
MTT viability assay. Growth curves were depicted and comet assay was performed for control and
LiCl-treated cells after exposure to X-ray. Total and phosphorylated inactive levels of glycogen
synthase kinase-3beta (GSK-3β) protein were determined by ELISA assay for control and treated
cells.
Results:
Treatment with LiCl decreased cell proliferation after exposure to X-ray as indicated by
growth curves of MCF-7 and MDA-MB-231 cell lines within six days following radiation. Such
treatment increased the amount of DNA damages represented by percent DNA in Tails of comets at
0, 1, 4, and even 24 hours after radiation in both studied cell lines. The amount of active GSK-3β
was increased in LiCl-treated cells in ER-positive and ER-negative breast cancer cell lines.
Conclusion:
Treatment with LiCl that increased the active GSK-3β protein, increased DNA damages
and decreased survival independent of estrogen receptor status in breast cancer cells exposed to
ionizing radiation.
Collapse
Affiliation(s)
- Maryam Rouhani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Samira Ramshini
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Maryam Omidi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
5
|
Ahern TP, Broe A, Lash TL, Cronin-Fenton DP, Ulrichsen SP, Christiansen PM, Cole BF, Tamimi RM, Sørensen HT, Damkier P. Phthalate Exposure and Breast Cancer Incidence: A Danish Nationwide Cohort Study. J Clin Oncol 2019; 37:1800-1809. [PMID: 30995175 DOI: 10.1200/jco.18.02202] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Phthalate exposure is ubiquitous and especially high among users of drug products formulated with phthalates. Some phthalates mimic estradiol and may promote breast cancer. Existing epidemiologic studies on this topic are small, mostly not prospective, and have given inconsistent results. We estimated associations between longitudinal phthalate exposures and breast cancer risk in a Danish nationwide cohort, using redeemed prescriptions for phthalate-containing drug products to measure exposure. METHODS We ascertained the phthalate content of drugs marketed in Denmark using an internal Danish Medicines Agency ingredient database. We enrolled a Danish nationwide cohort of 1.12 million women at risk for a first cancer diagnosis on January 1, 2005. By combining drug ingredient data with the Danish National Prescription registry, we characterized annual, cumulative phthalate exposure through redeemed prescriptions. We then fit multivariable Cox regression models to estimate associations between phthalate exposures and incident invasive breast carcinoma according to tumor estrogen receptor status. RESULTS Over 9.99 million woman-years of follow-up, most phthalate exposures were not associated with breast cancer incidence. High-level dibutyl phthalate exposure (≥ 10,000 cumulative mg) was associated with an approximately two-fold increase in the rate of estrogen receptor-positive breast cancer (hazard ratio, 1.9; 95% CI, 1.1 to 3.5), consistent with in vitro evidence for an estrogenic effect of this compound. Lower levels of dibutyl phthalate exposure were not associated with breast cancer incidence. CONCLUSION Our results suggest that women should avoid high-level exposure to dibutyl phthalate, such as through long-term treatment with pharmaceuticals formulated with dibutyl phthalate.
Collapse
Affiliation(s)
| | - Anne Broe
- 2 University of Southern Denmark, Odense, Denmark.,3 Odense University Hospital, Odense, Denmark
| | - Timothy L Lash
- 4 Emory University, Atlanta, GA.,5 Aarhus University Hospital/Randers Regional Hospital, Aarhus, Denmark
| | | | | | | | | | - Rulla M Tamimi
- 6 Brigham and Women's Hospital, Boston, MA.,7 Harvard T.H. Chan School of Public Health, Boston, MA
| | | | - Per Damkier
- 2 University of Southern Denmark, Odense, Denmark.,3 Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Thilagavathi S, Pugalendhi P, Rajakumar T, Vasudevan K. Monotonic Dose Effect of Bisphenol-A, an Estrogenic Endocrine Disruptor, on Estrogen Synthesis in Female Sprague-Dawley Rats. Indian J Clin Biochem 2018; 33:387-396. [PMID: 30319184 PMCID: PMC6170246 DOI: 10.1007/s12291-017-0696-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 09/11/2017] [Indexed: 12/29/2022]
Abstract
Bisphenol-A (BPA) is a ubiquitous environmental chemical that produces adverse effect on reproduction system due to its potent estrogenic endocrine disruptive activity. The present study was aimed to investigate the monotonic dose effect of BPA on estrogen synthesis in female Sprague-Dawley rats. For this purpose, we administered three different doses of BPA (10, 50, 100 µg/kg bw/day) into rats and analyzed various biochemical, hormonal, molecular and histological parameters. 10 µg BPA treated rats showed significantly decreased levels of phase I detoxification agents (CYP450, Cyt-b5). Overexpression of eNOS with decreased expression of StAR and steroidogenic enzymes (CYP11A1, aromatase) indicate decreased production of estrogen. Increased levels of serum gonadotropins (FSH, LH) and decreased levels of estradiol suggest mimetic action of BPA and its feedback inhibition. Increased body weight, lipid profile status of 10 µg BPA treated rats and histological analysis of ovary and mammary tissue support the study. Overall, our results suggest that BPA exerts its estrogen mimetic effects in a monotonic manner.
Collapse
Affiliation(s)
- Subbaiyan Thilagavathi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu 608 002 India
| | - Pachaiappan Pugalendhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu 608 002 India
| | - Thangarasu Rajakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu 608 002 India
| | - Krishnamoorthy Vasudevan
- Department of Zoology (DDE), Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu 608 002 India
| |
Collapse
|
7
|
Ahmed I, Manno FAM, Manno SHC, Liu Y, Zhang Y, Lau C. Detection of lithium in breast milk and in situ elemental analysis of the mammary gland. BIOMEDICAL OPTICS EXPRESS 2018; 9:4184-4195. [PMID: 30615726 PMCID: PMC6157784 DOI: 10.1364/boe.9.004184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 05/08/2023]
Abstract
Breast feeding provides considerable benefits to the infant and mother. However, a lithium-based psychiatric medication may cause side effects in the child. Using laser induced breakdown spectroscopy (LIBS), trace lithium levels were observed in the breast milk of lactating rats administered with lithium treatment postpartum. Subsequently, the mammary glands of female rats were analyzed using LIBS, energy dispersive X-ray fluorescence spectroscopy, and inductively coupled plasma mass spectrometry. Key biological elements iron, magnesium, cobalt, calcium, phosphorus, sodium, iodine, potassium, sulfur, chlorine and zinc were observed. Lithium at 1.06 µg/g was measured in the mammary glands of treated subjects, but was below the limit of detection in controls. Lithium also increased iodine content in the glands. Lithium is present in the breast milk and mammary glands of lithium treated female subjects and this is the likely route of entry to breast-fed infants.
Collapse
Affiliation(s)
- Irfan Ahmed
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | | | - Sinai H. C. Manno
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yuanchao Liu
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Ahmed I, Yang J, Law AWL, Manno FAM, Ahmed R, Zhang Y, Lau C. Rapid and in situ optical detection of trace lithium in tissues. BIOMEDICAL OPTICS EXPRESS 2018; 9:4459-4471. [PMID: 30615723 PMCID: PMC6157780 DOI: 10.1364/boe.9.004459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 05/06/2023]
Abstract
Lithium-based medications are used successfully to treat many mental disorders, including bipolar disorder and Alzheimer's disease. However, the therapeutic mechanisms are not well characterized due to limitations in detecting lithium in organs and cells. This limits the ability to improve lithium-based treatments. To address this need, laser-induced breakdown spectroscopy (LIBS) is developed for the rapid and in situ detection of lithium in biological tissues. Pronounced lithium emissions are observed at 670.7nm from the rat thyroid, salivary, and mammary glands when lithium is administered orally. Calcium, carbon, magnesium, sodium, potassium, and iodine emissions are also observed. The lithium emission intensity is positively correlated with tissue lithium concentration, which is ~1ppm. The limit of detection for lithium is determined to be ~0.1ppm. Thyroid lithium intensity increases while iodine intensity decreases. The reduced intrathyroidal iodine following treatment likely impairs hormone production. Further, the presence of lithium in the salivary and mammary glands makes these glands the likely conduits for lithium to enter the saliva and breast milk, respectively. LIBS is well suited for characterizing the distribution of lithium, and other elements, across the body. This optical method can potentially be adapted for use in vivo and in humans.
Collapse
Affiliation(s)
- Irfan Ahmed
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Jingwei Yang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Alan Wing Lun Law
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | | | - Rafay Ahmed
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| | - Yanpeng Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Erguven M, Oktem G, Kara AN, Bilir A. Lithium chloride has a biphasic effect on prostate cancer stem cells and a proportional effect on midkine levels. Oncol Lett 2016; 12:2948-2955. [PMID: 27703531 DOI: 10.3892/ol.2016.4946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide and the levels of differentiation growth factor midkine (MK) are increased in PCa. Cancer and/or the treatment process itself may lead to psychiatric disorders. Lithium chloride (LiCl) has anti-manic properties and has been used in cancer therapy; however, it has a queried safety profile. In addition, cancer stem cells are responsible for the heterogeneous phenotype of tumor cells; they are involved in progression, metastasis, recurrence and therapy resistance in various cancer types. The aims of the present study were to investigate the effect of different concentrations of LiCl on PCa stem cells (whether a shift from tumorigenic to non-tumorigenic cells occurs) and to determine if these results can be explained through changes in MK levels. Monolayer and spheroid cultures of human prostate stem cells and non-stem cells were incubated with low (1, 10 µM) and high (100, 500 µM) concentrations of LiCl for 72 h. Cell proliferation, apoptotic indices, MK levels and ultrastructure were evaluated. Cells stimulated with low concentrations showed high proliferation, low apoptotic indices, high MK levels and more healthy ultrastructure. Opposite results were obtained at high concentrations. Furthermore, stem cells were more sensitive to stimulation and more resistant to inhibition than non-stem cells. LiCl exhibited concentration-dependent effects on stem cell and non-stem cell groups. MK levels were not involved in the biphasic effect of LiCl; however, they were proportionally affected. To the best of our knowledge, the present study was the first to show the effect of LiCl on PCa stem cells through MK.
Collapse
Affiliation(s)
- Mine Erguven
- Department of Medical Biochemistry, Faculty of Medicine, İstanbul Aydın University, Küçükçekmece 34295, İstanbul, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, School of Medicine, Ege University, Bornova 35040, İzmir, Turkey
| | - Ali Nail Kara
- Department of Histology and Embryology, İstanbul Faculty of Medicine, İstanbul University, Capa 34390, İstanbul, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Emine-Bahaeddin Nakıboğlu Faculty of Medicine, Zirve University, Gaziantep 27260, Turkey
| |
Collapse
|
10
|
Abstract
The mammalian endocrine system is very dynamic, and undergoes frequent physiological fluctions due to diurnal variations and cyclical hormonal feedback systems. Both hormonal modulations and chemicall drug perturbations can affect the reproductive systems in males and females. An endocrine disrup-tor, a contemporary term that has been used to define an agent that disrupts the endocrine system, is a hormone or antihormone mimic that can modulate endocrine signaling pathways. Unfortunately, this terminology is confusing and ambiguous and fails to account for the ever-changing endogenous hormonal milieu. The endocrine system can be disrupted or modulated by many physiologic events (e.g., exercise, menstruation, pregnancy), by pharm acologic intervention (e.g., oral contraceptives, antithyroidal medication), and by nutritional states (e.g., iodine deficiencies, vitamin deficiencies and malnutrition). Seasonal changes (e.g., light and temperature) can also modulate endocrine events. Phytoestrogens and xenoestrogens (e.g., chlorinated pesticides) can also affect the dynamics of the endocrine system. Heavy metals and certain anti-cancer agents can interfere with testicular and ovarian function and may cause sterility. Several sites of action can be involved between a drug/chemical and the endocrine system, including the central nervous system, specific target organs or subpopulation of cells, hormone-transporting proteins, and xenobi-otic-m etabolizing enzymes in the liver. At the endocrine target organ level, mechanism(s) of action may involve competition for a cell receptor or affect non-receptor-mediated actions. Some drug!chemicals may act as hormone agonists (i.e., mimic) or conversely act as hormone antagonists (i.e., an antihormone); other agents may act as partial agonists or partial antagonists. Clearly, there are many internal and external factors that can modulate the endocrine system, yet the paracrine and autocrine regulation of specific target organs is finely regulated, and, importantly, is very resilient to drugl chemical perturbation.
Collapse
Affiliation(s)
- John A. Thomas
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
11
|
Usongo M, Li X, Farookhi R. Activation of the canonical WNT signaling pathway promotes ovarian surface epithelial proliferation without inducing β-catenin/Tcf-mediated reporter expression. Dev Dyn 2013; 242:291-300. [PMID: 23239518 DOI: 10.1002/dvdy.23919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In response to activation of the canonical WNT signaling pathway, β-catenin cooperates with Lef/Tcf (lymphoid enhancer factor/T-cell factor) transcription factors to drive expression of Wnt target genes. The canonical WNT signaling pathway is involved in development, wound repair, and tumorigenesis. Studies examining the involvement of the canonical WNT signaling pathway in the development of ovarian surface epithelium (OSE) and ovarian carcinogenesis, however, have recently begun to emerge. In this study, we investigated the modulation of β-catenin and β-catenin/Tcf-signaling activity within the OSE using responsive transgenic mice and examined the response of primary OSE cells and ovarian cancer cell lines to activation of the canonical WNT signaling pathway. RESULTS β-catenin was localized to the lateral membrane of the ovarian epithelium. Stimulation of primary OSE cells in vitro with LiCl or Wnt3a led to GSK-3β inhibition and stabilization of β-catenin but failed to induce β-catenin/Tcf-mediated lacZ expression. Furthermore, E-cadherin expression was downregulated and the proliferative potency of OSE cells increased. Of four ovarian cancers cell lines screened, only the HEY cell line demonstrated induction of luciferase reporter upon canonical WNT stimulation. CONCLUSIONS These observations suggest that in ovarian adenocarcinoma, dysregulated WNT signaling may not always be indicative of β-catenin/Tcf-mediated transcriptional activity.
Collapse
Affiliation(s)
- Macalister Usongo
- Department of Experimental Medicine, McGill University, Montreal, Canada.
| | | | | |
Collapse
|
12
|
Suganthi M, Sangeetha G, Gayathri G, Ravi Sankar B. Biphasic dose-dependent effect of lithium chloride on survival of human hormone-dependent breast cancer cells (MCF-7). Biol Trace Elem Res 2012; 150:477-86. [PMID: 23054864 DOI: 10.1007/s12011-012-9510-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 12/31/2022]
Abstract
Lithium, the first element of Group I in the periodic system, is used to treat bipolar psychiatric disorders. Lithium chloride (LiCl) is a selective inhibitor of glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase that regulates many cellular processes, in addition to its role in the regulation of glycogen synthase. GSK-3β is emerged as a promising drug target for various neurological diseases, type-2 diabetes, cancer, and inflammation. Several works have demonstrated that lithium can either inhibit or stimulate growth of normal and cancer cells. Hence, the present study is focused to analyze the underlying mechanisms that dictate the biphasic oncogenic properties of LiCl. In the current study, we have investigated the dose-dependent effects of LiCl on human breast cancer cells (MCF-7) by assessing the consequences on cytotoxicity and protein expressions of signaling molecules crucial for the maintenance of cell survival. The results showed breast cancer cells respond in a diverse manner to LiCl, i.e., at lower concentrations (1, 5, and 10 mM), LiCl induces cell survival by inhibiting apoptosis through regulation of GSK-3β, caspase-2, Bax, and cleaved caspase-7 and by activating anti-apoptotic proteins (Akt, β-catenin, Bcl-2, and cyclin D1). In contrast, at high concentrations (50 and 100 mM), it induces apoptosis by reversing these effects. Moreover, LiCl also alters the sodium and potassium levels thereby altering the membrane potential of MCF-7 cells. Thus it is inferred that LiCl exerts a dose-dependent biphasic effect on breast cancer cells (MCF-7) by altering the apoptotic/anti-apoptotic balance.
Collapse
Affiliation(s)
- Muralidharan Suganthi
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | | | | | | |
Collapse
|
13
|
Suganthi M, Sangeetha G, Benson CS, Babu SD, Sathyavathy A, Ramadoss S, Ravi Sankar B. In vitro mechanisms involved in the regulation of cell survival by lithium chloride and IGF-1 in human hormone-dependent breast cancer cells (MCF-7). Toxicol Lett 2012; 214:182-91. [DOI: 10.1016/j.toxlet.2012.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/17/2012] [Accepted: 08/25/2012] [Indexed: 01/24/2023]
|
14
|
Astragaloside IV Downregulates β-Catenin in Rat Keratinocytes to Counter LiCl-Induced Inhibition of Proliferation and Migration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:956107. [PMID: 22693536 PMCID: PMC3368212 DOI: 10.1155/2012/956107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 02/05/2012] [Indexed: 01/22/2023]
Abstract
Re-epithelialization is a crucial step towards wound healing. The traditional Chinese medicine, Astragalus membranaceus (Fisch) Bge, has been used for hundreds of years for many kinds of ulcerated wounds. Recent research has identified the active compound in this drug as astragaloside IV (AS-IV), but the underlying molecular mechanisms of its therapeutic action on keratinocytes remain poorly understood. In this study, we used an in vitro model of ulcer-like wound processes, lithium chloride (LiCl)-induced cultured mouse keratinocytes, to investigate the effects of AS-IV treatment. The effects on cell proliferation were evaluated by the MTS/PMS colorimetric assay, effects on cell migration were determined by a wound-healing scratch experiment, effects on the cell cycle were analyzed by flow cytometry, and effects on protein expression were analyzed by immunoblotting and immunofluorescence. LiCl strongly inhibited cell proliferation and migration, up-regulated β-catenin expression, and down-regulated proliferating cell nuclear antigen (PCNA) expression. AS-IV treatment attenuat the inhibition of proliferation and migration, significantly reducing the enhanced β-catenin expression, and recovering PCNA and β-tubulin expression. Thus, AS-IV mediates mouse keratinocyte proliferation and migration via regulation of the Wnt signaling pathway. Down-regulating β-catenin to increase keratinocyte migration and proliferation is one mechanism by which AS-IV can promote ulcerated wound healing.
Collapse
|
15
|
Alatise OI, Schrauzer GN. Lead exposure: a contributing cause of the current breast cancer epidemic in Nigerian women. Biol Trace Elem Res 2010; 136:127-39. [PMID: 20195925 PMCID: PMC2883097 DOI: 10.1007/s12011-010-8608-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/04/2010] [Indexed: 01/04/2023]
Abstract
Breast cancer incidence in Nigerian women has significantly increased during the past three decades in parallel with the rapid industrialization of that country. This suggested that the associated widespread contamination of the soil and of the water supplies by lead (Pb) and other industrial metals was a major contributing cause. Because of its many domestic, industrial, and automotive uses, Pb is of particular concern as it has been shown to promote the development of mammary tumors in murine mammary tumor virus-infected female C3H mice at levels as low of 0.5 ppm Pb in the drinking water. Lead belongs to the group of selenium-antagonistic elements that interact with selenium (Se), abolishing its anti-carcinogenic effect. Lead on chronic, low-level exposure in addition also accelerates tumor growth rates. Higher levels of Pb were found in blood and head hair samples of newly diagnosed patients with breast cancer, all with infiltrating ductal carcinoma, the most common form of breast cancer in Nigeria, seen at Obafemi Awolowo University, than in cancer-free controls from the same area. Evidence for interactions between Pb and Se was obtained from blood, hair, and tumor biopsy tissue analyses. Furthermore, the Pb levels in hair samples of the patients were directly correlated with the volumes of their tumors, in accord with the tumor growth-promoting effects of Pb. Conversely, Se levels in hair and blood were inversely correlated with the tumor volumes, consistent with the anti-proliferative effects of Se. Several other elements, e.g., Cd, Hg, Cr, Sn, and As, were detected in the scalp hair of the patients and the controls, although at significantly lower levels than those of Pb. However, correlation calculations revealed them also to interact with Se, suggesting that only a fraction of the Se in organs and tissues is actually present in bioactive forms. In metal-exposed subjects, a state of latent Se deficiency may exist, resulting in depressed immune functions and increased cancer susceptibility. Evidence is presented to show that Pb and other metals also interact with iodine, another vitally important essential trace element believed to protect against breast cancer development. Public health programs aiming at lowering the breast cancer risk of Nigerian women thus will have to include effective measures to protect the population from exposures to Pb and other industrial metals that are presently contaminating the environment and the water supplies.
Collapse
Affiliation(s)
- Olusegun I. Alatise
- Department of Anatomy and Cell Biology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Gerhard N. Schrauzer
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| |
Collapse
|
16
|
Néel BD, Lopez J, Chabadel A, Gillet G. Lithium suppresses motility and invasivity of v-src-transformed cells by glutathione-dependent activation of phosphotyrosine phosphatases. Oncogene 2009; 28:3246-60. [DOI: 10.1038/onc.2009.190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Kappes A, Vaccaro A, Kunnimalaiyaan M, Chen H. Lithium ions: a novel treatment for pheochromocytomas and paragangliomas. Surgery 2007; 141:161-5; discussion 165. [PMID: 17263970 PMCID: PMC1945109 DOI: 10.1016/j.surg.2006.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Operative resection is the only curative treatment for patients with pheochromocytomas, paragangliomas, and other catecholamine-producing neoplasms. Activation of glycogen synthase kinase 3beta (GSK3beta) is thought to promote tumor growth and neuroendocrine (NE) peptide secretion in NE neoplasms. Thus, we hypothesized that inhibition of this signaling pathway with lithium chloride (LiCl), a well-known GSK3beta inhibitor, could be a potential therapeutic strategy to control tumor growth and hormone production. METHODS Pheochromocytoma PC-12 cells were treated with varying concentrations of LiCl (0 to 30 mM). Levels of active and inactive GSK3beta and NE peptides chromogranin A (CgA) and Mash1 were determined by Western blot. Cellular growth was measured by MTT cell-proliferation assay. RESULTS At baseline, PC-12 cells had increased active GSK3beta signaling. Treatment of PC-12 cells with increasing dosages of LiCl resulted in dose-dependent inhibition of GSK3beta. Importantly, LiCl inhibited pheochromocytoma cellular proliferation significantly. Furthermore, inhibition of GSK3beta by LiCl was associated with marked suppression of CgA and Mash1 levels. CONCLUSIONS These data suggest that GSK3beta inhibition may be a novel strategy to treat pheochromocytoma and other catecholamine-producing neoplasms.
Collapse
Affiliation(s)
- Ashley Kappes
- Department of Surgery, Endocrine Surgery Research Laboratories, Section of Endocrine Surgery, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Depending on the cellular context, lithium chloride can lead to enhanced proliferation, cell cycle arrest or apoptosis in mammalian cells. Although substantial work has been made to elucidate the downstream events in the case of lithium chloride-induced cellular proliferation, the molecular response to lithium chloride treatment in the apoptotic scenario is largely undefined. We have used quadruplicate human cDNA arrays with 8000 targets to analyze the early gene response in cultures of human T/C28a cells that undergo apoptosis in response to 20 mM lithium chloride treatment. Incubation of cell cultures with 20 mM lithium chloride for five hours caused alterations in the steady-state mRNA levels of a large number of genes. RT-PCR and real-time RT-PCR confirmed the array results for ten of eleven selected targets. In addition to one protein primarily associated with apoptosis, genes identified as differentially expressed based on microarray data mainly encode proteins involved in basic cellular functions such as signaling, cell cycle control and growth, cell-cell interaction, solute transport and transcription control. We present a list of 50 genes that were differentially expressed in response to lithium chloride treatment and which may represent a reference for further studies to define the pathways governing the apoptotic response to lithium chloride.
Collapse
Affiliation(s)
- W V Zhang
- Division of Surgery, Faculty of Medicine and Health Science, University of Auckland, Grafton, Auckland, New Zealand
| | | | | | | |
Collapse
|
19
|
Gunin AG, Emelianov VU, Mironkin IU, Morozov MP, Tolmachev AS. Lithium treatment enhances estradiol-induced proliferation and hyperplasia formation in the uterus of mice. Eur J Obstet Gynecol Reprod Biol 2004; 114:83-91. [PMID: 15099877 DOI: 10.1016/j.ejogrb.2003.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 06/18/2003] [Accepted: 09/05/2003] [Indexed: 11/24/2022]
Abstract
OBJECTIVES It is suggested that the Wnt/beta-catenin pathway plays a role in the regulation of estrogen action in the uterus. However, this suggestion has not been proved. Lithium can mimic increased activity of the Wnt/beta-catenin pathway by blocking the activity of glycogen synthase kinase-3beta. There are no data on the effects of lithium on estrogen-dependent processes in the uterus. This work was therefore aimed to examine the action of lithium on proliferative and morphogenetic reactions in the uterus under short- and long-term estrogen treatments. STUDY DESIGN Ovariectomized mice received estradiol dipropionate (2 microg per 100g; s.c.) once a week or vehicle and drank tap water with 0.05% lithium chloride or plain tap water for 2 or 30 days. RESULTS In animals treated with estradiol and lithium for a month, the incidence of atypical endometrial hyperplasia was significantly higher. In animals treated with estradiol and lithium for 2 days or for a month, uterine mass, the number of mitotic cells and BrdU-labelled cells in luminal epithelium, glandular epithelium, stromal and myometrial cells was markedly greater, whereas the levels of estrogen receptors-alpha, beta-catenin and glycogen synthase kinase-3beta were markedly lower in all uterine compartments, than in those in mice received estradiol with no lithium to drink. CONCLUSIONS Lithium treatment results in an increase in estradiol-induced proliferative and morphogenetic changes in the uterus. This action of lithium is associated with decreased expression of estrogen receptors-alpha, beta-catenin and glycogen synthase kinase-3beta in the uterus.
Collapse
Affiliation(s)
- Andrei G Gunin
- Department of Histology, Medical School Chuvash State University, 428034 Cheboksary, Russia.
| | | | | | | | | |
Collapse
|
20
|
Choe SY, Kim SJ, Kim HG, Lee JH, Choi Y, Lee H, Kim Y. Evaluation of estrogenicity of major heavy metals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2003; 312:15-21. [PMID: 12873394 DOI: 10.1016/s0048-9697(03)00190-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have employed an estrogen receptor dependent transcriptional expression assay and E-Screen assay systems to evaluate the estrogenicity of various heavy metals and their species. Using the former, the following estrogenicity ranking was measured: bis(tri-n-butyltin)>cadmium chloride>antimony chloride>barium chloride=chromium chloride>lithium hydroxide>sodium selenate=lead acetate>stannous chloride. Using the latter, the following estrogenicity ranking was measured: bis(tri-n-butyltin)>cadmium chloride>antimony chloride>lithium hydroxide>barium chloride>sodium selenate>chromium chloride. Especially, bis(tri-n-butyltin), cadmium chloride, antimony chloride, lithium hydroxide, barium chloride, and chromium chloride showed estrogenicity in both assay systems. Recent studies suggesting that bis(tri-n-butyltin), cadmium chloride, and lithium hydroxide have estrogenicities are compatible with the present findings. Furthermore, our studies are the first to suggest that antimony, barium, chromium may be estrogenic. A range of estrogenicity was observed for different species of the same heavy metal. The results demonstrate that an estrogen receptor dependent transcriptional expression assay and the E-Screen assay systems could serve as a useful method to assess the estrogenicity of heavy metals.
Collapse
Affiliation(s)
- Suck-Young Choe
- Department of Food and Nutrition, University of Ulsan, Ulsan, South Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Flickinger RA. Cell proliferation and protein synthesis as initial factors in determination of axial polarity. Dev Growth Differ 2001; 43:223-7. [PMID: 11422287 DOI: 10.1046/j.1440-169x.2001.00567.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rate of cell proliferation relative to that of protein synthesis appears to have an initial role in establishment of axial polarities in developing animal embryos. An increase in this ratio leads to anterior or dorsal differentiation, while reduction allows posterior or ventral differentiation in a number of organisms. The role that various growth factors play in the regulation of proliferation and protein synthesis is examined.
Collapse
Affiliation(s)
- R A Flickinger
- Department of Biological Sciences, State University of New York, Buffalo, New York 14260, USA. raf53@hotmail .com
| |
Collapse
|
22
|
Nordenberg J, Fenig E, Landau M, Weizman R, Weizman A. Effects of psychotropic drugs on cell proliferation and differentiation. Biochem Pharmacol 1999; 58:1229-36. [PMID: 10487524 DOI: 10.1016/s0006-2952(99)00156-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Some of the psychotropic agents widely used for the amelioration of anxiety, depression, and psychosis also show an effect at the cellular proliferation level. Surprisingly little research, however, has been directed to the antitumoral potential of these drugs, alone or in combination with established cancer treatments. Our review of the literature to date has yielded some promising early findings. Ligands active at the benzodiazepine (BZ) receptors have been studied the most extensively and were found to have differential, concentration-dependent effects on the growth and proliferation of both normal and cancer cells. Of the phenothiazines tested, chlorpromazine (CPZ) and perphenazine (PPZ) had the most potent cytotoxic action on fibroblasts and glioma cells. Antiproliferative effects also were noted by these and other agents in leukemic and breast cancer cell lines. Additional psychotropic drugs studied include the atypical antipsychotics, antidepressants, and mood stabilizers, especially lithium. Most of the reported activities were observed in in vitro studies and were achieved at high pharmacological concentrations. Further in vivo studies in well-designed animal models are warranted to determine whether these well-tolerated, relatively inexpensive, and widely available drugs or their derivatives may be added in the future to the armamentarium of cancer pharmacotherapy.
Collapse
Affiliation(s)
- J Nordenberg
- Felsenstein Medical Research Institute, Rabin Medical Center, Petah Tiqva, Israel
| | | | | | | | | |
Collapse
|
23
|
Smits VA, Essers MA, Loomans DS, Klompmaker R, Rijksen G, Medema RH. Inhibition of cell proliferation by lithium is associated with interference in cdc2 activation. FEBS Lett 1999; 457:23-7. [PMID: 10486556 DOI: 10.1016/s0014-5793(99)01002-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lithium can interfere with embryonal development in a variety of organisms. We investigated the effect of lithium on the proliferation of early embryonal cells. [3H]Thymidine incorporation of non-committed mouse P19 embryonal carcinoma cells was inhibited by lithium treatment. Similar effects were seen in a variety of other cells. This growth inhibition occurred in the G2 phase, since cells accumulated with a 4N DNA content, but the appearance of mitotic cells was blocked. Lithium could also prevent the activation of cdc2, thereby inhibiting cyclin B/cdc2 kinase activity. These data indicate that lithium might disturb embryonal development through interference in embryonal cell cycle regulation.
Collapse
Affiliation(s)
- V A Smits
- Department of Hematology, University Medical Center Utrecht G03.647, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Welshons WV, Nagel SC, Thayer KA, Judy BM, Vom Saal FS. Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicol Ind Health 1999; 15:12-25. [PMID: 10188188 DOI: 10.1177/074823379901500103] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hormonal activity of natural estrogens is influenced by the degree to which they bind to serum proteins. In the pregnant female and in the fetus, greater than 99% of estradiol may be bound by serum binding proteins. Therefore, even though total serum levels of estradiol appear very high in fetuses, we have found that in rodent fetuses, there is a very low free concentration of estradiol (0.2 pg/ml). Naturally occurring variation in fetal serum estradiol predicts differences in numerous postnatal traits, including prostate size. In addition, when this low level of free estradiol was experimentally increased from 0.2 to 0.3 pg/ml during the last third of fetal life, treated male mice showed an increase in adult prostate weight. Fetal exposure to low doses of xenobiotic estrogens by feeding to pregnant females, including the compounds methoxychlor (20 and 2000 micrograms/kg body weight), DES (0.02 to 2 micrograms/kg body weight) and bisphenol A (2 and 20 micrograms/kg body weight), also led to increased prostate weight in adulthood. In contrast, fetal doses of natural estradiol and DES above the physiological range of estrogenic activity, and within a toxicological dose range, led to the opposite outcome, a reduction in subsequent adult prostate weight. This indicates that it may be impossible to assess endocrine-disrupting activities in response to low doses within a physiological range of activity by using high, toxic doses of xenoestrogens in testing procedures. We have developed approaches in vitro to predict the potential estrogenic bioactivity of compounds in the physiologically relevant range in animals and humans. We address the following factors in predicting the final observed endocrine-disrupting effect in the animal: (1) the intrinsic estrogenic activity of a given molecule, (2) the effective free concentration determined by how the molecule is carried in serum, (3) partitioning between aqueous and lipid compartments in body and cell lipids, and (4) absorption and metabolism relative to the route of exposure. The studies and strategies we describe are important in developing criteria for a tiered testing system for the detection of estrogenic chemicals as well as endocrine-disrupting chemicals with different modes of action.
Collapse
Affiliation(s)
- W V Welshons
- Department of Veterinary Biomedical Sciences, University of Missouri-Columbia 65211, USA.
| | | | | | | | | |
Collapse
|
25
|
Cui H, Meng Y, Bulleit RF. Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 111:177-88. [PMID: 9838099 DOI: 10.1016/s0165-3806(98)00136-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor I (IGF-I) is mitogenic for several types of neuronal progenitors including cerebellar granule neuron progenitors. The present study confirms that IGF-I can function as a mitogen in purified cultures of cerebellar granule cells and identifies intracellular signal transduction molecules that mediate this mitogenesis. In cultured granule cells, IGF-I inhibits GSK-3 activity and leads to phosphorylation of serine9 an inhibitory site on GSK-3beta. Phosphoinositide 3-kinase (PI3-K) activation by IGF-I can lead to phosphorylation and inactivation of GSK-3. A PI3-K inhibitor, LY294002, completely inhibited IGF-I-induced proliferation with half-maximal inhibition occurring at a concentration (1.5 micrograms) close to its reported IC50 value for inhibition of PI3-K. Lithium chloride (LiCl), a direct inhibitor of GSK-3beta, can alone stimulate granule cell proliferation and enhance proliferation induced by IGF-I. LiCl can reverse the inhibitory effect of LY294002 on granule cell proliferation suggesting that GSK-3 inhibition may be downstream of PI3-K activation in IGF-I's mitogenic pathway. Experiments further show that the expression of a dominant active form of GSK-3beta antagonizes IGF-I-induced mitogenesis. These studies support a role for inhibition of GSK-3beta activity in the signal transduction pathway by which IGF-I regulates granule neuron progenitor proliferation.
Collapse
Affiliation(s)
- H Cui
- Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore St. Rm 4-018, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
26
|
Seegers JC, Lottering ML, Panzer A, Bianchi P, Stark JH. Comparative anti-mitotic effects of lithium gamma-linolenate, gamma-linolenic acid and arachidonic acid, on transformed and embryonic cells. Prostaglandins Leukot Essent Fatty Acids 1998; 59:285-91. [PMID: 9849656 DOI: 10.1016/s0952-3278(98)90143-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects of gamma-linolenic acid (GLA), the lithium salt of gamma-linolenic acid (LiGLA) and arachidonic acid (AA) were compared at doses of 50 microg/ml for periods of 6 and 24 h on cell cycle progression and apoptosis induction in transformed and in normal cells. In WHCO3 (oesophageal cancer) cells and on primary embryonic equine lung cells, we found LiGLA to be the most effective in apoptosis induction. After 24 h, 94% of the WHCO3 cancer cells and 44% of the primary embryonic equine lung cells exposed to LiGLA were apoptotic. The WHCO3 cancer cells were also very susceptible to the apoptosis-inducing effects of AA (56%) and GLA (44%), whereas the embryonic equine lung cells were much less affected by these two fatty acids. After 6 h exposure to all three compounds, most of the cycling WHCO3 cancer cells were blocked in S-phase. After 24 h treatment, some of the S-phase cells exposed to AA and GLA were apparently able to move into the G2/M phase, the LiGLA exposed cells were mostly apoptotic and no cycling cells were present. The primary embryonic equine lung cells were fairly resistant to the cytotoxic effects of GLA and AA. From our studies we conclude that, although LiGLA was the most toxic to the cancer cells, it is apparently less selective, compared to AA and GLA, in the killing of cancer and normal cells. It would also appear that the lithium might have added to the cytotoxic effects of LiGLA. The mechanism needs to be clarified.
Collapse
Affiliation(s)
- J C Seegers
- Department of Physiology, University of Pretoria, South Africa
| | | | | | | | | |
Collapse
|
27
|
Chapter 2. Gonadal Steroid Receptors: Possible Roles in the Etiology and Therapy of Cognitive and Neurological Disorders. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|